forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
62 lines (55 loc) · 2.56 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import dgl
import numpy as np
import scipy.sparse as ssp
import tqdm
import dask.dataframe as dd
# This is the train-test split method most of the recommender system papers running on MovieLens
# takes. It essentially follows the intuition of "training on the past and predict the future".
# One can also change the threshold to make validation and test set take larger proportions.
def train_test_split_by_time(df, timestamp, user):
df['train_mask'] = np.ones((len(df),), dtype=np.bool)
df['val_mask'] = np.zeros((len(df),), dtype=np.bool)
df['test_mask'] = np.zeros((len(df),), dtype=np.bool)
df = dd.from_pandas(df, npartitions=10)
def train_test_split(df):
df = df.sort_values([timestamp])
if df.shape[0] > 1:
df.iloc[-1, -3] = False
df.iloc[-1, -1] = True
if df.shape[0] > 2:
df.iloc[-2, -3] = False
df.iloc[-2, -2] = True
return df
df = df.groupby(user, group_keys=False).apply(train_test_split).compute(scheduler='processes').sort_index()
print(df[df[user] == df[user].unique()[0]].sort_values(timestamp))
return df['train_mask'].to_numpy().nonzero()[0], \
df['val_mask'].to_numpy().nonzero()[0], \
df['test_mask'].to_numpy().nonzero()[0]
def build_train_graph(g, train_indices, utype, itype, etype, etype_rev):
train_g = g.edge_subgraph(
{etype: train_indices, etype_rev: train_indices},
relabel_nodes=False)
# copy features
for ntype in g.ntypes:
for col, data in g.nodes[ntype].data.items():
train_g.nodes[ntype].data[col] = data
for etype in g.etypes:
for col, data in g.edges[etype].data.items():
train_g.edges[etype].data[col] = data[train_g.edges[etype].data[dgl.EID]]
return train_g
def build_val_test_matrix(g, val_indices, test_indices, utype, itype, etype):
n_users = g.number_of_nodes(utype)
n_items = g.number_of_nodes(itype)
val_src, val_dst = g.find_edges(val_indices, etype=etype)
test_src, test_dst = g.find_edges(test_indices, etype=etype)
val_src = val_src.numpy()
val_dst = val_dst.numpy()
test_src = test_src.numpy()
test_dst = test_dst.numpy()
val_matrix = ssp.coo_matrix((np.ones_like(val_src), (val_src, val_dst)), (n_users, n_items))
test_matrix = ssp.coo_matrix((np.ones_like(test_src), (test_src, test_dst)), (n_users, n_items))
return val_matrix, test_matrix
def linear_normalize(values):
return (values - values.min(0, keepdims=True)) / \
(values.max(0, keepdims=True) - values.min(0, keepdims=True))