Skip to content

Latest commit

 

History

History
279 lines (186 loc) · 35.7 KB

File metadata and controls

279 lines (186 loc) · 35.7 KB

1.微调

[toc]

1.如果想要在某个模型基础上做全参数微调,究竟需要多少显存?

要确定进行全参数微调所需的显存量,需要考虑以下几个因素:

  1. 模型的大小:模型的大小是影响所需显存量的一个主要因素。较大的模型通常需要更多的显存来存储模型的参数和中间计算结果。例如,GPT-3 模型拥有数十亿个参数,相比之下,较小的模型如GPT-2可能只有几亿个参数。
  2. 批次大小(Batch Size):批次大小是指一次性输入到模型进行处理的样本数量。较大的批次大小通常需要更多的显存,因为模型需要同时存储和处理更多的输入数据。批次大小的选择通常是根据显存容量和性能需求进行平衡的。
  3. 输入序列长度:如果你的任务涉及到处理长序列文本,例如长篇文章或整个文档,那么输入序列的长度也会对显存需求产生影响。较长的序列需要更多的显存来存储序列的表示和中间计算结果。
  4. 计算平台和优化:不同的计算平台和深度学习框架可能在显存使用方面存在差异。一些框架可能会提供显存优化的功能,例如梯度检查点(Gradient Checkpointing)或混合精度训练(Mixed Precision Training),以减少显存的使用。

通常,大型模型和较大的批次大小可能需要较大的显存容量。建议在进行微调之前评估和测试所用计算平台的显存容量,并根据实际情况进行调整。

2.为什么SFT之后感觉LLM傻了?

在进行Supervised Fine-Tuning(SFT)之后,有时可能会观察到基座模型(如语言模型)的性能下降或产生一些“傻”的行为。这可能是由于以下原因:

  1. 数据偏移:SFT过程中使用的微调数据集可能与基座模型在预训练阶段接触到的数据分布有所不同。如果微调数据集与预训练数据集之间存在显著的差异,模型可能会在新任务上表现较差。这种数据偏移可能导致模型在新任务上出现错误的预测或不准确的输出。
  2. 非典型标注:微调数据集的标注可能存在错误或不准确的标签。这些错误的标签可能会对模型的性能产生负面影响,导致模型产生“傻”的行为。
  3. 过拟合:如果微调数据集相对较小,或者模型的容量(参数数量)较大,模型可能会过拟合微调数据,导致在新的输入上表现不佳。过拟合可能导致模型过于依赖微调数据的特定样本,而无法泛化到更广泛的输入。
  4. 缺乏多样性:微调数据集可能缺乏多样性,未能涵盖模型在新任务上可能遇到的各种输入情况。这可能导致模型在面对新的、与微调数据集不同的输入时出现困惑或错误的预测。

为了解决这些问题,可以尝试以下方法:

  • 收集更多的训练数据,以增加数据的多样性和覆盖范围。
  • 仔细检查微调数据集的标注,确保标签的准确性和一致性。
  • 使用正则化技术(如权重衰减、dropout)来减少过拟合的风险。
  • 进行数据增强,通过对微调数据进行一些变换或扩充来增加多样性。
  • 使用更复杂的模型架构或调整模型的超参数,以提高模型的性能和泛化能力。

通过这些方法,可以尽量减少Supervised Fine-Tuning之后模型出现“傻”的情况,并提高模型在新任务上的表现。

3.SFT 指令微调数据 如何构建?

构建Supervised Fine-Tuning(SFT)的微调数据需要以下步骤:

  1. 收集原始数据:首先,您需要收集与目标任务相关的原始数据。这可以是对话数据、分类数据、生成任务数据等,具体取决于您的任务类型。确保数据集具有代表性和多样性,以提高模型的泛化能力。
  2. 标注数据:对原始数据进行标注,为每个样本提供正确的标签或目标输出。标签的类型取决于您的任务,可以是分类标签、生成文本、对话回复等。确保标注的准确性和一致性。
  3. 划分数据集:将标注数据划分为训练集、验证集和测试集。通常,大部分数据用于训练,一小部分用于验证模型的性能和调整超参数,最后一部分用于最终评估模型的泛化能力。
  4. 数据预处理:根据任务的要求,对数据进行预处理。这可能包括文本清洗、分词、去除停用词、词干化等处理步骤。确保数据格式和特征表示适合模型的输入要求。
  5. 格式转换:将数据转换为适合模型训练的格式。这可能涉及将数据转换为文本文件、JSON格式或其他适合模型输入的格式。
  6. 模型微调:使用转换后的数据对基座模型进行微调。根据任务的要求,选择适当的微调方法和超参数进行训练。这可以使用常见的深度学习框架(如PyTorch、TensorFlow)来实现。
  7. 模型评估:使用测试集对微调后的模型进行评估,计算模型在任务上的性能指标,如准确率、召回率、生成质量等。根据评估结果对模型进行进一步的优化和调整。

4.领域模型Continue PreTrain 数据选取?

在领域模型的Continue PreTrain过程中,数据选取是一个关键的步骤。以下是一些常见的数据选取方法:

  1. 领域相关数据:首先,可以收集与目标领域相关的数据。这些数据可以是从互联网上爬取的、来自特定领域的文档或者公司内部的数据等。这样的数据可以提供领域相关的语言和知识,有助于模型在特定领域上的表现。
  2. 领域专家标注:如果有领域专家可用,可以请他们对领域相关的数据进行标注。标注可以是分类、命名实体识别、关系抽取等任务,这样可以提供有监督的数据用于模型的训练。
  3. 伪标签:如果没有领域专家或者标注数据的成本较高,可以使用一些自动化的方法生成伪标签。例如,可以使用预训练的模型对领域相关的数据进行预测,将预测结果作为伪标签,然后使用这些伪标签进行模型的训练。
  4. 数据平衡:在进行数据选取时,需要注意数据的平衡性。如果某个类别的数据样本较少,可以考虑使用数据增强技术或者对该类别进行过采样,以平衡各个类别的数据量。
  5. 数据质量控制:在进行数据选取时,需要对数据的质量进行控制。可以使用一些质量评估指标,如数据的准确性、一致性等,来筛选和过滤数据。
  6. 数据预处理:在进行数据选取之前,可能需要对数据进行一些预处理,如分词、去除停用词、标准化等,以准备好输入模型进行训练。

在数据选取过程中,需要根据具体任务和需求进行适当的调整和定制。选择合适的数据可以提高模型在特定领域上的性能和泛化能力。

5.领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?

当使用领域数据进行训练后,模型往往会出现遗忘通用能力的问题。以下是一些缓解模型遗忘通用能力的方法:

  1. 保留通用数据:在进行领域数据训练时,仍然需要保留一部分通用数据用于模型训练。这样可以确保模型仍然能够学习到通用的语言和知识,从而保持一定的通用能力。
  2. 增量学习:使用增量学习(Incremental Learning)的方法,将领域数据与通用数据逐步交替进行训练。这样可以在学习新领域的同时,保持对通用知识的记忆。
  3. 预训练和微调:在领域数据训练之前,可以使用大规模通用数据进行预训练,获得一个通用的基础模型。然后,在领域数据上进行微调,以适应特定领域的任务。这样可以在保留通用能力的同时,提升领域任务的性能。
  4. 强化学习:使用强化学习的方法,通过给模型设置奖励机制,鼓励模型在领域任务上表现好,同时保持一定的通用能力。
  5. 领域适应技术:使用领域适应技术,如领域自适应(Domain Adaptation)和领域对抗训练(Domain Adversarial Training),帮助模型在不同领域之间进行迁移学习,从而减少遗忘通用能力的问题。
  6. 数据重采样:在进行领域数据训练时,可以使用数据重采样的方法,使得模型在训练过程中能够更多地接触到通用数据,从而缓解遗忘通用能力的问题。

综合使用上述方法,可以在一定程度上缓解模型遗忘通用能力的问题,使得模型既能够适应特定领域的任务,又能够保持一定的通用能力。

6.领域模型Continue PreTrain ,如何 让模型在预训练过程中就学习到更多的知识?

在领域模型的Continue PreTrain过程中,可以采取一些策略来让模型在预训练过程中学习到更多的知识。以下是一些方法:

  1. 多任务学习:在预训练过程中,可以引入多个任务,使得模型能够学习到更多的知识。这些任务可以是领域相关的任务,也可以是通用的语言理解任务。通过同时训练多个任务,模型可以学习到更多的语言规律和知识。
  2. 多领域数据:收集来自不同领域的数据,包括目标领域和其他相关领域的数据。将这些数据混合在一起进行预训练,可以使得模型在不同领域的知识都得到学习和融合。
  3. 大规模数据:使用更大规模的数据进行预训练,可以让模型接触到更多的语言和知识。可以从互联网上爬取大量的文本数据,或者利用公开的语料库进行预训练。
  4. 数据增强:在预训练过程中,可以采用数据增强的技术,如随机遮挡、词替换、句子重组等,来生成更多的训练样本。这样可以增加模型的训练数据量,使其能够学习到更多的知识和语言规律。
  5. 自监督学习:引入自监督学习的方法,通过设计一些自动生成的标签或任务,让模型在无监督的情况下进行预训练。例如,可以设计一个掩码语言模型任务,让模型预测被掩码的词语。这样可以使模型在预训练过程中学习到更多的语言知识。

7.进行SFT操作的时候,基座模型选用Chat还是Base?

在进行Supervised Fine-Tuning(SFT)操作时,基座模型的选择也可以根据具体情况来决定。与之前的SFT操作不同,这次的目标是在特定的监督任务上进行微调,因此选择基座模型时需要考虑任务的性质和数据集的特点。

如果监督任务是对话生成相关的,比如生成对话回复或对话情感分类等,那么选择ChatGPT模型作为基座模型可能更合适。ChatGPT模型在对话生成任务上进行了专门的优化和训练,具有更好的对话交互能力。

然而,如果监督任务是单轮文本生成或非对话生成任务,那么选择Base GPT模型作为基座模型可能更合适。Base GPT模型在单轮文本生成和非对话生成任务上表现良好,可以提供更准确的文本生成能力。

8.领域模型微调 指令 & 数据输入格式 要求?

领域模型微调是指使用预训练的通用语言模型(如BERT、GPT等)对特定领域的数据进行微调,以适应该领域的任务需求。以下是领域模型微调的指令和数据输入格式的要求:

指令

  1. 定义任务:明确所需的任务类型,如文本分类、命名实体识别、情感分析等。
  2. 选择预训练模型:根据任务需求选择适合的预训练模型,如BERT、GPT等。
  3. 准备微调数据:收集和标注与领域任务相关的数据,确保数据集具有代表性和多样性。
  4. 数据预处理:根据任务的要求,对数据进行预处理,例如分词、去除停用词、词干化等。
  5. 划分数据集:将数据集划分为训练集、验证集和测试集,用于模型的训练、验证和评估。
  6. 模型微调:使用预训练模型和微调数据对模型进行微调,调整超参数并进行训练。
  7. 模型评估:使用测试集评估微调后的模型的性能,计算适当的评估指标,如准确率、召回率等。
  8. 模型应用:将微调后的模型应用于实际任务,在新的输入上进行预测或生成。

数据输入格式要求:

  1. 输入数据应以文本形式提供,每个样本对应一行。
  2. 对于分类任务,每个样本应包含文本和标签,可以使用制表符或逗号将文本和标签分隔开。
  3. 对于生成任务,每个样本只需包含文本即可。
  4. 对于序列标注任务,每个样本应包含文本和对应的标签序列,可以使用制表符或逗号将文本和标签序列分隔开。
  5. 数据集应以常见的文件格式(如文本文件、CSV文件、JSON文件等)保存,并确保数据的格式与模型输入的要求一致。

根据具体的任务和模型要求,数据输入格式可能会有所不同。在进行领域模型微调之前,建议仔细阅读所使用模型的文档和示例代码,以了解其具体的数据输入格式要求。

9.领域模型微调 领域评测集 构建?

构建领域评测集的过程可以参考以下步骤:

  1. 收集数据:首先需要收集与目标领域相关的数据。这可以包括从互联网上爬取文本数据、使用已有的公开数据集或者通过与领域专家合作来获取数据。确保数据集具有代表性和多样性,能够涵盖领域中的各种情况和语境。
  2. 标注数据:对收集到的数据进行标注,以便用于评测模型的性能。标注可以根据任务类型来进行,如文本分类、命名实体识别、关系抽取等。标注过程可以由人工标注或者使用自动化工具进行,具体取决于数据集的规模和可行性。
  3. 划分数据集:将标注好的数据集划分为训练集、验证集和测试集。通常,训练集用于模型的训练,验证集用于调整超参数和模型选择,测试集用于最终评估模型的性能。划分数据集时要确保每个集合中的样本都具有代表性和多样性。
  4. 设计评测指标:根据任务类型和领域需求,选择合适的评测指标来评估模型的性能。例如,对于文本分类任务,可以使用准确率、召回率、F1值等指标来衡量模型的分类性能。
  5. 进行评测:使用构建好的评测集对微调后的模型进行评测。将评测集输入模型,获取模型的预测结果,并与标注结果进行比较,计算评测指标。
  6. 分析和改进:根据评测结果,分析模型在不同方面的表现,并根据需要进行模型的改进和调整。可以尝试不同的超参数设置、模型架构或优化算法,以提高模型的性能。

重复以上步骤,不断优化模型,直到达到满意的评测结果为止。

10.领域模型词表扩增是不是有必要的?

领域模型的词表扩增可以有助于提升模型在特定领域任务上的性能,但是否有必要取决于具体的情况。以下是一些考虑因素:

  1. 领域特定词汇:如果目标领域中存在一些特定的词汇或术语,而这些词汇在通用的预训练模型的词表中没有覆盖到,那么词表扩增就是必要的。通过将这些领域特定的词汇添加到模型的词表中,可以使模型更好地理解和处理这些特定的词汇。
  2. 领域特定上下文:在某些领域任务中,词汇的含义可能会受到特定上下文的影响。例如,在医学领域中,同一个词汇在不同的上下文中可能具有不同的含义。如果领域任务中的上下文与通用预训练模型的训练数据中的上下文有较大差异,那么词表扩增可以帮助模型更好地理解和处理领域特定的上下文。
  3. 数据稀缺性:如果目标领域的训练数据相对较少,而通用预训练模型的词表较大,那么词表扩增可以帮助模型更好地利用预训练模型的知识,并提升在目标领域任务上的性能。

需要注意的是,词表扩增可能会增加模型的计算和存储成本。因此,在决定是否进行词表扩增时,需要综合考虑领域特定词汇的重要性、数据稀缺性以及计算资源的限制等因素。有时候,简单的词表截断或者使用基于规则的方法来处理领域特定词汇也可以取得不错的效果。最佳的词表扩增策略会因特定任务和领域的需求而有所不同,建议根据具体情况进行评估和实验。

11.如何训练自己的大模型?

  1. 数据收集和准备:首先,需要收集与目标任务和领域相关的大规模数据集。这可以包括从互联网上爬取数据、使用公开数据集或者与合作伙伴合作获取数据。然后,对数据进行预处理和清洗,包括去除噪声、处理缺失值、标准化数据等。
  2. 模型设计和架构选择:根据任务的特点和目标,选择适合的模型架构。可以基于已有的模型进行修改和调整,或者设计全新的模型。常见的大模型架构包括深度神经网络(如卷积神经网络、循环神经网络、Transformer等)和预训练语言模型(如BERT、GPT等)。
  3. 数据划分和预处理:将数据集划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于调整超参数和模型选择,测试集用于最终评估模型的性能。进行数据预处理,如分词、编码、标记化、特征提取等,以便输入到模型中。
  4. 模型训练:使用训练集对模型进行训练。训练过程中,需要选择合适的优化算法、损失函数和学习率等超参数,并进行适当的调整和优化。可以使用GPU或者分布式训练来加速训练过程。
  5. 模型调优和验证:使用验证集对训练过程中的模型进行调优和验证。根据验证集的性能指标,调整模型的超参数、网络结构或者其他相关参数,以提升模型的性能。
  6. 模型评估和测试:使用测试集对最终训练好的模型进行评估和测试。计算模型的性能指标,如准确率、召回率、F1值等,评估模型的性能和泛化能力。
  7. 模型部署和优化:将训练好的模型部署到实际应用中。根据实际需求,对模型进行进一步的优化和调整,以提高模型的效率和性能。

12.指令微调的好处?

指令微调(Instruction Fine-Tuning)是一种在预训练模型上进行微调的方法,其中模型接收指令或约束来生成特定的输出。指令微调具有以下几个好处:

  1. 控制生成输出:指令微调使得模型能够根据指定的指令或约束生成特定的输出。这对于需要精确控制模型生成结果的任务非常有用,例如自然语言生成任务中的文本摘要、翻译或对话系统。
  2. 可解释性和可控性:通过指令微调,可以将任务的要求以指令的形式传达给模型。这增加了模型的可解释性和可控性,使得用户能够更好地理解和干预模型的生成过程。
  3. 避免不符合要求的输出:通过指令微调,可以避免模型生成不符合任务要求或偏离期望的输出。通过明确的指令或约束,模型能够更好地遵循任务的要求,并生成符合期望的结果。
  4. 提高任务性能:指令微调可以针对具体任务进行优化,使得模型在该任务上的性能得到提升。通过引入任务特定的指令或约束,模型可以更好地适应特定任务的需求,并生成更准确、更合理的输出。
  5. 灵活性和可扩展性:指令微调是一种灵活且可扩展的方法,允许在不同任务和场景中进行微调。通过调整和修改指令或约束,可以适应不同的任务需求,并在多个任务上进行微调。

请注意,指令微调需要提供明确的指令或约束,并对模型进行适当的调整和微调。在实践中,需要根据具体任务和应用场景来决定是否采用指令微调以及如何设计和实施指令。

13.预训练和微调哪个阶段注入知识的?

预训练和微调两个阶段都可以注入知识,但它们注入知识的方式和范围略有不同

预训练阶段,模型通过大规模的未标注数据进行训练,从中学习语言的统计特征、语义知识和语言规律。预训练的目的是让模型建立起对语言的基本理解和概念,并学习到一般性的语言表示。这种预训练过程注入了通用的语言知识,并可以迁移到各种下游任务中

微调阶段,预训练的模型通过在特定任务上使用带标注的数据进行微调,以适应具体任务的要求。在微调过程中,模型通过接触任务特定的数据和标签,进一步调整和优化模型的参数,使其更好地适应任务的特定特征和要求。微调阶段注入的是与任务相关的知识和信息。

综上所述,预训练阶段主要注入通用的语言知识和表示能力,而微调阶段则注入与任务相关的知识和特定要求。预训练阶段使得模型具备了一定的语言理解能力,而微调阶段则将这种能力与具体任务相结合,使模型在任务上表现更好。预训练和微调两个阶段的结合,可以有效地提高模型的性能和泛化能力。

14.想让模型学习某个领域或行业的知识,是应该预训练还是应该微调?

如果你想让模型学习某个特定领域或行业的知识,一般建议使用微调(Fine-tuning) 的方法。

预训练模型通常是在大规模通用数据上进行预训练,以学习通用的语言知识和表示能力。虽然预训练模型可以在各种任务上表现出色,但它们的训练并未针对特定领域或行业进行优化。因此,如果希望模型具备特定领域的专业知识,微调是更合适的选择。

在微调阶段,可以使用特定领域的数据来微调预训练模型,使其适应该领域的任务和语境。通过在特定领域的数据集上进行微调,模型可以学习到该领域的专业术语、实体关系、特定语义和上下文等。微调过程可以使模型更好地理解和处理与特定领域相关的文本数据,从而提高模型在该领域任务上的性能。

需要注意的是,微调需要在预训练模型的基础上进行,因此你需要首先选择适合你任务的预训练模型,如BERT、GPT等,然后使用特定领域的数据进行微调。微调过程中,可以根据任务需求和数据情况,调整微调的超参数,如学习率、微调步数等。

15.多轮对话任务如何微调模型?

在多轮对话任务中,微调模型的目标是使其能够更好地理解和生成连续的对话内容,并具备上下文理解和一致性回复的能力。下面是一种常见的微调模型的方法:

  1. 数据准备:收集或创建适用于多轮对话任务的数据集,包括对话文本和相应的标签或回复。确保数据集中包含上下文信息和对话的连续性。
  2. 构建输入输出格式:将对话数据转换为适合模型输入的格式。通常情况下,输入可以是包含多个对话轮次的上下文文本,输出可以是下一轮对话的回复或标签。
  3. 模型选择:选择适合多轮对话任务的预训练模型,如DialoGPT、BERT等。这些模型已经在大规模对话数据上进行了预训练,并具备一定的对话理解和生成能力。
  4. 微调模型:使用多轮对话数据集对预训练模型进行微调。微调的过程通常包括以下步骤:
    1. 初始化模型参数:将预训练模型的参数加载到模型中。
    2. 定义损失函数:根据任务要求,定义适当的损失函数,如交叉熵损失函数或生成模型中的对抗损失函数。
    3. 进行反向传播和参数更新:根据损失函数,通过反向传播算法计算梯度,并更新模型参数。
    4. 重复训练步骤:重复进行微调步骤,直到模型在验证集上达到满意的性能。
  5. 超参数调优:根据任务需求和数据情况,调整微调过程中的超参数,如学习率、批大小、微调步数等。可以使用验证集来评估模型性能并选择最佳的超参数配置。
  6. 评估和测试:使用测试集对微调后的模型进行评估和测试,评估模型在多轮对话任务上的性能和表现。

需要注意的是,微调多轮对话模型时,除了常规的微调方法,还可以采用一些特定的技巧,如引入对话历史的注意力机制、使用特定的对话策略进行训练等,以进一步提升模型在多轮对话任务中的性能。

16.微调后的模型出现能力劣化,灾难性遗忘是怎么回事?

灾难性遗忘(Catastrophic Forgetting)是指在模型微调过程中,当模型在新任务上进行训练时,可能会忘记之前学习到的知识,导致在旧任务上的性能下降。这种现象常见于神经网络模型的迁移学习或连续学习场景中。

在微调大语言模型时,灾难性遗忘可能出现的原因包括:

  1. 数据分布差异:微调过程中使用的新任务数据与预训练数据或旧任务数据的分布存在差异。如果新任务的数据分布与预训练数据差异较大,模型可能会过度调整以适应新任务,导致旧任务上的性能下降。
  2. 参数更新冲突:微调过程中,对新任务进行训练时,模型参数可能会被更新,导致之前学习到的知识被覆盖或丢失。新任务的梯度更新可能会与旧任务的梯度更新发生冲突,导致旧任务的知识被遗忘。

为了解决灾难性遗忘问题,可以尝试以下方法:

  1. 经验回放(Replay Buffer):在微调过程中,使用一个缓冲区来存储旧任务的样本,然后将旧任务的样本与新任务的样本一起用于训练。这样可以保留旧任务的知识,减少灾难性遗忘的发生。
  2. 弹性权重共享(Elastic Weight Consolidation):通过引入正则化项,限制模型参数的变动范围,以保护之前学习到的知识。这种方法可以在微调过程中平衡新任务和旧任务之间的重要性。
  3. 增量学习(Incremental Learning):将微调过程分为多个阶段,每个阶段只微调一小部分参数。这样可以逐步引入新任务,减少参数更新的冲突,降低灾难性遗忘的风险。
  4. 多任务学习(Multi-Task Learning):在微调过程中,同时训练多个相关任务,以提高模型的泛化能力和抗遗忘能力。通过共享模型参数,可以在不同任务之间传递知识,减少灾难性遗忘的影响。

综上所述,灾难性遗忘是在模型微调过程中可能出现的问题。通过合适的方法和技术,可以减少灾难性遗忘的发生,保留之前学习到的知识,提高模型的整体性能。

17.预训练和SFT操作有什么不同

大语言模型的预训练和有监督微调(Supervised Fine-Tuning)是两个不同的操作,它们在目标、数据和训练方式等方面存在一些区别。

目标

  • 预训练的目标是通过无监督学习从大规模的文本语料库中学习语言模型的表示能力和语言知识。预训练的目标通常是通过自我预测任务,例如掩码语言模型(Masked Language Model,MLM)或下一句预测(Next Sentence Prediction,NSP)等,来训练模型。
  • 有监督微调的目标是在特定的任务上进行训练,例如文本分类、命名实体识别等。在有监督微调中,模型会利用预训练阶段学到的语言表示和知识,通过有监督的方式调整模型参数,以适应特定任务的要求。

数据

  • 在预训练阶段,大语言模型通常使用大规模的无标签文本数据进行训练,例如维基百科、网页文本等。这些数据没有特定的标签或任务信息,模型通过自我预测任务来学习语言模型。
  • 在有监督微调中,模型需要使用带有标签的任务相关数据进行训练。这些数据通常是人工标注的,包含了输入文本和对应的标签或目标。模型通过这些标签来进行有监督学习,调整参数以适应特定任务。

训练方式

  • 预训练阶段通常使用无监督的方式进行训练,模型通过最大化预训练任务的目标函数来学习语言模型的表示能力。
  • 有监督微调阶段则使用有监督的方式进行训练,模型通过最小化损失函数来学习任务相关的特征和模式。在微调阶段,通常会使用预训练模型的参数作为初始参数,并在任务相关的数据上进行训练。

总的来说,预训练和有监督微调是大语言模型训练的两个阶段,目标、数据和训练方式等方面存在差异。预训练阶段通过无监督学习从大规模文本数据中学习语言模型,而有监督微调阶段则在特定任务上使用带有标签的数据进行有监督学习,以适应任务要求。

18.样本量规模增大,训练出现OOM错

当在大语言模型训练过程中,样本量规模增大导致内存不足的情况出现时,可以考虑以下几种解决方案:

  1. 减少批量大小(Batch Size):将批量大小减小可以减少每个训练步骤中所需的内存量。较小的批量大小可能会导致训练过程中的梯度估计不稳定,但可以通过增加训练步骤的数量来弥补这一问题。
  2. 分布式训练:使用多台机器或多个GPU进行分布式训练可以将训练负载分散到多个设备上,从而减少单个设备上的内存需求。通过分布式训练,可以将模型参数和梯度在多个设备之间进行同步和更新。
  3. 内存优化技术:使用一些内存优化技术可以减少模型训练过程中的内存占用。例如,使用**混合精度训练(Mixed Precision Training)可以减少模型参数的内存占用;使用梯度累积(Gradient Accumulation)**可以减少每个训练步骤中的内存需求。
  4. 减少模型规模:如果内存问题仍然存在,可以考虑减少模型的规模,例如减少模型的层数、隐藏单元的数量等。虽然这可能会导致模型性能的一定损失,但可以在一定程度上减少内存需求。
  5. 增加硬件资源:如果条件允许,可以考虑增加硬件资源,例如增加内存容量或使用更高内存的设备。这样可以提供更多的内存空间来容纳更大规模的训练数据。
  6. 数据处理和加载优化:优化数据处理和加载过程可以减少训练过程中的内存占用。例如,可以使用数据流水线技术来并行加载和处理数据,减少内存中同时存在的数据量。

综上所述,当在大语言模型训练中遇到内存不足的问题时,可以通过减小批量大小、分布式训练、内存优化技术、减少模型规模、增加硬件资源或优化数据处理等方式来解决。具体的解决方案需要根据具体情况进行选择和调整。

19.大模型LLM进行SFT 如何对样本进行优化?

对于大语言模型进行有监督微调(Supervised Fine-Tuning)时,可以采用以下几种方式对样本进行优化:

  1. 数据清洗和预处理:对于有监督微调的任务,首先需要对样本数据进行清洗和预处理。这包括去除噪声、处理缺失值、进行标准化或归一化等操作,以确保数据的质量和一致性。
  2. 数据增强:通过数据增强技术可以扩充训练数据,增加样本的多样性和数量。例如,可以使用数据扩充方法如随机裁剪、旋转、翻转、加噪声等来生成新的训练样本,从而提高模型的泛化能力。
  3. 标签平衡:如果样本标签不平衡,即某些类别的样本数量远远多于其他类别,可以采取一些方法来平衡样本标签。例如,可以通过欠采样、过采样或生成合成样本等技术来平衡不同类别的样本数量。
  4. 样本选择:在有限的资源和时间下,可以选择一部分具有代表性的样本进行微调训练。可以根据任务的需求和数据分布的特点,选择一些关键样本或难样本进行训练,以提高模型在关键样本上的性能。
  5. 样本权重:对于一些重要的样本或困难样本,可以给予更高的权重,以便模型更加关注这些样本的学习。可以通过调整损失函数中样本的权重或采用加权采样的方式来实现。
  6. 样本组合和分割:根据任务的特点和数据的结构,可以将多个样本组合成一个样本,或将一个样本分割成多个子样本。这样可以扩展训练数据,提供更多的信息和多样性。
  7. 样本筛选和策略:根据任务需求,可以制定一些样本筛选和选择策略。例如,可以根据样本的置信度、难度、多样性等指标进行筛选和选择,以提高模型的性能和泛化能力。

总的来说,对大语言模型进行有监督微调时,可以通过数据清洗和预处理、数据增强、标签平衡、样本选择、样本权重、样本组合和分割、样本筛选和策略等方式对样本进行优化。这些优化方法可以提高训练样本的质量、多样性和数量,从而提升模型的性能和泛化能力。具体的优化策略需要根据任务需求和数据特点进行选择和调整。

20.模型参数迭代实验

模型参数迭代实验是指通过多次迭代更新模型参数,以逐步优化模型性能的过程。在实验中,可以尝试不同的参数更新策略、学习率调整方法、正则化技术等,以找到最佳的参数配置,从而达到更好的模型性能。

下面是一个基本的模型参数迭代实验过程:

  1. 设定初始参数:首先,需要设定初始的模型参数。可以通过随机初始化或使用预训练模型的参数作为初始值。
  2. 选择损失函数:根据任务的特点,选择适当的损失函数作为模型的优化目标。常见的损失函数包括均方误差(MSE)、交叉熵损失等。
  3. 选择优化算法:选择适当的优化算法来更新模型参数。常见的优化算法包括随机梯度下降(SGD)、Adam、Adagrad等。可以尝试不同的优化算法,比较它们在模型训练过程中的效果。
  4. 划分训练集和验证集:将样本数据划分为训练集和验证集。训练集用于模型参数的更新,验证集用于评估模型性能和调整超参数。
  5. 迭代更新参数:通过多次迭代更新模型参数来优化模型。每次迭代中,使用训练集的一批样本进行前向传播和反向传播,计算损失函数并更新参数。可以根据需要调整批量大小、学习率等超参数。
  6. 评估模型性能:在每次迭代的过程中,可以使用验证集评估模型的性能。可以计算准确率、精确率、召回率、F1值等指标,以及绘制学习曲线、混淆矩阵等来分析模型的性能。
  7. 调整超参数:根据验证集的评估结果,可以调整超参数,如学习率、正则化系数等,以进一步提升模型性能。可以使用网格搜索、随机搜索等方法来寻找最佳的超参数配置。
  8. 终止条件:可以设置终止条件,如达到最大迭代次数、模型性能不再提升等。当满足终止条件时,结束模型参数迭代实验。

通过模型参数迭代实验,可以逐步优化模型性能,找到最佳的参数配置。在实验过程中,需要注意过拟合和欠拟合等问题,并及时调整模型结构和正则化技术来解决。同时,要进行合理的实验设计和结果分析,以得到可靠的实验结论。