forked from syp2ysy/VRP-SAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
143 lines (117 loc) · 6.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
r""" Visual Prompt Encoder training (validation) code """
import os
import argparse
import torch.optim as optim
import torch.nn as nn
import torch
import torch.nn.functional as F
import torch.distributed as dist
from model.VRP_encoder import VRP_encoder
from common.logger import Logger, AverageMeter
from common.evaluation import Evaluator
from common import utils
from data.dataset import FSSDataset
from SAM2pred import SAM_pred
def train(args, epoch, model, sam_model, dataloader, optimizer, scheduler, training):
r""" Train VRP_encoder model """
utils.fix_randseed(args.seed + epoch) if training else utils.fix_randseed(args.seed)
model.module.train_mode() if training else model.module.eval()
average_meter = AverageMeter(dataloader.dataset)
for idx, batch in enumerate(dataloader):
batch = utils.to_cuda(batch)
protos, _ = model(args.condition, batch['query_img'], batch['support_imgs'].squeeze(1), batch['support_masks'].squeeze(1), training)
low_masks, pred_mask = sam_model(batch['query_img'], batch['query_name'], protos)
logit_mask = low_masks
pred_mask = torch.sigmoid(logit_mask) > 0.5
pred_mask = pred_mask.float()
loss = model.module.compute_objective(logit_mask, batch['query_mask'])
if training:
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
area_inter, area_union = Evaluator.classify_prediction(pred_mask.squeeze(1), batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss.detach().clone())
average_meter.write_process(idx, len(dataloader), epoch, write_batch_idx=50)
average_meter.write_result('Training' if training else 'Validation', epoch)
avg_loss = utils.mean(average_meter.loss_buf)
miou, fb_iou = average_meter.compute_iou()
return avg_loss, miou, fb_iou
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='Visual Prompt Encoder Pytorch Implementation')
parser.add_argument('--datapath', type=str, default='/root/paddlejob/workspace/env_run/datsets/')
parser.add_argument('--benchmark', type=str, default='coco', choices=['pascal', 'coco', 'fss'])
parser.add_argument('--logpath', type=str, default='')
parser.add_argument('--bsz', type=int, default=2) # batch size = num_gpu * bsz default num_gpu = 4
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=1e-6)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--nworker', type=int, default=8)
parser.add_argument('--seed', type=int, default=321)
parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3])
parser.add_argument('--condition', type=str, default='scribble', choices=['point', 'scribble', 'box', 'mask'])
parser.add_argument('--use_ignore', type=bool, default=True, help='Boundaries are not considered during pascal training')
parser.add_argument('--local_rank', type=int, default=-1, help='number of cpu threads to use during batch generation')
parser.add_argument('--num_query', type=int, default=50)
parser.add_argument('--backbone', type=str, default='resnet50', choices=['vgg16', 'resnet50', 'resnet101'])
args = parser.parse_args()
# Distributed setting
local_rank = args.local_rank
dist.init_process_group(backend='nccl')
print('local_rank: ', local_rank)
torch.cuda.set_device(local_rank)
device = torch.device('cuda', local_rank)
if utils.is_main_process():
Logger.initialize(args, training=True)
utils.fix_randseed(args.seed)
# Model initialization
model = VRP_encoder(args, args.backbone, False)
if utils.is_main_process():
Logger.log_params(model)
sam_model = SAM_pred()
sam_model.to(device)
model.to(device)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# Device setup
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
for param in model.module.layer0.parameters():
param.requires_grad = False
for param in model.module.layer1.parameters():
param.requires_grad = False
for param in model.module.layer2.parameters():
param.requires_grad = False
for param in model.module.layer3.parameters():
param.requires_grad = False
for param in model.module.layer4.parameters():
param.requires_grad = False
optimizer = optim.AdamW([
{'params': model.module.transformer_decoder.parameters()},
{'params': model.module.downsample_query.parameters(), "lr": args.lr},
{'params': model.module.merge_1.parameters(), "lr": args.lr},
],lr = args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.999))
Evaluator.initialize(args)
# Dataset initialization
FSSDataset.initialize(img_size=512, datapath=args.datapath, use_original_imgsize=False)
dataloader_trn = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'trn')
dataloader_val = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'val')
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max= args.epochs * len(dataloader_trn))
# Training
best_val_miou = float('-inf')
best_val_loss = float('inf')
for epoch in range(args.epochs):
trn_loss, trn_miou, trn_fb_iou = train(args, epoch, model, sam_model, dataloader_trn, optimizer, scheduler, training=True)
with torch.no_grad():
val_loss, val_miou, val_fb_iou = train(args, epoch, model, sam_model, dataloader_val, optimizer, scheduler, training=False)
# Save the best model
if val_miou > best_val_miou:
best_val_miou = val_miou
if utils.is_main_process():
Logger.save_model_miou(model, epoch, val_miou)
if utils.is_main_process():
Logger.tbd_writer.add_scalars('data/loss', {'trn_loss': trn_loss, 'val_loss': val_loss}, epoch)
Logger.tbd_writer.add_scalars('data/miou', {'trn_miou': trn_miou, 'val_miou': val_miou}, epoch)
Logger.tbd_writer.add_scalars('data/fb_iou', {'trn_fb_iou': trn_fb_iou, 'val_fb_iou': val_fb_iou}, epoch)
Logger.tbd_writer.flush()
Logger.tbd_writer.close()
Logger.info('==================== Finished Training ====================')