forked from monniert/unicorn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreconstruct_cog.py
71 lines (51 loc) · 1.94 KB
/
reconstruct_cog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
from pathlib import Path
import warnings
from io import BytesIO
import numpy as np
from torch.utils.data import DataLoader
import uuid
from dataset import get_dataset
from model import load_model_from_path
from model.renderer import save_mesh_as_gif
from utils import path_mkdir
from utils.path import MODELS_PATH
from utils.logger import print_log
from utils.mesh import save_mesh_as_obj, normalize
from utils.pytorch import get_torch_device
BATCH_SIZE = 32
N_WORKERS = 4
PRINT_ITER = 1
SAVE_GIF = False
warnings.filterwarnings("ignore")
def reconstruct(model, input):
assert model is not None and input is not None
device = get_torch_device()
m = load_model_from_path(MODELS_PATH / model).to(device)
m.eval()
print_log(f"Model {model} loaded: input img_size is set to {m.init_kwargs['img_size']}")
data = get_dataset(input)(split='test', img_size=m.init_kwargs['img_size'])
loader = DataLoader(data, batch_size=BATCH_SIZE, num_workers=N_WORKERS, shuffle=False)
print_log(f"Found {len(data)} images in the folder")
print_log("Starting reconstruction...")
out = path_mkdir('demo_rec')
reconstruction_count = 0
for j, (inp, _) in enumerate(loader):
imgs = inp['imgs'].to(device)
meshes = m.predict_mesh_pose_bkg(imgs)[0]
B, d, e = len(imgs), m.T_init[-1], np.mean(m.elev_range)
print('B is ', B)
for k in range(B):
reconstruction_count += 1
mcenter = normalize(meshes[k])
filename = str(uuid.uuid4())
save_mesh_as_obj(mcenter, out / f'{filename}_mesh.obj')
print_log("Done!")
if reconstruction_count > 0:
path = Path(out / f'{filename}_mesh.obj')
print('Reconstructed is file =', path.is_file())
buffer = BytesIO(path.read_bytes())
path.unlink()
Path(out / f'{filename}_mesh.mtl').unlink()
Path(out / f'{filename}_mesh.png').unlink()
return buffer