forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
49 lines (42 loc) · 1.42 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
from tensorflow.keras import layers
class BaseRGCN(layers.Layer):
def __init__(self, num_nodes, h_dim, out_dim, num_rels, num_bases,
num_hidden_layers=1, dropout=0,
use_self_loop=False, use_cuda=False):
super(BaseRGCN, self).__init__()
self.num_nodes = num_nodes
self.h_dim = h_dim
self.out_dim = out_dim
self.num_rels = num_rels
self.num_bases = None if num_bases < 0 else num_bases
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.use_self_loop = use_self_loop
self.use_cuda = use_cuda
# create rgcn layers
self.build_model()
def build_model(self):
self.layers = []
# i2h
i2h = self.build_input_layer()
if i2h is not None:
self.layers.append(i2h)
# h2h
for idx in range(self.num_hidden_layers):
h2h = self.build_hidden_layer(idx)
self.layers.append(h2h)
# h2o
h2o = self.build_output_layer()
if h2o is not None:
self.layers.append(h2o)
def build_input_layer(self):
return None
def build_hidden_layer(self, idx):
raise NotImplementedError
def build_output_layer(self):
return None
def call(self, g, h, r, norm):
for layer in self.layers:
h = layer(g, h, r, norm)
return h