forked from monniert/unicorn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
297 lines (262 loc) · 14.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import argparse
import os
import shutil
import time
from toolz import merge, valmap, keyfilter
import warnings
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from dataset import create_train_val_test_loader
from model import create_model, DDPCust
from optimizer import create_optimizer
from scheduler import create_scheduler
from utils import use_seed, path_exists, path_mkdir, load_yaml
from utils.image import ImageLogger
from utils.logger import create_logger, print_log, print_warning, Verbose
from utils.metrics import Metrics, MeshEvaluator
from utils.path import CONFIGS_PATH, RUNS_PATH, TMP_PATH
from utils.plot import plot_lines, Visualizer
from utils.pytorch import get_torch_device, torch_to
LOG_FMT = "Epoch [{}/{}], Iter [{}/{}], {}".format
N_VIZ_SAMPLES = 4
torch.backends.cudnn.benchmark = True # XXX accelerate training if fixed input size for each layer
warnings.filterwarnings("ignore")
class Trainer:
"""Pipeline to train a model on a particular dataset, both specified by a config cfg."""
@use_seed()
def __init__(self, cfg, run_dir, gpu=None, rank=None, world_size=None):
self.is_master = gpu is None or rank == 0
if not self.is_master: # turning off logging and eval
Metrics.log_data, ImageLogger.log_data, Verbose.mute = False, False, True
self.run_dir = path_mkdir(run_dir)
self.device = get_torch_device(gpu, verbose=True)
self.train_loader, self.val_loader, self.test_loader = create_train_val_test_loader(cfg, rank, world_size)
self.model = create_model(cfg, self.train_loader.dataset.img_size).to(self.device)
self.optimizer = create_optimizer(cfg, self.model)
self.scheduler = create_scheduler(cfg, self.optimizer)
self.epoch_start, self.batch_start = 1, 1
self.n_epoches, self.n_batches = cfg["training"].get("n_epoches"), len(self.train_loader)
self.cur_lr = self.scheduler.get_last_lr()[0]
self.multi_gpu = False
if gpu is not None:
self.model = DDPCust(self.model, device_ids=[gpu], output_device=gpu)
self.multi_gpu = True
self.load_from(cfg)
print_log(f"Training state: epoch={self.epoch_start}, batch={self.batch_start}, lr={self.cur_lr}")
append = self.epoch_start > 1
self.train_stat_interval = cfg["training"]["train_stat_interval"]
self.val_stat_interval = cfg["training"]["val_stat_interval"]
self.save_epoches = cfg["training"].get("save_epoches", [])
names = self.model.loss_names if hasattr(self.model, 'loss_names') else ['loss']
names += [f'prop_head{k}' for k in range(len(self.model.prop_heads))]
self.train_metrics = Metrics(*['time/img'] + names, log_file=self.run_dir / 'train_metrics.tsv', append=append)
self.val_scores = MeshEvaluator(['chamfer-L1', 'chamfer-L1-ICP'], self.run_dir / 'val_scores.tsv',
fast_cpu=True, append=append)
samples = next(iter(self.val_loader if len(self.val_loader) > 0 else self.train_loader))[0]
self.viz_samples = valmap(lambda t: t.to(self.device)[:N_VIZ_SAMPLES], samples)
self.rec_logger = ImageLogger(self.run_dir / 'reconstructions', target_images=self.viz_samples)
if self.with_training: # no visualizer if eval only
viz_port = cfg["training"].get('visualizer_port') if (TMP_PATH is None and self.is_master) else None
self.visualizer = Visualizer(viz_port, self.run_dir)
else:
self.visualizer = Visualizer(None, self.run_dir)
self.extensive_eval = cfg['training'].get('extensive_eval', False)
@property
def with_training(self):
return self.epoch_start < self.n_epoches
@property
def dataset_name(self):
return self.train_loader.dataset.name
def load_from(self, cfg):
pretrained, resume = cfg["training"].get("pretrained"), cfg["training"].get("resume")
assert not (pretrained is not None and resume is not None)
tag = pretrained or resume
if tag is not None:
try:
path = path_exists(RUNS_PATH / self.dataset_name / tag / 'model.pkl')
except FileNotFoundError:
path = path_exists(TMP_PATH / 'runs' / self.dataset_name / tag / 'model.pkl')
checkpoint = torch.load(path, map_location=self.device)
if self.multi_gpu:
self.model.module.load_state_dict(checkpoint["model_state"])
else:
self.model.load_state_dict(checkpoint["model_state"])
if resume is not None:
if checkpoint["batch"] == self.n_batches:
self.epoch_start, self.batch_start = checkpoint["epoch"] + 1, 1
else:
self.epoch_start, self.batch_start = checkpoint["epoch"], checkpoint["batch"] + 1
self.model.set_cur_epoch(checkpoint["epoch"])
print_log(f"epoch_start={self.epoch_start}, batch_start={self.batch_start}")
try:
self.optimizer.load_state_dict(checkpoint["optimizer_state"])
except ValueError:
print_warning("ValueError: loaded optim state contains parameters that don't match")
scheduler_state = keyfilter(lambda k: k in ['last_epoch', '_step_count'], checkpoint["scheduler_state"])
self.scheduler.load_state_dict(scheduler_state)
self.cur_lr = self.scheduler.get_last_lr()[0]
print_log(f"scheduler state_dict: {self.scheduler.state_dict()}")
print_log(f"Checkpoint {tag} loaded")
@use_seed()
def run(self):
cur_iter = (self.epoch_start - 1) * self.n_batches + self.batch_start
for epoch in range(self.epoch_start, self.n_epoches + 1):
batch_start = self.batch_start if epoch == self.epoch_start else 1
for batch, (images, _labels) in enumerate(self.train_loader, start=1):
if batch < batch_start:
continue
self.run_single_batch_train(images)
if cur_iter % self.train_stat_interval == 0 and self.is_master:
self.log_train_metrics(cur_iter, epoch, batch)
if cur_iter % self.val_stat_interval == 0 and self.is_master:
if len(self.val_loader.dataset) > 10:
self.run_val_and_log(cur_iter, epoch, batch)
self.log_visualizations(cur_iter)
self.save(epoch=epoch, batch=batch)
cur_iter += 1
self.step(epoch + 1, batch=1)
if epoch in self.save_epoches:
self.save(epoch=epoch, batch=batch, checkpoint=True)
if self.is_master:
N, B = (self.n_epoches, self.n_batches) if self.with_training else (self.epoch_start, self.batch_start)
self.save(epoch=N, batch=B)
self.save_metric_plots()
self.evaluate()
print_log("Training over")
def run_single_batch_train(self, images):
start_time = time.time()
self.model.train()
self.optimizer.zero_grad()
loss, pred = self.model(torch_to(images, self.device, non_blocking=self.multi_gpu))
if isinstance(loss, torch.Tensor):
loss.mean().backward() # XXX we need to aggregate in case of DDP outputs
dict_loss = {'loss': loss.detach().mean().item()}
else:
loss['total'].mean().backward() # XXX we need to aggregate in case of DDP outputs
dict_loss = {f'loss_{k}': v.detach().mean().item() for k, v in loss.items()}
self.optimizer.step()
self.model.iter_step()
B = len(pred)
self.train_metrics.update(merge({'time/img': (time.time() - start_time) / B}, dict_loss), N=B)
self.train_metrics.update({f'prop_head{i}': p for i, p in enumerate(self.model.prop_heads)}, N=B)
@torch.no_grad()
def run_val_and_log(self, it, epoch, batch):
model = self.model.module if self.multi_gpu else self.model
scores = model.quantitative_eval(self.val_loader, self.device, evaluator=self.val_scores)
print_log(LOG_FMT(epoch, self.n_epoches, batch, self.n_batches,
"val_scores: " + ", ".join(["{}={:.4f}".format(k, v) for k, v in scores.items()])))
self.visualizer.upload_lineplot(it, list(scores.items()), title='val_scores')
self.val_scores.log_and_reset(it=it, epoch=epoch, batch=batch)
def step(self, epoch, batch):
self.model.step()
self.scheduler.step()
lr = self.scheduler.get_last_lr()[0]
if lr != self.cur_lr:
self.cur_lr = lr
print_log(LOG_FMT(epoch, self.n_epoches, batch, self.n_batches, f'LR update: lr={lr}'))
if hasattr(self.train_loader.dataset, 'step'):
self.train_loader.dataset.step()
def log_train_metrics(self, it, epoch, batch):
print_log(LOG_FMT(epoch, self.n_epoches, batch, self.n_batches, f'train_metrics: {self.train_metrics}')[:1000])
metrics = self.train_metrics
self.visualizer.upload_lineplot(it, metrics.get_named_values(lambda s: 'loss' in s), title='train_losses')
named_values = metrics.get_named_values(lambda s: 'prop_head' in s)
proportions = torch.Tensor([v for k, v in named_values])
if len(proportions) > 1:
self.visualizer.upload_barplot(named_values, title='head assigned proportions')
if hasattr(self.model, '_prob_heads'):
named_values = [(k, v) for k, v in enumerate(self.model._prob_heads)]
self.visualizer.upload_barplot(named_values, title='avg probability per head')
named_values = [('max', self.model._prob_max), ('min', self.model._prob_min)]
self.visualizer.upload_lineplot(it, named_values, title='probability statistics')
if hasattr(self.model, '_pose_temp'):
self.visualizer.upload_lineplot(it, [('val', self.model._pose_temp)], title='pose temperature')
metrics.log_and_reset(it=it, epoch=epoch, batch=batch)
@torch.no_grad()
def log_visualizations(self, cur_iter):
self.model.eval()
viz_imgs = self.viz_samples['imgs']
rec = self.model(self.viz_samples, debug=True).permute(1, 0, 2, 3, 4)
images = torch.cat([viz_imgs[:, None], rec], dim=1)
self.visualizer.upload_images(images.reshape(-1, *viz_imgs.shape[1:]), 'candidates', images.shape[1])
rec = self.model(self.viz_samples)[1]
images = torch.stack([viz_imgs, rec], dim=1)
self.visualizer.upload_images(images.reshape(-1, *viz_imgs.shape[1:]), 'recons', images.shape[1])
self.rec_logger.save(rec, cur_iter)
images = self.model.get_random_prototype_views(seed=4321)
if images is not None:
self.visualizer.upload_images(images, 'prototype views')
def save(self, epoch, batch, checkpoint=False):
state = {
"epoch": epoch, "batch": batch, "model_name": self.model.name, "model_kwargs": self.model.init_kwargs,
"model_state": self.model.state_dict(), "optimizer_state": self.optimizer.state_dict(),
"scheduler_state": self.scheduler.state_dict(),
}
name = f'model_{epoch}.pkl' if checkpoint else 'model.pkl'
torch.save(state, self.run_dir / name)
print_log(f"Model saved at {self.run_dir / name}")
@torch.no_grad()
def save_metric_plots(self):
self.model.eval()
df, df_scores = [m.read_log() for m in [self.train_metrics, self.val_scores]]
if len(df) == 0:
print_log('No metrics or plots to save')
return None
loss_names = list(filter(lambda col: 'loss' in col, df.columns))
plot_lines(df, loss_names, title="Loss").savefig(self.run_dir / "loss.pdf")
if len(df_scores) > 0:
names = list(filter(lambda col: col in df_scores, self.val_scores.names))
plot_lines(df_scores, names, title="Val scores").savefig(self.run_dir / 'val_scores.pdf')
names = list(filter(lambda col: col.startswith('prop_head'), df.columns))
if len(names) > 0 :
plot_lines(df, names, title='Head proportions').savefig(self.run_dir / 'head_proportions.pdf')
self.rec_logger.save(self.model(self.viz_samples)[1])
self.rec_logger.save_gif()
print_log("Metrics and plots saved")
def evaluate(self):
self.model.eval()
# quantitative
scores = self.model.quantitative_eval(self.test_loader, self.device)
print_log('final_scores: ' + ', '.join(["{}={:.5f}".format(k, v) for k, v in scores.items()]))
with open(self.run_dir / 'final_scores.tsv', mode='w') as f:
f.write("\t".join(scores.keys()) + "\n")
f.write("\t".join(map('{:.5f}'.format, scores.values())) + "\n")
# qualitative
out = path_mkdir(self.run_dir / 'quali_eval')
N = 64 if self.extensive_eval else 32
self.model.qualitative_eval(self.test_loader, self.device, path=out, N=N)
print_log("Evaluation over")
def train_multi(gpu, cfg, run_dir, seed, n_gpus, n_nodes, n_rank):
rank, world_size = n_rank * n_gpus + gpu, n_gpus * n_nodes
dist.init_process_group('nccl', rank=rank, world_size=world_size)
trainer = Trainer(cfg, run_dir, seed=seed + rank, gpu=gpu, rank=rank, world_size=world_size)
trainer.run(seed=seed + rank)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Pipeline to train a NN model specified by a YML config')
parser.add_argument('-t', '--tag', nargs='?', type=str, required=True, help='Run tag of the experiment')
parser.add_argument('-c', '--config', nargs='?', type=str, required=True, help='Config file name')
parser.add_argument('-nr', '--n_rank', default=0, type=int, help='rank of the node')
args = parser.parse_args()
assert args.tag is not None and args.config is not None
cfg = load_yaml(CONFIGS_PATH / args.config)
seed, dataset = cfg['training'].get('seed', 4321), cfg['dataset']['name']
if (RUNS_PATH / dataset / args.tag).exists():
run_dir = RUNS_PATH / dataset / args.tag
else:
run_dir = path_mkdir((RUNS_PATH if TMP_PATH is None else TMP_PATH / 'runs') / dataset / args.tag)
create_logger(run_dir)
shutil.copy(str(CONFIGS_PATH / args.config), str(run_dir))
n_gpus, n_nodes = cfg['training'].get('n_gpus', 1), cfg['training'].get('n_nodes', 1)
n_gpus = min(torch.cuda.device_count(), n_gpus)
print_log(f'Trainer init: config_file={args.config}, run_dir={run_dir}, n_gpus={n_gpus}')
if n_gpus > 1:
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
mp.spawn(train_multi, nprocs=n_gpus, args=(cfg, run_dir, seed, n_gpus, n_nodes, args.n_rank))
else:
trainer = Trainer(cfg, run_dir, seed=seed)
trainer.run(seed=seed)
if TMP_PATH is not None and run_dir != RUNS_PATH / dataset / args.tag:
shutil.copytree(str(run_dir), str(RUNS_PATH / dataset / args.tag))
shutil.rmtree(run_dir, ignore_errors=True)