forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·295 lines (264 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import numpy as np
import torch
import dgl
import networkx as nx
import argparse
import random
import time
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import tu
from model.encoder import DiffPool
from data_utils import pre_process
global_train_time_per_epoch = []
def arg_parse():
'''
argument parser
'''
parser = argparse.ArgumentParser(description='DiffPool arguments')
parser.add_argument('--dataset', dest='dataset', help='Input Dataset')
parser.add_argument(
'--pool_ratio',
dest='pool_ratio',
type=float,
help='pooling ratio')
parser.add_argument(
'--num_pool',
dest='num_pool',
type=int,
help='num_pooling layer')
parser.add_argument('--no_link_pred', dest='linkpred', action='store_false',
help='switch of link prediction object')
parser.add_argument('--cuda', dest='cuda', type=int, help='switch cuda')
parser.add_argument('--lr', dest='lr', type=float, help='learning rate')
parser.add_argument(
'--clip',
dest='clip',
type=float,
help='gradient clipping')
parser.add_argument(
'--batch-size',
dest='batch_size',
type=int,
help='batch size')
parser.add_argument('--epochs', dest='epoch', type=int,
help='num-of-epoch')
parser.add_argument('--train-ratio', dest='train_ratio', type=float,
help='ratio of trainning dataset split')
parser.add_argument('--test-ratio', dest='test_ratio', type=float,
help='ratio of testing dataset split')
parser.add_argument('--num_workers', dest='n_worker', type=int,
help='number of workers when dataloading')
parser.add_argument('--gc-per-block', dest='gc_per_block', type=int,
help='number of graph conv layer per block')
parser.add_argument('--bn', dest='bn', action='store_const', const=True,
default=True, help='switch for bn')
parser.add_argument('--dropout', dest='dropout', type=float,
help='dropout rate')
parser.add_argument('--bias', dest='bias', action='store_const',
const=True, default=True, help='switch for bias')
parser.add_argument(
'--save_dir',
dest='save_dir',
help='model saving directory: SAVE_DICT/DATASET')
parser.add_argument('--load_epoch', dest='load_epoch', type=int, help='load trained model params from\
SAVE_DICT/DATASET/model-LOAD_EPOCH')
parser.add_argument('--data_mode', dest='data_mode', help='data\
preprocessing mode: default, id, degree, or one-hot\
vector of degree number', choices=['default', 'id', 'deg',
'deg_num'])
parser.set_defaults(dataset='ENZYMES',
pool_ratio=0.15,
num_pool=1,
cuda=1,
lr=1e-3,
clip=2.0,
batch_size=20,
epoch=4000,
train_ratio=0.7,
test_ratio=0.1,
n_worker=1,
gc_per_block=3,
dropout=0.0,
method='diffpool',
bn=True,
bias=True,
save_dir="./model_param",
load_epoch=-1,
data_mode='default')
return parser.parse_args()
def prepare_data(dataset, prog_args, train=False, pre_process=None):
'''
preprocess TU dataset according to DiffPool's paper setting and load dataset into dataloader
'''
if train:
shuffle = True
else:
shuffle = False
if pre_process:
pre_process(dataset, prog_args)
# dataset.set_fold(fold)
return dgl.dataloading.GraphDataLoader(dataset,
batch_size=prog_args.batch_size,
shuffle=shuffle,
num_workers=prog_args.n_worker)
def graph_classify_task(prog_args):
'''
perform graph classification task
'''
dataset = tu.LegacyTUDataset(name=prog_args.dataset)
train_size = int(prog_args.train_ratio * len(dataset))
test_size = int(prog_args.test_ratio * len(dataset))
val_size = int(len(dataset) - train_size - test_size)
dataset_train, dataset_val, dataset_test = torch.utils.data.random_split(
dataset, (train_size, val_size, test_size))
train_dataloader = prepare_data(dataset_train, prog_args, train=True,
pre_process=pre_process)
val_dataloader = prepare_data(dataset_val, prog_args, train=False,
pre_process=pre_process)
test_dataloader = prepare_data(dataset_test, prog_args, train=False,
pre_process=pre_process)
input_dim, label_dim, max_num_node = dataset.statistics()
print("++++++++++STATISTICS ABOUT THE DATASET")
print("dataset feature dimension is", input_dim)
print("dataset label dimension is", label_dim)
print("the max num node is", max_num_node)
print("number of graphs is", len(dataset))
# assert len(dataset) % prog_args.batch_size == 0, "training set not divisible by batch size"
hidden_dim = 64 # used to be 64
embedding_dim = 64
# calculate assignment dimension: pool_ratio * largest graph's maximum
# number of nodes in the dataset
assign_dim = int(max_num_node * prog_args.pool_ratio)
print("++++++++++MODEL STATISTICS++++++++")
print("model hidden dim is", hidden_dim)
print("model embedding dim for graph instance embedding", embedding_dim)
print("initial batched pool graph dim is", assign_dim)
activation = F.relu
# initialize model
# 'diffpool' : diffpool
model = DiffPool(input_dim,
hidden_dim,
embedding_dim,
label_dim,
activation,
prog_args.gc_per_block,
prog_args.dropout,
prog_args.num_pool,
prog_args.linkpred,
prog_args.batch_size,
'meanpool',
assign_dim,
prog_args.pool_ratio)
if prog_args.load_epoch >= 0 and prog_args.save_dir is not None:
model.load_state_dict(torch.load(prog_args.save_dir + "/" + prog_args.dataset
+ "/model.iter-" + str(prog_args.load_epoch)))
print("model init finished")
print("MODEL:::::::", prog_args.method)
if prog_args.cuda:
model = model.cuda()
logger = train(
train_dataloader,
model,
prog_args,
val_dataset=val_dataloader)
result = evaluate(test_dataloader, model, prog_args, logger)
print("test accuracy {:.2f}%".format(result * 100))
def train(dataset, model, prog_args, same_feat=True, val_dataset=None):
'''
training function
'''
dir = prog_args.save_dir + "/" + prog_args.dataset
if not os.path.exists(dir):
os.makedirs(dir)
dataloader = dataset
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
model.parameters()), lr=0.001)
early_stopping_logger = {"best_epoch": -1, "val_acc": -1}
if prog_args.cuda > 0:
torch.cuda.set_device(0)
for epoch in range(prog_args.epoch):
begin_time = time.time()
model.train()
accum_correct = 0
total = 0
print("\nEPOCH ###### {} ######".format(epoch))
computation_time = 0.0
for (batch_idx, (batch_graph, graph_labels)) in enumerate(dataloader):
for (key, value) in batch_graph.ndata.items():
batch_graph.ndata[key] = value.float()
graph_labels = graph_labels.long()
if torch.cuda.is_available():
batch_graph = batch_graph.to(torch.cuda.current_device())
graph_labels = graph_labels.cuda()
model.zero_grad()
compute_start = time.time()
ypred = model(batch_graph)
indi = torch.argmax(ypred, dim=1)
correct = torch.sum(indi == graph_labels).item()
accum_correct += correct
total += graph_labels.size()[0]
loss = model.loss(ypred, graph_labels)
loss.backward()
batch_compute_time = time.time() - compute_start
computation_time += batch_compute_time
nn.utils.clip_grad_norm_(model.parameters(), prog_args.clip)
optimizer.step()
train_accu = accum_correct / total
print("train accuracy for this epoch {} is {:.2f}%".format(epoch,
train_accu * 100))
elapsed_time = time.time() - begin_time
print("loss {:.4f} with epoch time {:.4f} s & computation time {:.4f} s ".format(
loss.item(), elapsed_time, computation_time))
global_train_time_per_epoch.append(elapsed_time)
if val_dataset is not None:
result = evaluate(val_dataset, model, prog_args)
print("validation accuracy {:.2f}%".format(result * 100))
if result >= early_stopping_logger['val_acc'] and result <=\
train_accu:
early_stopping_logger.update(best_epoch=epoch, val_acc=result)
if prog_args.save_dir is not None:
torch.save(model.state_dict(), prog_args.save_dir + "/" + prog_args.dataset
+ "/model.iter-" + str(early_stopping_logger['best_epoch']))
print("best epoch is EPOCH {}, val_acc is {:.2f}%".format(early_stopping_logger['best_epoch'],
early_stopping_logger['val_acc'] * 100))
torch.cuda.empty_cache()
return early_stopping_logger
def evaluate(dataloader, model, prog_args, logger=None):
'''
evaluate function
'''
if logger is not None and prog_args.save_dir is not None:
model.load_state_dict(torch.load(prog_args.save_dir + "/" + prog_args.dataset
+ "/model.iter-" + str(logger['best_epoch'])))
model.eval()
correct_label = 0
with torch.no_grad():
for batch_idx, (batch_graph, graph_labels) in enumerate(dataloader):
for (key, value) in batch_graph.ndata.items():
batch_graph.ndata[key] = value.float()
graph_labels = graph_labels.long()
if torch.cuda.is_available():
batch_graph = batch_graph.to(torch.cuda.current_device())
graph_labels = graph_labels.cuda()
ypred = model(batch_graph)
indi = torch.argmax(ypred, dim=1)
correct = torch.sum(indi == graph_labels)
correct_label += correct.item()
result = correct_label / (len(dataloader) * prog_args.batch_size)
return result
def main():
'''
main
'''
prog_args = arg_parse()
print(prog_args)
graph_classify_task(prog_args)
print("Train time per epoch: {:.4f}".format( sum(global_train_time_per_epoch) / len(global_train_time_per_epoch) ))
print("Max memory usage: {:.4f}".format(torch.cuda.max_memory_allocated(0) / (1024 * 1024)))
if __name__ == "__main__":
main()