-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathvisualise.py
135 lines (109 loc) · 4.98 KB
/
visualise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
from argparse import ArgumentParser
from glob import glob
import cv2
import numpy as np
import torch
import torchvision
import matplotlib as mpl
import matplotlib.pyplot as plt
from PIL import Image
from fiery.trainer import TrainingModule
from fiery.utils.network import NormalizeInverse
from fiery.utils.instance import predict_instance_segmentation_and_trajectories
from fiery.utils.visualisation import plot_instance_map, generate_instance_colours, make_contour, convert_figure_numpy
EXAMPLE_DATA_PATH = 'example_data'
def plot_prediction(image, output, cfg):
# Process predictions
consistent_instance_seg, matched_centers = predict_instance_segmentation_and_trajectories(
output, compute_matched_centers=True
)
# Plot future trajectories
unique_ids = torch.unique(consistent_instance_seg[0, 0]).cpu().long().numpy()[1:]
instance_map = dict(zip(unique_ids, unique_ids))
instance_colours = generate_instance_colours(instance_map)
vis_image = plot_instance_map(consistent_instance_seg[0, 0].cpu().numpy(), instance_map)
trajectory_img = np.zeros(vis_image.shape, dtype=np.uint8)
for instance_id in unique_ids:
path = matched_centers[instance_id]
for t in range(len(path) - 1):
color = instance_colours[instance_id].tolist()
cv2.line(trajectory_img, tuple(path[t]), tuple(path[t + 1]),
color, 4)
# Overlay arrows
temp_img = cv2.addWeighted(vis_image, 0.7, trajectory_img, 0.3, 1.0)
mask = ~ np.all(trajectory_img == 0, axis=2)
vis_image[mask] = temp_img[mask]
# Plot present RGB frames and predictions
val_w = 2.99
cameras = cfg.IMAGE.NAMES
image_ratio = cfg.IMAGE.FINAL_DIM[0] / cfg.IMAGE.FINAL_DIM[1]
val_h = val_w * image_ratio
fig = plt.figure(figsize=(4 * val_w, 2 * val_h))
width_ratios = (val_w, val_w, val_w, val_w)
gs = mpl.gridspec.GridSpec(2, 4, width_ratios=width_ratios)
gs.update(wspace=0.0, hspace=0.0, left=0.0, right=1.0, top=1.0, bottom=0.0)
denormalise_img = torchvision.transforms.Compose(
(NormalizeInverse(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
torchvision.transforms.ToPILImage(),)
)
for imgi, img in enumerate(image[0, -1]):
ax = plt.subplot(gs[imgi // 3, imgi % 3])
showimg = denormalise_img(img.cpu())
if imgi > 2:
showimg = showimg.transpose(Image.FLIP_LEFT_RIGHT)
plt.annotate(cameras[imgi].replace('_', ' ').replace('CAM ', ''), (0.01, 0.87), c='white',
xycoords='axes fraction', fontsize=14)
plt.imshow(showimg)
plt.axis('off')
ax = plt.subplot(gs[:, 3])
plt.imshow(make_contour(vis_image[::-1, ::-1]))
plt.axis('off')
plt.draw()
figure_numpy = convert_figure_numpy(fig)
plt.close()
return figure_numpy
def download_example_data():
from requests import get
def download(url, file_name):
# open in binary mode
with open(file_name, "wb") as file:
# get request
response = get(url)
# write to file
file.write(response.content)
os.makedirs(EXAMPLE_DATA_PATH, exist_ok=True)
url_list = ['https://github.com/wayveai/fiery/releases/download/v1.0/example_1.npz',
'https://github.com/wayveai/fiery/releases/download/v1.0/example_2.npz',
'https://github.com/wayveai/fiery/releases/download/v1.0/example_3.npz',
'https://github.com/wayveai/fiery/releases/download/v1.0/example_4.npz'
]
for url in url_list:
download(url, os.path.join(EXAMPLE_DATA_PATH, os.path.basename(url)))
def visualise(checkpoint_path):
trainer = TrainingModule.load_from_checkpoint(checkpoint_path, strict=True)
device = torch.device('cuda:0')
trainer = trainer.to(device)
trainer.eval()
# Download example data
download_example_data()
# Load data
for data_path in sorted(glob(os.path.join(EXAMPLE_DATA_PATH, '*.npz'))):
data = np.load(data_path)
image = torch.from_numpy(data['image']).to(device)
intrinsics = torch.from_numpy(data['intrinsics']).to(device)
extrinsics = torch.from_numpy(data['extrinsics']).to(device)
future_egomotions = torch.from_numpy(data['future_egomotion']).to(device)
# Forward pass
with torch.no_grad():
output = trainer.model(image, intrinsics, extrinsics, future_egomotions)
figure_numpy = plot_prediction(image, output, trainer.cfg)
os.makedirs('./output_vis', exist_ok=True)
output_filename = os.path.join('./output_vis', os.path.basename(data_path).split('.')[0]) + '.png'
Image.fromarray(figure_numpy).save(output_filename)
print(f'Saved output in {output_filename}')
if __name__ == '__main__':
parser = ArgumentParser(description='Fiery visualisation')
parser.add_argument('--checkpoint', default='./fiery.ckpt', type=str, help='path to checkpoint')
args = parser.parse_args()
visualise(args.checkpoint)