forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sign.py
202 lines (175 loc) · 7.09 KB
/
sign.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
from dataset import load_dataset
class FeedForwardNet(nn.Module):
def __init__(self, in_feats, hidden, out_feats, n_layers, dropout):
super(FeedForwardNet, self).__init__()
self.layers = nn.ModuleList()
self.n_layers = n_layers
if n_layers == 1:
self.layers.append(nn.Linear(in_feats, out_feats))
else:
self.layers.append(nn.Linear(in_feats, hidden))
for i in range(n_layers - 2):
self.layers.append(nn.Linear(hidden, hidden))
self.layers.append(nn.Linear(hidden, out_feats))
if self.n_layers > 1:
self.prelu = nn.PReLU()
self.dropout = nn.Dropout(dropout)
self.reset_parameters()
def reset_parameters(self):
gain = nn.init.calculate_gain("relu")
for layer in self.layers:
nn.init.xavier_uniform_(layer.weight, gain=gain)
nn.init.zeros_(layer.bias)
def forward(self, x):
for layer_id, layer in enumerate(self.layers):
x = layer(x)
if layer_id < self.n_layers - 1:
x = self.dropout(self.prelu(x))
return x
class Model(nn.Module):
def __init__(self, in_feats, hidden, out_feats, R, n_layers, dropout):
super(Model, self).__init__()
self.dropout = nn.Dropout(dropout)
self.prelu = nn.PReLU()
self.inception_ffs = nn.ModuleList()
for hop in range(R + 1):
self.inception_ffs.append(
FeedForwardNet(in_feats, hidden, hidden, n_layers, dropout))
# self.linear = nn.Linear(hidden * (R + 1), out_feats)
self.project = FeedForwardNet((R + 1) * hidden, hidden, out_feats,
n_layers, dropout)
def forward(self, feats):
hidden = []
for feat, ff in zip(feats, self.inception_ffs):
hidden.append(ff(feat))
out = self.project(self.dropout(self.prelu(torch.cat(hidden, dim=-1))))
return out
def calc_weight(g):
"""
Compute row_normalized(D^(-1/2)AD^(-1/2))
"""
with g.local_scope():
# compute D^(-0.5)*D(-1/2), assuming A is Identity
g.ndata["in_deg"] = g.in_degrees().float().pow(-0.5)
g.ndata["out_deg"] = g.out_degrees().float().pow(-0.5)
g.apply_edges(fn.u_mul_v("out_deg", "in_deg", "weight"))
# row-normalize weight
g.update_all(fn.copy_e("weight", "msg"), fn.sum("msg", "norm"))
g.apply_edges(fn.e_div_v("weight", "norm", "weight"))
return g.edata["weight"]
def preprocess(g, features, args):
"""
Pre-compute the average of n-th hop neighbors
"""
with torch.no_grad():
g.edata["weight"] = calc_weight(g)
g.ndata["feat_0"] = features
for hop in range(1, args.R + 1):
g.update_all(fn.u_mul_e(f"feat_{hop-1}", "weight", "msg"),
fn.sum("msg", f"feat_{hop}"))
res = []
for hop in range(args.R + 1):
res.append(g.ndata.pop(f"feat_{hop}"))
return res
def prepare_data(device, args):
data = load_dataset(args.dataset)
g, n_classes, train_nid, val_nid, test_nid = data
g = g.to(device)
in_feats = g.ndata['feat'].shape[1]
feats = preprocess(g, g.ndata['feat'], args)
labels = g.ndata['label']
# move to device
train_nid = train_nid.to(device)
val_nid = val_nid.to(device)
test_nid = test_nid.to(device)
train_feats = [x[train_nid] for x in feats]
train_labels = labels[train_nid]
return feats, labels, train_feats, train_labels, in_feats, \
n_classes, train_nid, val_nid, test_nid
def evaluate(epoch, args, model, feats, labels, train, val, test):
with torch.no_grad():
batch_size = args.eval_batch_size
if batch_size <= 0:
pred = model(feats)
else:
pred = []
num_nodes = labels.shape[0]
n_batch = (num_nodes + batch_size - 1) // batch_size
for i in range(n_batch):
batch_start = i * batch_size
batch_end = min((i + 1) * batch_size, num_nodes)
batch_feats = [feat[batch_start: batch_end] for feat in feats]
pred.append(model(batch_feats))
pred = torch.cat(pred)
pred = torch.argmax(pred, dim=1)
correct = (pred == labels).float()
train_acc = correct[train].sum() / len(train)
val_acc = correct[val].sum() / len(val)
test_acc = correct[test].sum() / len(test)
return train_acc, val_acc, test_acc
def main(args):
if args.gpu < 0:
device = "cpu"
else:
device = "cuda:{}".format(args.gpu)
data = prepare_data(device, args)
feats, labels, train_feats, train_labels, in_size, num_classes, \
train_nid, val_nid, test_nid = data
model = Model(in_size, args.num_hidden, num_classes, args.R, args.ff_layer,
args.dropout)
model = model.to(device)
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
best_epoch = 0
best_val = 0
best_test = 0
for epoch in range(1, args.num_epochs + 1):
start = time.time()
model.train()
loss = loss_fcn(model(train_feats), train_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % args.eval_every == 0:
model.eval()
acc = evaluate(epoch, args, model, feats, labels,
train_nid, val_nid, test_nid)
end = time.time()
log = "Epoch {}, Times(s): {:.4f}".format(epoch, end - start)
log += ", Accuracy: Train {:.4f}, Val {:.4f}, Test {:.4f}" \
.format(*acc)
print(log)
if acc[1] > best_val:
best_val = acc[1]
best_epoch = epoch
best_test = acc[2]
print("Best Epoch {}, Val {:.4f}, Test {:.4f}".format(
best_epoch, best_val, best_test))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SIGN")
parser.add_argument("--num-epochs", type=int, default=1000)
parser.add_argument("--num-hidden", type=int, default=256)
parser.add_argument("--R", type=int, default=3,
help="number of hops")
parser.add_argument("--lr", type=float, default=0.003)
parser.add_argument("--dataset", type=str, default="amazon")
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--weight-decay", type=float, default=0)
parser.add_argument("--eval-every", type=int, default=50)
parser.add_argument("--eval-batch-size", type=int, default=250000,
help="evaluation batch size, -1 for full batch")
parser.add_argument("--ff-layer", type=int, default=2,
help="number of feed-forward layers")
args = parser.parse_args()
print(args)
main(args)