- Paper link: arXiv
- Author's code repo: https://github.com/VeritasYin/STGCN_IJCAI-18. Dependencies
- PyTorch 1.1.0+
- sklearn
- dgl
- tables
please get METR_LA dataset from this Google drive. and this Github repo
An experiment in default settings can be run with
python main.py
An experiment on the METR_LA dataset in customized settings can be run with
python main.py --lr --seed --disable-cuda --batch_size <batch-size> --epochs <number-of-epochs>
If one wishes to adjust the model structure, you can change the arguments control_str
and channels
python main.py --control_str <control-string> --channels <n-input-channel> <n-hidden-channels-1> <n-hidden-channels-2> ... <n-output-channels>
<control-string>
is a string of the following characters representing a sequence of neural network modules:
T
: representing a dilated temporal convolution layer, working on the temporal dimension. The dilation factor is always twice as much as the previous temporal convolution layer.S
: representing a graph convolution layer, working on the spatial dimension. The input channels and output channels are the same.N
: a Layer Normalization.
The argument list following --channels
represents the output channels on each temporal convolution layer. The list should have N + 1
elements, where N
is the number of T
's in <control-string>
.
The activation function between two layers are always ReLU.
For example, the following command
python main.py --control_str TNTSTNTST --channels 1 16 32 32 64 128
specifies the following architecture:
+------------------------------------------------------------+
| Input |
+------------------------------------------------------------+
| 1D Conv, in_channel = 1, out_channel = 16, dilation = 1 |
+------------------------------------------------------------+
| Layer Normalization |
+------------------------------------------------------------+
| 1D Conv, in_channel = 16, out_channel = 32, dilation = 2 |
+------------------------------------------------------------+
| Graph Conv, in_channel = 32, out_channel = 32 |
+------------------------------------------------------------+
| 1D Conv, in_channel = 32, out_channel = 32, dilation = 4 |
+------------------------------------------------------------+
| Layer Normalization |
+------------------------------------------------------------+
| 1D Conv, in_channel = 32, out_channel = 64, dilation = 8 |
+------------------------------------------------------------+
| Graph Conv, in_channel = 64, out_channel = 64 |
+------------------------------------------------------------+
| 1D Conv, in_channel = 64, out_channel = 128, dilation = 16 |
+------------------------------------------------------------+
python main.py
METR_LA MAE: ~5.76