From 198b2bd5a3c42291a5b9f2106d050f1ec34c9039 Mon Sep 17 00:00:00 2001 From: shawticus Date: Sat, 30 Jul 2022 19:10:17 -0700 Subject: [PATCH 1/2] add build scripts --- .gitignore | 27 ++ utils/build/.babelrc.json | 21 ++ utils/build/rollup.config.js | 365 ++++++++++++++++++++++++++ utils/build/rollup.examples.config.js | 230 ++++++++++++++++ utils/packLDrawModel.js | 304 +++++++++++++++++++++ 5 files changed, 947 insertions(+) create mode 100644 .gitignore create mode 100644 utils/build/.babelrc.json create mode 100644 utils/build/rollup.config.js create mode 100644 utils/build/rollup.examples.config.js create mode 100644 utils/packLDrawModel.js diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000..81c965b1d6 --- /dev/null +++ b/.gitignore @@ -0,0 +1,27 @@ +.DS_Store +*.swp +.project +.idea/ +.vscode/ +npm-debug.log +.jshintrc +.vs/ + +# The command'npm install --prefix test' adds files in the test folder (https://docs.npmjs.com/configuring-npm/folders.html#executables). +# There are 2 kinds of files, those without extension and those with cmd extension. +# To ignore files without a extension, following procedure is nessecary: +# - ignore all files in the test folder +# - unignore all files in subdirectories of the test folder +# - unignore all files with an extension in the test folder +test/* +!test/*/ +!test/*.* +test/*.cmd +test/unit/build +test/treeshake/index.bundle.js +test/treeshake/index.bundle.min.js +test/treeshake/index-src.bundle.min.js +test/treeshake/stats.html + + +**/node_modules \ No newline at end of file diff --git a/utils/build/.babelrc.json b/utils/build/.babelrc.json new file mode 100644 index 0000000000..471da2bde6 --- /dev/null +++ b/utils/build/.babelrc.json @@ -0,0 +1,21 @@ +{ + "presets": [ + [ + "@babel/preset-env", + { + "modules": false, + "targets": ">1%", + "loose": true, + "bugfixes": true + } + ] + ], + "plugins": [ + [ + "@babel/plugin-proposal-class-properties", + { + "loose": true + } + ] + ] +} \ No newline at end of file diff --git a/utils/build/rollup.config.js b/utils/build/rollup.config.js new file mode 100644 index 0000000000..849495c9cd --- /dev/null +++ b/utils/build/rollup.config.js @@ -0,0 +1,365 @@ +import babel from '@rollup/plugin-babel'; +import { terser } from 'rollup-plugin-terser'; +import babelrc from './.babelrc.json'; + +export function glconstants() { + + var constants = { + POINTS: 0, ZERO: 0, NONE: 0, + LINES: 1, ONE: 1, + LINE_LOOP: 2, + LINE_STRIP: 3, + TRIANGLES: 4, + TRIANGLE_STRIP: 5, + TRIANGLE_FAN: 6, + DEPTH_BUFFER_BIT: 256, + LESS: 513, + NEVER: 512, + EQUAL: 514, + LEQUAL: 515, + GREATER: 516, + NOTEQUAL: 517, + GEQUAL: 518, + ALWAYS: 519, + SRC_COLOR: 768, + ONE_MINUS_SRC_COLOR: 769, + SRC_ALPHA: 770, + ONE_MINUS_SRC_ALPHA: 771, + DST_ALPHA: 772, + ONE_MINUS_DST_ALPHA: 773, + DST_COLOR: 774, + ONE_MINUS_DST_COLOR: 775, + SRC_ALPHA_SATURATE: 776, + STENCIL_BUFFER_BIT: 1024, + FRONT: 1028, + BACK: 1029, + FRONT_AND_BACK: 1032, + CW: 2304, + CCW: 2305, + CULL_FACE: 2884, + DEPTH_TEST: 2929, + STENCIL_TEST: 2960, + VIEWPORT: 2978, + BLEND: 3042, + SCISSOR_BOX: 3088, + SCISSOR_TEST: 3089, + UNPACK_ALIGNMENT: 3317, + MAX_TEXTURE_SIZE: 3379, + DEPTH24_STENCIL8: 35056, + TEXTURE_2D: 3553, + BYTE: 5120, + UNSIGNED_BYTE: 5121, + SHORT: 5122, + UNSIGNED_INT: 5125, + UNSIGNED_SHORT: 5123, + INT: 5124, + FLOAT: 5126, + HALF_FLOAT: 5131, + DEPTH_COMPONENT: 6402, + RED: 6403, + ALPHA: 6406, + RGB: 6407, + RGBA: 6408, + LUMINANCE: 6409, + LUMINANCE_ALPHA: 6410, + KEEP: 7680, + RED_INTEGER: 36244, + RG: 33319, + RG_INTEGER: 33320, + RGB_INTEGER: 36248, + RGBA_INTEGER: 36249, + VERSION: 7938, + NEAREST: 9728, + LINEAR: 9729, + NEAREST_MIPMAP_NEAREST: 9984, + LINEAR_MIPMAP_NEAREST: 9985, + NEAREST_MIPMAP_LINEAR: 9986, + LINEAR_MIPMAP_LINEAR: 9987, + TEXTURE_MAG_FILTER: 10240, + TEXTURE_MIN_FILTER: 10241, + TEXTURE_WRAP_S: 10242, + TEXTURE_WRAP_T: 10243, + TEXTURE_WRAP_R: 32882, + REPEAT: 10497, + COLOR_BUFFER_BIT: 16384, + FUNC_ADD: 32774, + MIN: 32775, + MAX: 32776, + FUNC_SUBTRACT: 32778, + FUNC_REVERSE_SUBTRACT: 32779, + UNSIGNED_SHORT_4_4_4_4: 32819, + UNSIGNED_SHORT_5_5_5_1: 32820, + POLYGON_OFFSET_FILL: 32823, + RGB8: 32849, + RGBA4: 32854, + RGB5_A1: 32855, + RGBA8: 32856, + TEXTURE_3D: 32879, + CLAMP_TO_EDGE: 33071, + DEPTH_COMPONENT16: 33189, + DEPTH_COMPONENT24: 33190, + DEPTH_COMPONENT32F: 36012, + DEPTH_STENCIL_ATTACHMENT: 33306, + R8: 33321, + RG8: 33323, + R16F: 33325, + R32F: 33326, + RG16F: 33327, + RG32F: 33328, + UNSIGNED_SHORT_5_6_5: 33635, + MIRRORED_REPEAT: 33648, + TEXTURE0: 33984, + DEPTH_STENCIL: 34041, + UNSIGNED_INT_24_8: 34042, + TEXTURE_CUBE_MAP: 34067, + TEXTURE_CUBE_MAP_POSITIVE_X: 34069, + MAX_CUBE_MAP_TEXTURE_SIZE: 34076, + COMPRESSED_TEXTURE_FORMATS: 34467, + RGBA32F: 34836, + RGB32F: 34837, + RGBA16F: 34842, + RGB16F: 34843, + MAX_VERTEX_ATTRIBS: 34921, + MAX_TEXTURE_IMAGE_UNITS: 34930, + ARRAY_BUFFER: 34962, + UNIFORM_BUFFER: 35345, + ELEMENT_ARRAY_BUFFER: 34963, + STATIC_DRAW: 35044, + DYNAMIC_DRAW: 35048, + VERTEX_SHADER: 35633, + FRAGMENT_SHADER: 35632, + MAX_VERTEX_TEXTURE_IMAGE_UNITS: 35660, + MAX_COMBINED_TEXTURE_IMAGE_UNITS: 35661, + FLOAT_MAT2: 35674, + FLOAT_MAT3: 35675, + FLOAT_MAT4: 35676, + COMPILE_STATUS: 35713, + LINK_STATUS: 35714, + VALIDATE_STATUS: 35715, + ACTIVE_UNIFORMS: 35718, + ACTIVE_ATTRIBUTES: 35721, + IMPLEMENTATION_COLOR_READ_TYPE: 35738, + IMPLEMENTATION_COLOR_READ_FORMAT: 35739, + TEXTURE_2D_ARRAY: 35866, + COLOR_ATTACHMENT0: 36064, + FRAMEBUFFER_COMPLETE: 36053, + DEPTH_ATTACHMENT: 36096, + FRAMEBUFFER: 36160, + RENDERBUFFER: 36161, + LOW_FLOAT: 36336, + MEDIUM_FLOAT: 36337, + HIGH_FLOAT: 36338, + MAX_VERTEX_UNIFORM_VECTORS: 36347, + MAX_VARYING_VECTORS: 36348, + MAX_FRAGMENT_UNIFORM_VECTORS: 36349, + UNPACK_FLIP_Y_WEBGL: 37440, + UNPACK_PREMULTIPLY_ALPHA_WEBGL: 37441, + UNPACK_COLORSPACE_CONVERSION_WEBGL: 37443, + UNPACK_ROW_LENGTH: 3314, + UNPACK_IMAGE_HEIGHT: 32878, + UNPACK_SKIP_PIXELS: 3316, + UNPACK_SKIP_ROWS: 3315, + UNPACK_SKIP_IMAGES: 32877, + MAX_SAMPLES: 36183, + READ_FRAMEBUFFER: 36008, + DRAW_FRAMEBUFFER: 36009, + SAMPLE_ALPHA_TO_COVERAGE: 32926, + SRGB8: 35905, + SRGB8_ALPHA8: 35907, + MAX_UNIFORM_BUFFER_BINDINGS: 35375 + }; + + return { + + transform( code ) { + + code = code.replace( /_?gl\.([A-Z0-9_]+)/g, function ( match, p1 ) { + + if ( p1 in constants ) return constants[ p1 ]; + console.log( '* Unhandled GL Constant:', p1 ); + return match; + + } ); + + return { + code: code, + map: null + }; + + } + + }; + +} + +function addons() { + + return { + + transform( code, id ) { + + if ( /\/examples\/jsm\//.test( id ) === false ) return; + + code = code.replace( 'build/three.module.js', 'src/Three.js' ); + + return { + code: code, + map: null + }; + + } + + }; + +} + +export function glsl() { + + return { + + transform( code, id ) { + + if ( /\.glsl.js$/.test( id ) === false ) return; + + code = code.replace( /\/\* glsl \*\/\`(.*?)\`/sg, function ( match, p1 ) { + + return JSON.stringify( + p1 + .trim() + .replace( /\r/g, '' ) + .replace( /[ \t]*\/\/.*\n/g, '' ) // remove // + .replace( /[ \t]*\/\*[\s\S]*?\*\//g, '' ) // remove /* */ + .replace( /\n{2,}/g, '\n' ) // # \n+ to \n + ); + + } ); + + return { + code: code, + map: null + }; + + } + + }; + +} + +function babelCleanup() { + + const doubleSpaces = / {2}/g; + + return { + + transform( code ) { + + code = code.replace( doubleSpaces, '\t' ); + + return { + code: code, + map: null + }; + + } + + }; + +} + +function header() { + + return { + + renderChunk( code ) { + + return `/** + * @license + * Copyright 2010-2022 Three.js Authors + * SPDX-License-Identifier: MIT + */ +${ code }`; + + } + + }; + +} + +let builds = [ + { + input: 'src/Three.js', + plugins: [ + addons(), + glconstants(), + glsl(), + header() + ], + output: [ + { + format: 'esm', + file: 'build/three.module.js' + } + ] + }, + { + input: 'src/Three.js', + plugins: [ + addons(), + glsl(), + babel( { + babelHelpers: 'bundled', + compact: false, + babelrc: false, + ...babelrc + } ), + babelCleanup(), + header() + ], + output: [ + { + format: 'umd', + name: 'THREE', + file: 'build/three.js', + indent: '\t' + }, + { + format: 'cjs', + name: 'THREE', + file: 'build/three.cjs', + indent: '\t' + } + ] + }, + { + input: 'src/Three.js', + plugins: [ + addons(), + glconstants(), + glsl(), + babel( { + babelHelpers: 'bundled', + babelrc: false, + ...babelrc + } ), + babelCleanup(), + terser(), + header() + ], + output: [ + { + format: 'umd', + name: 'THREE', + file: 'build/three.min.js' + } + ] + } +]; + + +if ( process.env.ONLY_MODULE === 'true' ) { + + builds = builds[ 0 ]; + +} + +export default builds; diff --git a/utils/build/rollup.examples.config.js b/utils/build/rollup.examples.config.js new file mode 100644 index 0000000000..26951de906 --- /dev/null +++ b/utils/build/rollup.examples.config.js @@ -0,0 +1,230 @@ +import babel from '@rollup/plugin-babel'; +import path from 'path'; +import os from 'os'; +import glob from 'glob'; +import babelrc from './.babelrc.json'; + +const EOL = os.EOL; + +function babelCleanup() { + + return { + + transform( code ) { + + // remove comments messed up by babel that break eslint + // example: + // setSize: function () + // /* width, height */ + // { + // ↓ + // setSize: function () { + code = code.replace( new RegExp( `\\(\\)${EOL}\\s*\\/\\*([a-zA-Z0-9_, ]+)\\*\\/${EOL}\\s*{`, 'g' ), '( ) {' ); + + return { + code: code, + map: null + }; + + } + + }; + +} + + + + + +function unmodularize() { + + return { + + + renderChunk( code, { fileName } ) { + + // Namespace the modules that end with Utils + const fileNameNoExtension = fileName.slice( 0, fileName.indexOf( '.' ) ); + const namespace = fileNameNoExtension.endsWith( 'Utils' ) ? fileNameNoExtension : undefined; + + // export { Example }; + // ↓ + // THREE.Example = Example; + code = code.replace( /export { ([a-zA-Z0-9_, ]+) };/g, ( match, p1 ) => { + + const exps = p1.split( ', ' ); + + let output = ''; + + if ( namespace ) { + + output += `THREE.${namespace} = {};${ EOL }`; + output += exps.map( exp => `THREE.${namespace}.${exp} = ${exp};` ).join( EOL ); + + } else { + + output += exps.map( exp => `THREE.${exp} = ${exp};` ).join( EOL ); + + } + + + return output; + + } ); + + // import { Example } from '...'; + // but excluding imports importing from the libs/ folder + const imports = []; + code = code.replace( /import { ([a-zA-Z0-9_, ]+) } from '((?!libs).)*';/g, ( match, p1 ) => { + + const imps = p1.split( ', ' ); + imps.reverse(); + imports.push( ...imps ); + + return ''; + + } ); + + // import * as Example from '...'; + // but excluding imports importing from the libs/ folder + code = code.replace( /import \* as ([a-zA-Z0-9_, ]+) from '((?!libs).)*';/g, ( match, p1 ) => { + + const imp = p1; + if ( imp !== 'THREE' ) { + + imports.push( imp ); + + } + + return ''; + + } ); + + + // new Example() + // (Example) + // [Example] + // Example2 + // ↓ + // new THREE.Example() + // (THREE.Example) + // [THREE.Example] + // Example2 + function prefixThree( word ) { + + code = code.replace( new RegExp( `([\\s([!])${word}([^a-zA-Z0-9_])`, 'g' ), ( match, p1, p2 ) => { + + return `${p1}THREE.${word}${p2}`; + + } ); + + } + + imports.forEach( prefixThree ); + + + // Do it again for this particular example + // new Example(Example) + // ↓ + // new THREE.Example(THREE.Example) + imports.forEach( prefixThree ); + + // fix for BasisTextureLoader.js + imports.forEach( imp => { + + code = code.replace( new RegExp( `${EOL}(\\s)*THREE\\.${imp}:`, 'g' ), ( match, p1 ) => { + + return `${EOL}${p1}${imp}:`; + + } ); + + } ); + + // import * as THREE from '...'; + code = code.replace( /import \* as THREE from '(.*)';/g, '' ); + + // Remove library imports that are exposed as + // global variables in the non-module world + code = code.replace( /import (.*) from '(.*)\/libs\/(.*)';/g, '' ); + + // remove newline at the start of file + code = code.trimStart(); + + code = `( function () {${EOL}${code}${EOL}} )();`; + + return { + code: code, + map: null + }; + + } + + }; + +} + + +const jsFolder = path.resolve( __dirname, '../../examples/js' ); +const jsmFolder = path.resolve( __dirname, '../../examples/jsm' ); + +// list of all .js file nested in the examples/jsm folder +const files = glob.sync( '**/*.js', { cwd: jsmFolder, ignore: [ + // don't convert libs + 'capabilities/*', + 'libs/**/*', + 'loaders/ifc/**/*', + + // no non-module library + // https://unpkg.com/browse/@webxr-input-profiles/motion-controllers@1.0.0/dist/ + 'webxr/**/*', + + // no non-module library + // https://unpkg.com/browse/web-ifc@0.0.17/ + 'loaders/IFCLoader.js', + 'node-editor/**/*', + + 'renderers/webgl/**/*', + 'renderers/webgpu/**/*', + 'renderers/nodes/**/*', + 'nodes/**/*', + 'loaders/NodeMaterialLoader.js', + 'offscreen/**/*', + + // dont convert new files + 'exporters/KTX2Exporter.js', + +] } ); + + +// Create a rollup config for each .js file +export default files.map( file => { + + const inputPath = path.join( 'examples/jsm', file ); + const outputPath = path.resolve( jsFolder, file ); + + + return { + + input: inputPath, + treeshake: false, + external: () => true, // don't bundle anything + plugins: [ + babel( { + babelHelpers: 'bundled', + babelrc: false, + ...babelrc + } ), + babelCleanup(), + unmodularize(), + ], + + output: { + + format: 'esm', + file: outputPath, + + } + + }; + +} ); diff --git a/utils/packLDrawModel.js b/utils/packLDrawModel.js new file mode 100644 index 0000000000..743084edb4 --- /dev/null +++ b/utils/packLDrawModel.js @@ -0,0 +1,304 @@ +/** + * LDraw object packer + * + * Usage: + * + * - Download official parts library from LDraw.org and unzip in a directory (e.g. ldraw/) + * + * - Download your desired model file and place in the ldraw/models/ subfolder. + * + * - Place this script also in ldraw/ + * + * - Issue command 'node packLDrawModel models/' + * + * The packed object will be in ldraw/models/_Packed.mpd and will contain all the object subtree as embedded files. + * + * + */ + +const ldrawPath = './'; +const materialsFileName = 'LDConfig.ldr'; + + +import fs from 'fs'; +import path from 'path'; + +if ( process.argv.length !== 3 ) { + + console.log( 'Usage: node packLDrawModel ' ); + process.exit( 0 ); + +} + +const fileName = process.argv[ 2 ]; + +const materialsFilePath = path.join( ldrawPath, materialsFileName ); + +console.log( 'Loading materials file "' + materialsFilePath + '"...' ); +const materialsContent = fs.readFileSync( materialsFilePath, { encoding: 'utf8' } ); + +console.log( 'Packing "' + fileName + '"...' ); + +const objectsPaths = []; +const objectsContents = []; +const pathMap = {}; +const listOfNotFound = []; + +// Parse object tree +parseObject( fileName, true ); + +// Check if previously files not found are found now +// (if so, probably they were already embedded) +let someNotFound = false; +for ( let i = 0; i < listOfNotFound.length; i ++ ) { + + if ( ! pathMap[ listOfNotFound[ i ] ] ) { + + someNotFound = true; + console.log( 'Error: File object not found: "' + fileName + '".' ); + + } + +} + +if ( someNotFound ) { + + console.log( 'Some files were not found, aborting.' ); + process.exit( - 1 ); + +} + +// Obtain packed content +let packedContent = materialsContent + '\n'; +for ( let i = objectsPaths.length - 1; i >= 0; i -- ) { + + packedContent += objectsContents[ i ]; + +} + +packedContent += '\n'; + +// Save output file +const outPath = fileName + '_Packed.mpd'; +console.log( 'Writing "' + outPath + '"...' ); +fs.writeFileSync( outPath, packedContent ); + +console.log( 'Done.' ); + + +// + +function parseObject( fileName, isRoot ) { + + // Returns the located path for fileName or null if not found + + console.log( 'Adding "' + fileName + '".' ); + + const originalFileName = fileName; + + let prefix = ''; + let objectContent = null; + for ( let attempt = 0; attempt < 2; attempt ++ ) { + + prefix = ''; + + if ( attempt === 1 ) { + + fileName = fileName.toLowerCase(); + + } + + if ( fileName.startsWith( '48/' ) ) { + + prefix = 'p/'; + + } else if ( fileName.startsWith( 's/' ) ) { + + prefix = 'parts/'; + + } + + let absoluteObjectPath = path.join( ldrawPath, fileName ); + + try { + + objectContent = fs.readFileSync( absoluteObjectPath, { encoding: 'utf8' } ); + break; + + } catch ( e ) { + + prefix = 'parts/'; + absoluteObjectPath = path.join( ldrawPath, prefix, fileName ); + + try { + + objectContent = fs.readFileSync( absoluteObjectPath, { encoding: 'utf8' } ); + break; + + } catch ( e ) { + + prefix = 'p/'; + absoluteObjectPath = path.join( ldrawPath, prefix, fileName ); + + try { + + objectContent = fs.readFileSync( absoluteObjectPath, { encoding: 'utf8' } ); + break; + + } catch ( e ) { + + try { + + prefix = 'models/'; + absoluteObjectPath = path.join( ldrawPath, prefix, fileName ); + + objectContent = fs.readFileSync( absoluteObjectPath, { encoding: 'utf8' } ); + break; + + } catch ( e ) { + + if ( attempt === 1 ) { + + // The file has not been found, add to list of not found + listOfNotFound.push( originalFileName ); + + } + + } + + } + + } + + } + + } + + const objectPath = path.join( prefix, fileName ).trim().replace( /\\/g, '/' ); + + if ( ! objectContent ) { + + // File was not found, but could be a referenced embedded file. + return null; + + } + + if ( objectContent.indexOf( '\r\n' ) !== - 1 ) { + + // This is faster than String.split with regex that splits on both + objectContent = objectContent.replace( /\r\n/g, '\n' ); + + } + + let processedObjectContent = isRoot ? '' : '0 FILE ' + objectPath + '\n'; + + const lines = objectContent.split( '\n' ); + + for ( let i = 0, n = lines.length; i < n; i ++ ) { + + let line = lines[ i ]; + let lineLength = line.length; + + // Skip spaces/tabs + let charIndex = 0; + while ( ( line.charAt( charIndex ) === ' ' || line.charAt( charIndex ) === '\t' ) && charIndex < lineLength ) { + + charIndex ++; + + } + + line = line.substring( charIndex ); + lineLength = line.length; + charIndex = 0; + + + if ( line.startsWith( '0 FILE ' ) ) { + + if ( i === 0 ) { + + // Ignore first line FILE meta directive + continue; + + } + + // Embedded object was found, add to path map + + const subobjectFileName = line.substring( charIndex ).trim().replace( /\\/g, '/' ); + + if ( subobjectFileName ) { + + // Find name in path cache + const subobjectPath = pathMap[ subobjectFileName ]; + + if ( ! subobjectPath ) { + + pathMap[ subobjectFileName ] = subobjectFileName; + + } + + } + + } + + if ( line.startsWith( '1 ' ) ) { + + // Subobject, add it + charIndex = 2; + + // Skip material, position and transform + for ( let token = 0; token < 13 && charIndex < lineLength; token ++ ) { + + // Skip token + while ( line.charAt( charIndex ) !== ' ' && line.charAt( charIndex ) !== '\t' && charIndex < lineLength ) { + + charIndex ++; + + } + + // Skip spaces/tabs + while ( ( line.charAt( charIndex ) === ' ' || line.charAt( charIndex ) === '\t' ) && charIndex < lineLength ) { + + charIndex ++; + + } + + } + + const subobjectFileName = line.substring( charIndex ).trim().replace( /\\/g, '/' ); + + if ( subobjectFileName ) { + + // Find name in path cache + let subobjectPath = pathMap[ subobjectFileName ]; + + if ( ! subobjectPath ) { + + // Add new object + subobjectPath = parseObject( subobjectFileName ); + + } + + pathMap[ subobjectFileName ] = subobjectPath ? subobjectPath : subobjectFileName; + + processedObjectContent += line.substring( 0, charIndex ) + pathMap[ subobjectFileName ] + '\n'; + + } + + } else { + + processedObjectContent += line + '\n'; + + } + + } + + if ( objectsPaths.indexOf( objectPath ) < 0 ) { + + objectsPaths.push( objectPath ); + objectsContents.push( processedObjectContent ); + + } + + return objectPath; + +} From b269a04846cf9013da24dad513f10b5adb0254fd Mon Sep 17 00:00:00 2001 From: shawticus Date: Sat, 30 Jul 2022 20:09:35 -0700 Subject: [PATCH 2/2] diff --- build/three.cjs | 36861 ++++++++++++++++++++++++++++++++++++++++ build/three.js | 66 +- build/three.min.js | 4 +- build/three.module.js | 246 +- 4 files changed, 36922 insertions(+), 255 deletions(-) create mode 100644 build/three.cjs diff --git a/build/three.cjs b/build/three.cjs new file mode 100644 index 0000000000..51c1cedbdb --- /dev/null +++ b/build/three.cjs @@ -0,0 +1,36861 @@ +/** + * @license + * Copyright 2010-2022 Three.js Authors + * SPDX-License-Identifier: MIT + */ +'use strict'; + +Object.defineProperty(exports, '__esModule', { value: true }); + +const REVISION = '136'; +const MOUSE = { + LEFT: 0, + MIDDLE: 1, + RIGHT: 2, + ROTATE: 0, + DOLLY: 1, + PAN: 2 +}; +const TOUCH = { + ROTATE: 0, + PAN: 1, + DOLLY_PAN: 2, + DOLLY_ROTATE: 3 +}; +const CullFaceNone = 0; +const CullFaceBack = 1; +const CullFaceFront = 2; +const CullFaceFrontBack = 3; +const BasicShadowMap = 0; +const PCFShadowMap = 1; +const PCFSoftShadowMap = 2; +const VSMShadowMap = 3; +const FrontSide = 0; +const BackSide = 1; +const DoubleSide = 2; +const FlatShading = 1; +const SmoothShading = 2; +const NoBlending = 0; +const NormalBlending = 1; +const AdditiveBlending = 2; +const SubtractiveBlending = 3; +const MultiplyBlending = 4; +const CustomBlending = 5; +const AddEquation = 100; +const SubtractEquation = 101; +const ReverseSubtractEquation = 102; +const MinEquation = 103; +const MaxEquation = 104; +const ZeroFactor = 200; +const OneFactor = 201; +const SrcColorFactor = 202; +const OneMinusSrcColorFactor = 203; +const SrcAlphaFactor = 204; +const OneMinusSrcAlphaFactor = 205; +const DstAlphaFactor = 206; +const OneMinusDstAlphaFactor = 207; +const DstColorFactor = 208; +const OneMinusDstColorFactor = 209; +const SrcAlphaSaturateFactor = 210; +const NeverDepth = 0; +const AlwaysDepth = 1; +const LessDepth = 2; +const LessEqualDepth = 3; +const EqualDepth = 4; +const GreaterEqualDepth = 5; +const GreaterDepth = 6; +const NotEqualDepth = 7; +const MultiplyOperation = 0; +const MixOperation = 1; +const AddOperation = 2; +const NoToneMapping = 0; +const LinearToneMapping = 1; +const ReinhardToneMapping = 2; +const CineonToneMapping = 3; +const ACESFilmicToneMapping = 4; +const CustomToneMapping = 5; +const UVMapping = 300; +const CubeReflectionMapping = 301; +const CubeRefractionMapping = 302; +const EquirectangularReflectionMapping = 303; +const EquirectangularRefractionMapping = 304; +const CubeUVReflectionMapping = 306; +const CubeUVRefractionMapping = 307; +const RepeatWrapping = 1000; +const ClampToEdgeWrapping = 1001; +const MirroredRepeatWrapping = 1002; +const NearestFilter = 1003; +const NearestMipmapNearestFilter = 1004; +const NearestMipMapNearestFilter = 1004; +const NearestMipmapLinearFilter = 1005; +const NearestMipMapLinearFilter = 1005; +const LinearFilter = 1006; +const LinearMipmapNearestFilter = 1007; +const LinearMipMapNearestFilter = 1007; +const LinearMipmapLinearFilter = 1008; +const LinearMipMapLinearFilter = 1008; +const UnsignedByteType = 1009; +const ByteType = 1010; +const ShortType = 1011; +const UnsignedShortType = 1012; +const IntType = 1013; +const UnsignedIntType = 1014; +const FloatType = 1015; +const HalfFloatType = 1016; +const UnsignedShort4444Type = 1017; +const UnsignedShort5551Type = 1018; +const UnsignedShort565Type = 1019; +const UnsignedInt248Type = 1020; +const AlphaFormat = 1021; +const RGBFormat = 1022; +const RGBAFormat = 1023; +const LuminanceFormat = 1024; +const LuminanceAlphaFormat = 1025; +const DepthFormat = 1026; +const DepthStencilFormat = 1027; +const RedFormat = 1028; +const RedIntegerFormat = 1029; +const RGFormat = 1030; +const RGIntegerFormat = 1031; +const RGBIntegerFormat = 1032; +const RGBAIntegerFormat = 1033; +const RGB_S3TC_DXT1_Format = 33776; +const RGBA_S3TC_DXT1_Format = 33777; +const RGBA_S3TC_DXT3_Format = 33778; +const RGBA_S3TC_DXT5_Format = 33779; +const RGB_PVRTC_4BPPV1_Format = 35840; +const RGB_PVRTC_2BPPV1_Format = 35841; +const RGBA_PVRTC_4BPPV1_Format = 35842; +const RGBA_PVRTC_2BPPV1_Format = 35843; +const RGB_ETC1_Format = 36196; +const RGB_ETC2_Format = 37492; +const RGBA_ETC2_EAC_Format = 37496; +const RGBA_ASTC_4x4_Format = 37808; +const RGBA_ASTC_5x4_Format = 37809; +const RGBA_ASTC_5x5_Format = 37810; +const RGBA_ASTC_6x5_Format = 37811; +const RGBA_ASTC_6x6_Format = 37812; +const RGBA_ASTC_8x5_Format = 37813; +const RGBA_ASTC_8x6_Format = 37814; +const RGBA_ASTC_8x8_Format = 37815; +const RGBA_ASTC_10x5_Format = 37816; +const RGBA_ASTC_10x6_Format = 37817; +const RGBA_ASTC_10x8_Format = 37818; +const RGBA_ASTC_10x10_Format = 37819; +const RGBA_ASTC_12x10_Format = 37820; +const RGBA_ASTC_12x12_Format = 37821; +const RGBA_BPTC_Format = 36492; +const SRGB8_ALPHA8_ASTC_4x4_Format = 37840; +const SRGB8_ALPHA8_ASTC_5x4_Format = 37841; +const SRGB8_ALPHA8_ASTC_5x5_Format = 37842; +const SRGB8_ALPHA8_ASTC_6x5_Format = 37843; +const SRGB8_ALPHA8_ASTC_6x6_Format = 37844; +const SRGB8_ALPHA8_ASTC_8x5_Format = 37845; +const SRGB8_ALPHA8_ASTC_8x6_Format = 37846; +const SRGB8_ALPHA8_ASTC_8x8_Format = 37847; +const SRGB8_ALPHA8_ASTC_10x5_Format = 37848; +const SRGB8_ALPHA8_ASTC_10x6_Format = 37849; +const SRGB8_ALPHA8_ASTC_10x8_Format = 37850; +const SRGB8_ALPHA8_ASTC_10x10_Format = 37851; +const SRGB8_ALPHA8_ASTC_12x10_Format = 37852; +const SRGB8_ALPHA8_ASTC_12x12_Format = 37853; +const LoopOnce = 2200; +const LoopRepeat = 2201; +const LoopPingPong = 2202; +const InterpolateDiscrete = 2300; +const InterpolateLinear = 2301; +const InterpolateSmooth = 2302; +const ZeroCurvatureEnding = 2400; +const ZeroSlopeEnding = 2401; +const WrapAroundEnding = 2402; +const NormalAnimationBlendMode = 2500; +const AdditiveAnimationBlendMode = 2501; +const TrianglesDrawMode = 0; +const TriangleStripDrawMode = 1; +const TriangleFanDrawMode = 2; +const LinearEncoding = 3000; +const sRGBEncoding = 3001; +const BasicDepthPacking = 3200; +const RGBADepthPacking = 3201; +const TangentSpaceNormalMap = 0; +const ObjectSpaceNormalMap = 1; +const ZeroStencilOp = 0; +const KeepStencilOp = 7680; +const ReplaceStencilOp = 7681; +const IncrementStencilOp = 7682; +const DecrementStencilOp = 7683; +const IncrementWrapStencilOp = 34055; +const DecrementWrapStencilOp = 34056; +const InvertStencilOp = 5386; +const NeverStencilFunc = 512; +const LessStencilFunc = 513; +const EqualStencilFunc = 514; +const LessEqualStencilFunc = 515; +const GreaterStencilFunc = 516; +const NotEqualStencilFunc = 517; +const GreaterEqualStencilFunc = 518; +const AlwaysStencilFunc = 519; +const StaticDrawUsage = 35044; +const DynamicDrawUsage = 35048; +const StreamDrawUsage = 35040; +const StaticReadUsage = 35045; +const DynamicReadUsage = 35049; +const StreamReadUsage = 35041; +const StaticCopyUsage = 35046; +const DynamicCopyUsage = 35050; +const StreamCopyUsage = 35042; +const GLSL1 = '100'; +const GLSL3 = '300 es'; + +/** + * https://github.com/mrdoob/eventdispatcher.js/ + */ +class EventDispatcher { + addEventListener(type, listener) { + if (this._listeners === undefined) this._listeners = {}; + const listeners = this._listeners; + + if (listeners[type] === undefined) { + listeners[type] = []; + } + + if (listeners[type].indexOf(listener) === -1) { + listeners[type].push(listener); + } + } + + hasEventListener(type, listener) { + if (this._listeners === undefined) return false; + const listeners = this._listeners; + return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1; + } + + removeEventListener(type, listener) { + if (this._listeners === undefined) return; + const listeners = this._listeners; + const listenerArray = listeners[type]; + + if (listenerArray !== undefined) { + const index = listenerArray.indexOf(listener); + + if (index !== -1) { + listenerArray.splice(index, 1); + } + } + } + + dispatchEvent(event) { + if (this._listeners === undefined) return; + const listeners = this._listeners; + const listenerArray = listeners[event.type]; + + if (listenerArray !== undefined) { + event.target = this; // Make a copy, in case listeners are removed while iterating. + + const array = listenerArray.slice(0); + + for (let i = 0, l = array.length; i < l; i++) { + array[i].call(this, event); + } + + event.target = null; + } + } + +} + +const _lut = []; + +for (let i = 0; i < 256; i++) { + _lut[i] = (i < 16 ? '0' : '') + i.toString(16); +} + +let _seed = 1234567; +const DEG2RAD = Math.PI / 180; +const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 + +function generateUUID() { + const d0 = Math.random() * 0xffffffff | 0; + const d1 = Math.random() * 0xffffffff | 0; + const d2 = Math.random() * 0xffffffff | 0; + const d3 = Math.random() * 0xffffffff | 0; + const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space. + + return uuid.toUpperCase(); +} + +function clamp(value, min, max) { + return Math.max(min, Math.min(max, value)); +} // compute euclidian modulo of m % n +// https://en.wikipedia.org/wiki/Modulo_operation + + +function euclideanModulo(n, m) { + return (n % m + m) % m; +} // Linear mapping from range to range + + +function mapLinear(x, a1, a2, b1, b2) { + return b1 + (x - a1) * (b2 - b1) / (a2 - a1); +} // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ + + +function inverseLerp(x, y, value) { + if (x !== y) { + return (value - x) / (y - x); + } else { + return 0; + } +} // https://en.wikipedia.org/wiki/Linear_interpolation + + +function lerp(x, y, t) { + return (1 - t) * x + t * y; +} // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ + + +function damp(x, y, lambda, dt) { + return lerp(x, y, 1 - Math.exp(-lambda * dt)); +} // https://www.desmos.com/calculator/vcsjnyz7x4 + + +function pingpong(x, length = 1) { + return length - Math.abs(euclideanModulo(x, length * 2) - length); +} // http://en.wikipedia.org/wiki/Smoothstep + + +function smoothstep(x, min, max) { + if (x <= min) return 0; + if (x >= max) return 1; + x = (x - min) / (max - min); + return x * x * (3 - 2 * x); +} + +function smootherstep(x, min, max) { + if (x <= min) return 0; + if (x >= max) return 1; + x = (x - min) / (max - min); + return x * x * x * (x * (x * 6 - 15) + 10); +} // Random integer from interval + + +function randInt(low, high) { + return low + Math.floor(Math.random() * (high - low + 1)); +} // Random float from interval + + +function randFloat(low, high) { + return low + Math.random() * (high - low); +} // Random float from <-range/2, range/2> interval + + +function randFloatSpread(range) { + return range * (0.5 - Math.random()); +} // Deterministic pseudo-random float in the interval [ 0, 1 ] + + +function seededRandom(s) { + if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm + + _seed = _seed * 16807 % 2147483647; + return (_seed - 1) / 2147483646; +} + +function degToRad(degrees) { + return degrees * DEG2RAD; +} + +function radToDeg(radians) { + return radians * RAD2DEG; +} + +function isPowerOfTwo(value) { + return (value & value - 1) === 0 && value !== 0; +} + +function ceilPowerOfTwo(value) { + return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2)); +} + +function floorPowerOfTwo(value) { + return Math.pow(2, Math.floor(Math.log(value) / Math.LN2)); +} + +function setQuaternionFromProperEuler(q, a, b, c, order) { + // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles + // rotations are applied to the axes in the order specified by 'order' + // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' + // angles are in radians + const cos = Math.cos; + const sin = Math.sin; + const c2 = cos(b / 2); + const s2 = sin(b / 2); + const c13 = cos((a + c) / 2); + const s13 = sin((a + c) / 2); + const c1_3 = cos((a - c) / 2); + const s1_3 = sin((a - c) / 2); + const c3_1 = cos((c - a) / 2); + const s3_1 = sin((c - a) / 2); + + switch (order) { + case 'XYX': + q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13); + break; + + case 'YZY': + q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13); + break; + + case 'ZXZ': + q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13); + break; + + case 'XZX': + q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13); + break; + + case 'YXY': + q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13); + break; + + case 'ZYZ': + q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13); + break; + + default: + console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order); + } +} + +var MathUtils = /*#__PURE__*/Object.freeze({ + __proto__: null, + DEG2RAD: DEG2RAD, + RAD2DEG: RAD2DEG, + generateUUID: generateUUID, + clamp: clamp, + euclideanModulo: euclideanModulo, + mapLinear: mapLinear, + inverseLerp: inverseLerp, + lerp: lerp, + damp: damp, + pingpong: pingpong, + smoothstep: smoothstep, + smootherstep: smootherstep, + randInt: randInt, + randFloat: randFloat, + randFloatSpread: randFloatSpread, + seededRandom: seededRandom, + degToRad: degToRad, + radToDeg: radToDeg, + isPowerOfTwo: isPowerOfTwo, + ceilPowerOfTwo: ceilPowerOfTwo, + floorPowerOfTwo: floorPowerOfTwo, + setQuaternionFromProperEuler: setQuaternionFromProperEuler +}); + +class Vector2 { + constructor(x = 0, y = 0) { + this.x = x; + this.y = y; + } + + get width() { + return this.x; + } + + set width(value) { + this.x = value; + } + + get height() { + return this.y; + } + + set height(value) { + this.y = value; + } + + set(x, y) { + this.x = x; + this.y = y; + return this; + } + + setScalar(scalar) { + this.x = scalar; + this.y = scalar; + return this; + } + + setX(x) { + this.x = x; + return this; + } + + setY(y) { + this.y = y; + return this; + } + + setComponent(index, value) { + switch (index) { + case 0: + this.x = value; + break; + + case 1: + this.y = value; + break; + + default: + throw new Error('index is out of range: ' + index); + } + + return this; + } + + getComponent(index) { + switch (index) { + case 0: + return this.x; + + case 1: + return this.y; + + default: + throw new Error('index is out of range: ' + index); + } + } + + clone() { + return new this.constructor(this.x, this.y); + } + + copy(v) { + this.x = v.x; + this.y = v.y; + return this; + } + + add(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); + return this.addVectors(v, w); + } + + this.x += v.x; + this.y += v.y; + return this; + } + + addScalar(s) { + this.x += s; + this.y += s; + return this; + } + + addVectors(a, b) { + this.x = a.x + b.x; + this.y = a.y + b.y; + return this; + } + + addScaledVector(v, s) { + this.x += v.x * s; + this.y += v.y * s; + return this; + } + + sub(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); + return this.subVectors(v, w); + } + + this.x -= v.x; + this.y -= v.y; + return this; + } + + subScalar(s) { + this.x -= s; + this.y -= s; + return this; + } + + subVectors(a, b) { + this.x = a.x - b.x; + this.y = a.y - b.y; + return this; + } + + multiply(v) { + this.x *= v.x; + this.y *= v.y; + return this; + } + + multiplyScalar(scalar) { + this.x *= scalar; + this.y *= scalar; + return this; + } + + divide(v) { + this.x /= v.x; + this.y /= v.y; + return this; + } + + divideScalar(scalar) { + return this.multiplyScalar(1 / scalar); + } + + applyMatrix3(m) { + const x = this.x, + y = this.y; + const e = m.elements; + this.x = e[0] * x + e[3] * y + e[6]; + this.y = e[1] * x + e[4] * y + e[7]; + return this; + } + + min(v) { + this.x = Math.min(this.x, v.x); + this.y = Math.min(this.y, v.y); + return this; + } + + max(v) { + this.x = Math.max(this.x, v.x); + this.y = Math.max(this.y, v.y); + return this; + } + + clamp(min, max) { + // assumes min < max, componentwise + this.x = Math.max(min.x, Math.min(max.x, this.x)); + this.y = Math.max(min.y, Math.min(max.y, this.y)); + return this; + } + + clampScalar(minVal, maxVal) { + this.x = Math.max(minVal, Math.min(maxVal, this.x)); + this.y = Math.max(minVal, Math.min(maxVal, this.y)); + return this; + } + + clampLength(min, max) { + const length = this.length(); + return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); + } + + floor() { + this.x = Math.floor(this.x); + this.y = Math.floor(this.y); + return this; + } + + ceil() { + this.x = Math.ceil(this.x); + this.y = Math.ceil(this.y); + return this; + } + + round() { + this.x = Math.round(this.x); + this.y = Math.round(this.y); + return this; + } + + roundToZero() { + this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); + this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); + return this; + } + + negate() { + this.x = -this.x; + this.y = -this.y; + return this; + } + + dot(v) { + return this.x * v.x + this.y * v.y; + } + + cross(v) { + return this.x * v.y - this.y * v.x; + } + + lengthSq() { + return this.x * this.x + this.y * this.y; + } + + length() { + return Math.sqrt(this.x * this.x + this.y * this.y); + } + + manhattanLength() { + return Math.abs(this.x) + Math.abs(this.y); + } + + normalize() { + return this.divideScalar(this.length() || 1); + } + + angle() { + // computes the angle in radians with respect to the positive x-axis + const angle = Math.atan2(-this.y, -this.x) + Math.PI; + return angle; + } + + distanceTo(v) { + return Math.sqrt(this.distanceToSquared(v)); + } + + distanceToSquared(v) { + const dx = this.x - v.x, + dy = this.y - v.y; + return dx * dx + dy * dy; + } + + manhattanDistanceTo(v) { + return Math.abs(this.x - v.x) + Math.abs(this.y - v.y); + } + + setLength(length) { + return this.normalize().multiplyScalar(length); + } + + lerp(v, alpha) { + this.x += (v.x - this.x) * alpha; + this.y += (v.y - this.y) * alpha; + return this; + } + + lerpVectors(v1, v2, alpha) { + this.x = v1.x + (v2.x - v1.x) * alpha; + this.y = v1.y + (v2.y - v1.y) * alpha; + return this; + } + + equals(v) { + return v.x === this.x && v.y === this.y; + } + + fromArray(array, offset = 0) { + this.x = array[offset]; + this.y = array[offset + 1]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.x; + array[offset + 1] = this.y; + return array; + } + + fromBufferAttribute(attribute, index, offset) { + if (offset !== undefined) { + console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().'); + } + + this.x = attribute.getX(index); + this.y = attribute.getY(index); + return this; + } + + rotateAround(center, angle) { + const c = Math.cos(angle), + s = Math.sin(angle); + const x = this.x - center.x; + const y = this.y - center.y; + this.x = x * c - y * s + center.x; + this.y = x * s + y * c + center.y; + return this; + } + + random() { + this.x = Math.random(); + this.y = Math.random(); + return this; + } + + *[Symbol.iterator]() { + yield this.x; + yield this.y; + } + +} + +Vector2.prototype.isVector2 = true; + +class Matrix3 { + constructor() { + this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1]; + + if (arguments.length > 0) { + console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.'); + } + } + + set(n11, n12, n13, n21, n22, n23, n31, n32, n33) { + const te = this.elements; + te[0] = n11; + te[1] = n21; + te[2] = n31; + te[3] = n12; + te[4] = n22; + te[5] = n32; + te[6] = n13; + te[7] = n23; + te[8] = n33; + return this; + } + + identity() { + this.set(1, 0, 0, 0, 1, 0, 0, 0, 1); + return this; + } + + copy(m) { + const te = this.elements; + const me = m.elements; + te[0] = me[0]; + te[1] = me[1]; + te[2] = me[2]; + te[3] = me[3]; + te[4] = me[4]; + te[5] = me[5]; + te[6] = me[6]; + te[7] = me[7]; + te[8] = me[8]; + return this; + } + + extractBasis(xAxis, yAxis, zAxis) { + xAxis.setFromMatrix3Column(this, 0); + yAxis.setFromMatrix3Column(this, 1); + zAxis.setFromMatrix3Column(this, 2); + return this; + } + + setFromMatrix4(m) { + const me = m.elements; + this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]); + return this; + } + + multiply(m) { + return this.multiplyMatrices(this, m); + } + + premultiply(m) { + return this.multiplyMatrices(m, this); + } + + multiplyMatrices(a, b) { + const ae = a.elements; + const be = b.elements; + const te = this.elements; + const a11 = ae[0], + a12 = ae[3], + a13 = ae[6]; + const a21 = ae[1], + a22 = ae[4], + a23 = ae[7]; + const a31 = ae[2], + a32 = ae[5], + a33 = ae[8]; + const b11 = be[0], + b12 = be[3], + b13 = be[6]; + const b21 = be[1], + b22 = be[4], + b23 = be[7]; + const b31 = be[2], + b32 = be[5], + b33 = be[8]; + te[0] = a11 * b11 + a12 * b21 + a13 * b31; + te[3] = a11 * b12 + a12 * b22 + a13 * b32; + te[6] = a11 * b13 + a12 * b23 + a13 * b33; + te[1] = a21 * b11 + a22 * b21 + a23 * b31; + te[4] = a21 * b12 + a22 * b22 + a23 * b32; + te[7] = a21 * b13 + a22 * b23 + a23 * b33; + te[2] = a31 * b11 + a32 * b21 + a33 * b31; + te[5] = a31 * b12 + a32 * b22 + a33 * b32; + te[8] = a31 * b13 + a32 * b23 + a33 * b33; + return this; + } + + multiplyScalar(s) { + const te = this.elements; + te[0] *= s; + te[3] *= s; + te[6] *= s; + te[1] *= s; + te[4] *= s; + te[7] *= s; + te[2] *= s; + te[5] *= s; + te[8] *= s; + return this; + } + + determinant() { + const te = this.elements; + const a = te[0], + b = te[1], + c = te[2], + d = te[3], + e = te[4], + f = te[5], + g = te[6], + h = te[7], + i = te[8]; + return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; + } + + invert() { + const te = this.elements, + n11 = te[0], + n21 = te[1], + n31 = te[2], + n12 = te[3], + n22 = te[4], + n32 = te[5], + n13 = te[6], + n23 = te[7], + n33 = te[8], + t11 = n33 * n22 - n32 * n23, + t12 = n32 * n13 - n33 * n12, + t13 = n23 * n12 - n22 * n13, + det = n11 * t11 + n21 * t12 + n31 * t13; + if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0); + const detInv = 1 / det; + te[0] = t11 * detInv; + te[1] = (n31 * n23 - n33 * n21) * detInv; + te[2] = (n32 * n21 - n31 * n22) * detInv; + te[3] = t12 * detInv; + te[4] = (n33 * n11 - n31 * n13) * detInv; + te[5] = (n31 * n12 - n32 * n11) * detInv; + te[6] = t13 * detInv; + te[7] = (n21 * n13 - n23 * n11) * detInv; + te[8] = (n22 * n11 - n21 * n12) * detInv; + return this; + } + + transpose() { + let tmp; + const m = this.elements; + tmp = m[1]; + m[1] = m[3]; + m[3] = tmp; + tmp = m[2]; + m[2] = m[6]; + m[6] = tmp; + tmp = m[5]; + m[5] = m[7]; + m[7] = tmp; + return this; + } + + getNormalMatrix(matrix4) { + return this.setFromMatrix4(matrix4).invert().transpose(); + } + + transposeIntoArray(r) { + const m = this.elements; + r[0] = m[0]; + r[1] = m[3]; + r[2] = m[6]; + r[3] = m[1]; + r[4] = m[4]; + r[5] = m[7]; + r[6] = m[2]; + r[7] = m[5]; + r[8] = m[8]; + return this; + } + + setUvTransform(tx, ty, sx, sy, rotation, cx, cy) { + const c = Math.cos(rotation); + const s = Math.sin(rotation); + this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1); + return this; + } + + scale(sx, sy) { + const te = this.elements; + te[0] *= sx; + te[3] *= sx; + te[6] *= sx; + te[1] *= sy; + te[4] *= sy; + te[7] *= sy; + return this; + } + + rotate(theta) { + const c = Math.cos(theta); + const s = Math.sin(theta); + const te = this.elements; + const a11 = te[0], + a12 = te[3], + a13 = te[6]; + const a21 = te[1], + a22 = te[4], + a23 = te[7]; + te[0] = c * a11 + s * a21; + te[3] = c * a12 + s * a22; + te[6] = c * a13 + s * a23; + te[1] = -s * a11 + c * a21; + te[4] = -s * a12 + c * a22; + te[7] = -s * a13 + c * a23; + return this; + } + + translate(tx, ty) { + const te = this.elements; + te[0] += tx * te[2]; + te[3] += tx * te[5]; + te[6] += tx * te[8]; + te[1] += ty * te[2]; + te[4] += ty * te[5]; + te[7] += ty * te[8]; + return this; + } + + equals(matrix) { + const te = this.elements; + const me = matrix.elements; + + for (let i = 0; i < 9; i++) { + if (te[i] !== me[i]) return false; + } + + return true; + } + + fromArray(array, offset = 0) { + for (let i = 0; i < 9; i++) { + this.elements[i] = array[i + offset]; + } + + return this; + } + + toArray(array = [], offset = 0) { + const te = this.elements; + array[offset] = te[0]; + array[offset + 1] = te[1]; + array[offset + 2] = te[2]; + array[offset + 3] = te[3]; + array[offset + 4] = te[4]; + array[offset + 5] = te[5]; + array[offset + 6] = te[6]; + array[offset + 7] = te[7]; + array[offset + 8] = te[8]; + return array; + } + + clone() { + return new this.constructor().fromArray(this.elements); + } + +} + +Matrix3.prototype.isMatrix3 = true; + +function arrayMax(array) { + if (array.length === 0) return -Infinity; + let max = array[0]; + + for (let i = 1, l = array.length; i < l; ++i) { + if (array[i] > max) max = array[i]; + } + + return max; +} + +const TYPED_ARRAYS = { + Int8Array: Int8Array, + Uint8Array: Uint8Array, + Uint8ClampedArray: Uint8ClampedArray, + Int16Array: Int16Array, + Uint16Array: Uint16Array, + Int32Array: Int32Array, + Uint32Array: Uint32Array, + Float32Array: Float32Array, + Float64Array: Float64Array +}; + +function getTypedArray(type, buffer) { + return new TYPED_ARRAYS[type](buffer); +} + +function createElementNS(name) { + return document.createElementNS('http://www.w3.org/1999/xhtml', name); +} + +let _canvas; + +class ImageUtils { + static getDataURL(image) { + if (/^data:/i.test(image.src)) { + return image.src; + } + + if (typeof HTMLCanvasElement == 'undefined') { + return image.src; + } + + let canvas; + + if (image instanceof HTMLCanvasElement) { + canvas = image; + } else { + if (_canvas === undefined) _canvas = createElementNS('canvas'); + _canvas.width = image.width; + _canvas.height = image.height; + + const context = _canvas.getContext('2d'); + + if (image instanceof ImageData) { + context.putImageData(image, 0, 0); + } else { + context.drawImage(image, 0, 0, image.width, image.height); + } + + canvas = _canvas; + } + + if (canvas.width > 2048 || canvas.height > 2048) { + console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image); + return canvas.toDataURL('image/jpeg', 0.6); + } else { + return canvas.toDataURL('image/png'); + } + } + +} + +let textureId = 0; + +class Texture extends EventDispatcher { + constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) { + super(); + Object.defineProperty(this, 'id', { + value: textureId++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.image = image; + this.mipmaps = []; + this.mapping = mapping; + this.wrapS = wrapS; + this.wrapT = wrapT; + this.magFilter = magFilter; + this.minFilter = minFilter; + this.anisotropy = anisotropy; + this.format = format; + this.internalFormat = null; + this.type = type; + this.offset = new Vector2(0, 0); + this.repeat = new Vector2(1, 1); + this.center = new Vector2(0, 0); + this.rotation = 0; + this.matrixAutoUpdate = true; + this.matrix = new Matrix3(); + this.generateMipmaps = true; + this.premultiplyAlpha = false; + this.flipY = true; + this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) + // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. + // + // Also changing the encoding after already used by a Material will not automatically make the Material + // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. + + this.encoding = encoding; + this.userData = {}; + this.version = 0; + this.onUpdate = null; + this.isRenderTargetTexture = false; + } + + updateMatrix() { + this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y); + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.name = source.name; + this.image = source.image; + this.mipmaps = source.mipmaps.slice(0); + this.mapping = source.mapping; + this.wrapS = source.wrapS; + this.wrapT = source.wrapT; + this.magFilter = source.magFilter; + this.minFilter = source.minFilter; + this.anisotropy = source.anisotropy; + this.format = source.format; + this.internalFormat = source.internalFormat; + this.type = source.type; + this.offset.copy(source.offset); + this.repeat.copy(source.repeat); + this.center.copy(source.center); + this.rotation = source.rotation; + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrix.copy(source.matrix); + this.generateMipmaps = source.generateMipmaps; + this.premultiplyAlpha = source.premultiplyAlpha; + this.flipY = source.flipY; + this.unpackAlignment = source.unpackAlignment; + this.encoding = source.encoding; + this.userData = JSON.parse(JSON.stringify(source.userData)); + return this; + } + + toJSON(meta) { + const isRootObject = meta === undefined || typeof meta === 'string'; + + if (!isRootObject && meta.textures[this.uuid] !== undefined) { + return meta.textures[this.uuid]; + } + + const output = { + metadata: { + version: 4.5, + type: 'Texture', + generator: 'Texture.toJSON' + }, + uuid: this.uuid, + name: this.name, + mapping: this.mapping, + repeat: [this.repeat.x, this.repeat.y], + offset: [this.offset.x, this.offset.y], + center: [this.center.x, this.center.y], + rotation: this.rotation, + wrap: [this.wrapS, this.wrapT], + format: this.format, + type: this.type, + encoding: this.encoding, + minFilter: this.minFilter, + magFilter: this.magFilter, + anisotropy: this.anisotropy, + flipY: this.flipY, + premultiplyAlpha: this.premultiplyAlpha, + unpackAlignment: this.unpackAlignment + }; + + if (this.image !== undefined) { + // TODO: Move to THREE.Image + const image = this.image; + + if (image.uuid === undefined) { + image.uuid = generateUUID(); // UGH + } + + if (!isRootObject && meta.images[image.uuid] === undefined) { + let url; + + if (Array.isArray(image)) { + // process array of images e.g. CubeTexture + url = []; + + for (let i = 0, l = image.length; i < l; i++) { + // check cube texture with data textures + if (image[i].isDataTexture) { + url.push(serializeImage(image[i].image)); + } else { + url.push(serializeImage(image[i])); + } + } + } else { + // process single image + url = serializeImage(image); + } + + meta.images[image.uuid] = { + uuid: image.uuid, + url: url + }; + } + + output.image = image.uuid; + } + + if (JSON.stringify(this.userData) !== '{}') output.userData = this.userData; + + if (!isRootObject) { + meta.textures[this.uuid] = output; + } + + return output; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + + transformUv(uv) { + if (this.mapping !== UVMapping) return uv; + uv.applyMatrix3(this.matrix); + + if (uv.x < 0 || uv.x > 1) { + switch (this.wrapS) { + case RepeatWrapping: + uv.x = uv.x - Math.floor(uv.x); + break; + + case ClampToEdgeWrapping: + uv.x = uv.x < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + if (Math.abs(Math.floor(uv.x) % 2) === 1) { + uv.x = Math.ceil(uv.x) - uv.x; + } else { + uv.x = uv.x - Math.floor(uv.x); + } + + break; + } + } + + if (uv.y < 0 || uv.y > 1) { + switch (this.wrapT) { + case RepeatWrapping: + uv.y = uv.y - Math.floor(uv.y); + break; + + case ClampToEdgeWrapping: + uv.y = uv.y < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + if (Math.abs(Math.floor(uv.y) % 2) === 1) { + uv.y = Math.ceil(uv.y) - uv.y; + } else { + uv.y = uv.y - Math.floor(uv.y); + } + + break; + } + } + + if (this.flipY) { + uv.y = 1 - uv.y; + } + + return uv; + } + + set needsUpdate(value) { + if (value === true) this.version++; + } + +} + +Texture.DEFAULT_IMAGE = undefined; +Texture.DEFAULT_MAPPING = UVMapping; +Texture.prototype.isTexture = true; + +function serializeImage(image) { + if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) { + // default images + return ImageUtils.getDataURL(image); + } else { + if (image.data) { + // images of DataTexture + return { + data: Array.prototype.slice.call(image.data), + width: image.width, + height: image.height, + type: image.data.constructor.name + }; + } else { + console.warn('THREE.Texture: Unable to serialize Texture.'); + return {}; + } + } +} + +class Vector4 { + constructor(x = 0, y = 0, z = 0, w = 1) { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + } + + get width() { + return this.z; + } + + set width(value) { + this.z = value; + } + + get height() { + return this.w; + } + + set height(value) { + this.w = value; + } + + set(x, y, z, w) { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + return this; + } + + setScalar(scalar) { + this.x = scalar; + this.y = scalar; + this.z = scalar; + this.w = scalar; + return this; + } + + setX(x) { + this.x = x; + return this; + } + + setY(y) { + this.y = y; + return this; + } + + setZ(z) { + this.z = z; + return this; + } + + setW(w) { + this.w = w; + return this; + } + + setComponent(index, value) { + switch (index) { + case 0: + this.x = value; + break; + + case 1: + this.y = value; + break; + + case 2: + this.z = value; + break; + + case 3: + this.w = value; + break; + + default: + throw new Error('index is out of range: ' + index); + } + + return this; + } + + getComponent(index) { + switch (index) { + case 0: + return this.x; + + case 1: + return this.y; + + case 2: + return this.z; + + case 3: + return this.w; + + default: + throw new Error('index is out of range: ' + index); + } + } + + clone() { + return new this.constructor(this.x, this.y, this.z, this.w); + } + + copy(v) { + this.x = v.x; + this.y = v.y; + this.z = v.z; + this.w = v.w !== undefined ? v.w : 1; + return this; + } + + add(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); + return this.addVectors(v, w); + } + + this.x += v.x; + this.y += v.y; + this.z += v.z; + this.w += v.w; + return this; + } + + addScalar(s) { + this.x += s; + this.y += s; + this.z += s; + this.w += s; + return this; + } + + addVectors(a, b) { + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + this.w = a.w + b.w; + return this; + } + + addScaledVector(v, s) { + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + this.w += v.w * s; + return this; + } + + sub(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); + return this.subVectors(v, w); + } + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + this.w -= v.w; + return this; + } + + subScalar(s) { + this.x -= s; + this.y -= s; + this.z -= s; + this.w -= s; + return this; + } + + subVectors(a, b) { + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + this.w = a.w - b.w; + return this; + } + + multiply(v) { + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + this.w *= v.w; + return this; + } + + multiplyScalar(scalar) { + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + this.w *= scalar; + return this; + } + + applyMatrix4(m) { + const x = this.x, + y = this.y, + z = this.z, + w = this.w; + const e = m.elements; + this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w; + this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w; + this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w; + this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w; + return this; + } + + divideScalar(scalar) { + return this.multiplyScalar(1 / scalar); + } + + setAxisAngleFromQuaternion(q) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm + // q is assumed to be normalized + this.w = 2 * Math.acos(q.w); + const s = Math.sqrt(1 - q.w * q.w); + + if (s < 0.0001) { + this.x = 1; + this.y = 0; + this.z = 0; + } else { + this.x = q.x / s; + this.y = q.y / s; + this.z = q.z / s; + } + + return this; + } + + setAxisAngleFromRotationMatrix(m) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + let angle, x, y, z; // variables for result + + const epsilon = 0.01, + // margin to allow for rounding errors + epsilon2 = 0.1, + // margin to distinguish between 0 and 180 degrees + te = m.elements, + m11 = te[0], + m12 = te[4], + m13 = te[8], + m21 = te[1], + m22 = te[5], + m23 = te[9], + m31 = te[2], + m32 = te[6], + m33 = te[10]; + + if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) { + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonal and zero in other terms + if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) { + // this singularity is identity matrix so angle = 0 + this.set(1, 0, 0, 0); + return this; // zero angle, arbitrary axis + } // otherwise this singularity is angle = 180 + + + angle = Math.PI; + const xx = (m11 + 1) / 2; + const yy = (m22 + 1) / 2; + const zz = (m33 + 1) / 2; + const xy = (m12 + m21) / 4; + const xz = (m13 + m31) / 4; + const yz = (m23 + m32) / 4; + + if (xx > yy && xx > zz) { + // m11 is the largest diagonal term + if (xx < epsilon) { + x = 0; + y = 0.707106781; + z = 0.707106781; + } else { + x = Math.sqrt(xx); + y = xy / x; + z = xz / x; + } + } else if (yy > zz) { + // m22 is the largest diagonal term + if (yy < epsilon) { + x = 0.707106781; + y = 0; + z = 0.707106781; + } else { + y = Math.sqrt(yy); + x = xy / y; + z = yz / y; + } + } else { + // m33 is the largest diagonal term so base result on this + if (zz < epsilon) { + x = 0.707106781; + y = 0.707106781; + z = 0; + } else { + z = Math.sqrt(zz); + x = xz / z; + y = yz / z; + } + } + + this.set(x, y, z, angle); + return this; // return 180 deg rotation + } // as we have reached here there are no singularities so we can handle normally + + + let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize + + if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be + // caught by singularity test above, but I've left it in just in case + + this.x = (m32 - m23) / s; + this.y = (m13 - m31) / s; + this.z = (m21 - m12) / s; + this.w = Math.acos((m11 + m22 + m33 - 1) / 2); + return this; + } + + min(v) { + this.x = Math.min(this.x, v.x); + this.y = Math.min(this.y, v.y); + this.z = Math.min(this.z, v.z); + this.w = Math.min(this.w, v.w); + return this; + } + + max(v) { + this.x = Math.max(this.x, v.x); + this.y = Math.max(this.y, v.y); + this.z = Math.max(this.z, v.z); + this.w = Math.max(this.w, v.w); + return this; + } + + clamp(min, max) { + // assumes min < max, componentwise + this.x = Math.max(min.x, Math.min(max.x, this.x)); + this.y = Math.max(min.y, Math.min(max.y, this.y)); + this.z = Math.max(min.z, Math.min(max.z, this.z)); + this.w = Math.max(min.w, Math.min(max.w, this.w)); + return this; + } + + clampScalar(minVal, maxVal) { + this.x = Math.max(minVal, Math.min(maxVal, this.x)); + this.y = Math.max(minVal, Math.min(maxVal, this.y)); + this.z = Math.max(minVal, Math.min(maxVal, this.z)); + this.w = Math.max(minVal, Math.min(maxVal, this.w)); + return this; + } + + clampLength(min, max) { + const length = this.length(); + return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); + } + + floor() { + this.x = Math.floor(this.x); + this.y = Math.floor(this.y); + this.z = Math.floor(this.z); + this.w = Math.floor(this.w); + return this; + } + + ceil() { + this.x = Math.ceil(this.x); + this.y = Math.ceil(this.y); + this.z = Math.ceil(this.z); + this.w = Math.ceil(this.w); + return this; + } + + round() { + this.x = Math.round(this.x); + this.y = Math.round(this.y); + this.z = Math.round(this.z); + this.w = Math.round(this.w); + return this; + } + + roundToZero() { + this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); + this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); + this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); + this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w); + return this; + } + + negate() { + this.x = -this.x; + this.y = -this.y; + this.z = -this.z; + this.w = -this.w; + return this; + } + + dot(v) { + return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; + } + + lengthSq() { + return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; + } + + length() { + return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w); + } + + manhattanLength() { + return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w); + } + + normalize() { + return this.divideScalar(this.length() || 1); + } + + setLength(length) { + return this.normalize().multiplyScalar(length); + } + + lerp(v, alpha) { + this.x += (v.x - this.x) * alpha; + this.y += (v.y - this.y) * alpha; + this.z += (v.z - this.z) * alpha; + this.w += (v.w - this.w) * alpha; + return this; + } + + lerpVectors(v1, v2, alpha) { + this.x = v1.x + (v2.x - v1.x) * alpha; + this.y = v1.y + (v2.y - v1.y) * alpha; + this.z = v1.z + (v2.z - v1.z) * alpha; + this.w = v1.w + (v2.w - v1.w) * alpha; + return this; + } + + equals(v) { + return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w; + } + + fromArray(array, offset = 0) { + this.x = array[offset]; + this.y = array[offset + 1]; + this.z = array[offset + 2]; + this.w = array[offset + 3]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.x; + array[offset + 1] = this.y; + array[offset + 2] = this.z; + array[offset + 3] = this.w; + return array; + } + + fromBufferAttribute(attribute, index, offset) { + if (offset !== undefined) { + console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().'); + } + + this.x = attribute.getX(index); + this.y = attribute.getY(index); + this.z = attribute.getZ(index); + this.w = attribute.getW(index); + return this; + } + + random() { + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + this.w = Math.random(); + return this; + } + + *[Symbol.iterator]() { + yield this.x; + yield this.y; + yield this.z; + yield this.w; + } + +} + +Vector4.prototype.isVector4 = true; + +/* + In options, we can specify: + * Texture parameters for an auto-generated target texture + * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers +*/ + +class WebGLRenderTarget extends EventDispatcher { + constructor(width, height, options = {}) { + super(); + this.width = width; + this.height = height; + this.depth = 1; + this.scissor = new Vector4(0, 0, width, height); + this.scissorTest = false; + this.viewport = new Vector4(0, 0, width, height); + this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); + this.texture.isRenderTargetTexture = true; + this.texture.image = { + width: width, + height: height, + depth: 1 + }; + this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; + this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null; + this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; + this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; + this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false; + this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; + } + + setTexture(texture) { + texture.image = { + width: this.width, + height: this.height, + depth: this.depth + }; + this.texture = texture; + } + + setSize(width, height, depth = 1) { + if (this.width !== width || this.height !== height || this.depth !== depth) { + this.width = width; + this.height = height; + this.depth = depth; + this.texture.image.width = width; + this.texture.image.height = height; + this.texture.image.depth = depth; + this.dispose(); + } + + this.viewport.set(0, 0, width, height); + this.scissor.set(0, 0, width, height); + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.width = source.width; + this.height = source.height; + this.depth = source.depth; + this.viewport.copy(source.viewport); + this.texture = source.texture.clone(); + this.texture.image = { ...this.texture.image + }; // See #20328. + + this.depthBuffer = source.depthBuffer; + this.stencilBuffer = source.stencilBuffer; + this.depthTexture = source.depthTexture; + return this; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + +} + +WebGLRenderTarget.prototype.isWebGLRenderTarget = true; + +class WebGLMultipleRenderTargets extends WebGLRenderTarget { + constructor(width, height, count) { + super(width, height); + const texture = this.texture; + this.texture = []; + + for (let i = 0; i < count; i++) { + this.texture[i] = texture.clone(); + } + } + + setSize(width, height, depth = 1) { + if (this.width !== width || this.height !== height || this.depth !== depth) { + this.width = width; + this.height = height; + this.depth = depth; + + for (let i = 0, il = this.texture.length; i < il; i++) { + this.texture[i].image.width = width; + this.texture[i].image.height = height; + this.texture[i].image.depth = depth; + } + + this.dispose(); + } + + this.viewport.set(0, 0, width, height); + this.scissor.set(0, 0, width, height); + return this; + } + + copy(source) { + this.dispose(); + this.width = source.width; + this.height = source.height; + this.depth = source.depth; + this.viewport.set(0, 0, this.width, this.height); + this.scissor.set(0, 0, this.width, this.height); + this.depthBuffer = source.depthBuffer; + this.stencilBuffer = source.stencilBuffer; + this.depthTexture = source.depthTexture; + this.texture.length = 0; + + for (let i = 0, il = source.texture.length; i < il; i++) { + this.texture[i] = source.texture[i].clone(); + } + + return this; + } + +} + +WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true; + +class WebGLMultisampleRenderTarget extends WebGLRenderTarget { + constructor(width, height, options = {}) { + super(width, height, options); + this.samples = 4; + this.ignoreDepthForMultisampleCopy = options.ignoreDepth !== undefined ? options.ignoreDepth : true; + this.useRenderToTexture = options.useRenderToTexture !== undefined ? options.useRenderToTexture : false; // this.useRenderbuffer = this.useRenderToTexture === false; + } + + copy(source) { + super.copy.call(this, source); + this.samples = source.samples; + this.useRenderToTexture = source.useRenderToTexture; + this.useRenderbuffer = source.useRenderbuffer; + return this; + } + +} + +WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true; + +class Quaternion { + constructor(x = 0, y = 0, z = 0, w = 1) { + this._x = x; + this._y = y; + this._z = z; + this._w = w; + } + + static slerp(qa, qb, qm, t) { + console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.'); + return qm.slerpQuaternions(qa, qb, t); + } + + static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) { + // fuzz-free, array-based Quaternion SLERP operation + let x0 = src0[srcOffset0 + 0], + y0 = src0[srcOffset0 + 1], + z0 = src0[srcOffset0 + 2], + w0 = src0[srcOffset0 + 3]; + const x1 = src1[srcOffset1 + 0], + y1 = src1[srcOffset1 + 1], + z1 = src1[srcOffset1 + 2], + w1 = src1[srcOffset1 + 3]; + + if (t === 0) { + dst[dstOffset + 0] = x0; + dst[dstOffset + 1] = y0; + dst[dstOffset + 2] = z0; + dst[dstOffset + 3] = w0; + return; + } + + if (t === 1) { + dst[dstOffset + 0] = x1; + dst[dstOffset + 1] = y1; + dst[dstOffset + 2] = z1; + dst[dstOffset + 3] = w1; + return; + } + + if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) { + let s = 1 - t; + const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, + dir = cos >= 0 ? 1 : -1, + sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: + + if (sqrSin > Number.EPSILON) { + const sin = Math.sqrt(sqrSin), + len = Math.atan2(sin, cos * dir); + s = Math.sin(s * len) / sin; + t = Math.sin(t * len) / sin; + } + + const tDir = t * dir; + x0 = x0 * s + x1 * tDir; + y0 = y0 * s + y1 * tDir; + z0 = z0 * s + z1 * tDir; + w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: + + if (s === 1 - t) { + const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0); + x0 *= f; + y0 *= f; + z0 *= f; + w0 *= f; + } + } + + dst[dstOffset] = x0; + dst[dstOffset + 1] = y0; + dst[dstOffset + 2] = z0; + dst[dstOffset + 3] = w0; + } + + static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) { + const x0 = src0[srcOffset0]; + const y0 = src0[srcOffset0 + 1]; + const z0 = src0[srcOffset0 + 2]; + const w0 = src0[srcOffset0 + 3]; + const x1 = src1[srcOffset1]; + const y1 = src1[srcOffset1 + 1]; + const z1 = src1[srcOffset1 + 2]; + const w1 = src1[srcOffset1 + 3]; + dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; + dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; + dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; + dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; + return dst; + } + + get x() { + return this._x; + } + + set x(value) { + this._x = value; + + this._onChangeCallback(); + } + + get y() { + return this._y; + } + + set y(value) { + this._y = value; + + this._onChangeCallback(); + } + + get z() { + return this._z; + } + + set z(value) { + this._z = value; + + this._onChangeCallback(); + } + + get w() { + return this._w; + } + + set w(value) { + this._w = value; + + this._onChangeCallback(); + } + + set(x, y, z, w) { + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + this._onChangeCallback(); + + return this; + } + + clone() { + return new this.constructor(this._x, this._y, this._z, this._w); + } + + copy(quaternion) { + this._x = quaternion.x; + this._y = quaternion.y; + this._z = quaternion.z; + this._w = quaternion.w; + + this._onChangeCallback(); + + return this; + } + + setFromEuler(euler, update) { + if (!(euler && euler.isEuler)) { + throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.'); + } + + const x = euler._x, + y = euler._y, + z = euler._z, + order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ + // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ + // content/SpinCalc.m + + const cos = Math.cos; + const sin = Math.sin; + const c1 = cos(x / 2); + const c2 = cos(y / 2); + const c3 = cos(z / 2); + const s1 = sin(x / 2); + const s2 = sin(y / 2); + const s3 = sin(z / 2); + + switch (order) { + case 'XYZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'YXZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'ZXY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'ZYX': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'YZX': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'XZY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + default: + console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order); + } + + if (update !== false) this._onChangeCallback(); + return this; + } + + setFromAxisAngle(axis, angle) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm + // assumes axis is normalized + const halfAngle = angle / 2, + s = Math.sin(halfAngle); + this._x = axis.x * s; + this._y = axis.y * s; + this._z = axis.z * s; + this._w = Math.cos(halfAngle); + + this._onChangeCallback(); + + return this; + } + + setFromRotationMatrix(m) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + const te = m.elements, + m11 = te[0], + m12 = te[4], + m13 = te[8], + m21 = te[1], + m22 = te[5], + m23 = te[9], + m31 = te[2], + m32 = te[6], + m33 = te[10], + trace = m11 + m22 + m33; + + if (trace > 0) { + const s = 0.5 / Math.sqrt(trace + 1.0); + this._w = 0.25 / s; + this._x = (m32 - m23) * s; + this._y = (m13 - m31) * s; + this._z = (m21 - m12) * s; + } else if (m11 > m22 && m11 > m33) { + const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33); + this._w = (m32 - m23) / s; + this._x = 0.25 * s; + this._y = (m12 + m21) / s; + this._z = (m13 + m31) / s; + } else if (m22 > m33) { + const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33); + this._w = (m13 - m31) / s; + this._x = (m12 + m21) / s; + this._y = 0.25 * s; + this._z = (m23 + m32) / s; + } else { + const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22); + this._w = (m21 - m12) / s; + this._x = (m13 + m31) / s; + this._y = (m23 + m32) / s; + this._z = 0.25 * s; + } + + this._onChangeCallback(); + + return this; + } + + setFromUnitVectors(vFrom, vTo) { + // assumes direction vectors vFrom and vTo are normalized + let r = vFrom.dot(vTo) + 1; + + if (r < Number.EPSILON) { + // vFrom and vTo point in opposite directions + r = 0; + + if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) { + this._x = -vFrom.y; + this._y = vFrom.x; + this._z = 0; + this._w = r; + } else { + this._x = 0; + this._y = -vFrom.z; + this._z = vFrom.y; + this._w = r; + } + } else { + // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 + this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; + this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; + this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; + this._w = r; + } + + return this.normalize(); + } + + angleTo(q) { + return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1))); + } + + rotateTowards(q, step) { + const angle = this.angleTo(q); + if (angle === 0) return this; + const t = Math.min(1, step / angle); + this.slerp(q, t); + return this; + } + + identity() { + return this.set(0, 0, 0, 1); + } + + invert() { + // quaternion is assumed to have unit length + return this.conjugate(); + } + + conjugate() { + this._x *= -1; + this._y *= -1; + this._z *= -1; + + this._onChangeCallback(); + + return this; + } + + dot(v) { + return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; + } + + lengthSq() { + return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; + } + + length() { + return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w); + } + + normalize() { + let l = this.length(); + + if (l === 0) { + this._x = 0; + this._y = 0; + this._z = 0; + this._w = 1; + } else { + l = 1 / l; + this._x = this._x * l; + this._y = this._y * l; + this._z = this._z * l; + this._w = this._w * l; + } + + this._onChangeCallback(); + + return this; + } + + multiply(q, p) { + if (p !== undefined) { + console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.'); + return this.multiplyQuaternions(q, p); + } + + return this.multiplyQuaternions(this, q); + } + + premultiply(q) { + return this.multiplyQuaternions(q, this); + } + + multiplyQuaternions(a, b) { + // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm + const qax = a._x, + qay = a._y, + qaz = a._z, + qaw = a._w; + const qbx = b._x, + qby = b._y, + qbz = b._z, + qbw = b._w; + this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; + this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; + this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; + this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; + + this._onChangeCallback(); + + return this; + } + + slerp(qb, t) { + if (t === 0) return this; + if (t === 1) return this.copy(qb); + const x = this._x, + y = this._y, + z = this._z, + w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ + + let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; + + if (cosHalfTheta < 0) { + this._w = -qb._w; + this._x = -qb._x; + this._y = -qb._y; + this._z = -qb._z; + cosHalfTheta = -cosHalfTheta; + } else { + this.copy(qb); + } + + if (cosHalfTheta >= 1.0) { + this._w = w; + this._x = x; + this._y = y; + this._z = z; + return this; + } + + const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; + + if (sqrSinHalfTheta <= Number.EPSILON) { + const s = 1 - t; + this._w = s * w + t * this._w; + this._x = s * x + t * this._x; + this._y = s * y + t * this._y; + this._z = s * z + t * this._z; + this.normalize(); + + this._onChangeCallback(); + + return this; + } + + const sinHalfTheta = Math.sqrt(sqrSinHalfTheta); + const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta); + const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, + ratioB = Math.sin(t * halfTheta) / sinHalfTheta; + this._w = w * ratioA + this._w * ratioB; + this._x = x * ratioA + this._x * ratioB; + this._y = y * ratioA + this._y * ratioB; + this._z = z * ratioA + this._z * ratioB; + + this._onChangeCallback(); + + return this; + } + + slerpQuaternions(qa, qb, t) { + this.copy(qa).slerp(qb, t); + } + + random() { + // Derived from http://planning.cs.uiuc.edu/node198.html + // Note, this source uses w, x, y, z ordering, + // so we swap the order below. + const u1 = Math.random(); + const sqrt1u1 = Math.sqrt(1 - u1); + const sqrtu1 = Math.sqrt(u1); + const u2 = 2 * Math.PI * Math.random(); + const u3 = 2 * Math.PI * Math.random(); + return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2)); + } + + equals(quaternion) { + return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w; + } + + fromArray(array, offset = 0) { + this._x = array[offset]; + this._y = array[offset + 1]; + this._z = array[offset + 2]; + this._w = array[offset + 3]; + + this._onChangeCallback(); + + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this._x; + array[offset + 1] = this._y; + array[offset + 2] = this._z; + array[offset + 3] = this._w; + return array; + } + + fromBufferAttribute(attribute, index) { + this._x = attribute.getX(index); + this._y = attribute.getY(index); + this._z = attribute.getZ(index); + this._w = attribute.getW(index); + return this; + } + + _onChange(callback) { + this._onChangeCallback = callback; + return this; + } + + _onChangeCallback() {} + +} + +Quaternion.prototype.isQuaternion = true; + +class Vector3 { + constructor(x = 0, y = 0, z = 0) { + this.x = x; + this.y = y; + this.z = z; + } + + set(x, y, z) { + if (z === undefined) z = this.z; // sprite.scale.set(x,y) + + this.x = x; + this.y = y; + this.z = z; + return this; + } + + setScalar(scalar) { + this.x = scalar; + this.y = scalar; + this.z = scalar; + return this; + } + + setX(x) { + this.x = x; + return this; + } + + setY(y) { + this.y = y; + return this; + } + + setZ(z) { + this.z = z; + return this; + } + + setComponent(index, value) { + switch (index) { + case 0: + this.x = value; + break; + + case 1: + this.y = value; + break; + + case 2: + this.z = value; + break; + + default: + throw new Error('index is out of range: ' + index); + } + + return this; + } + + getComponent(index) { + switch (index) { + case 0: + return this.x; + + case 1: + return this.y; + + case 2: + return this.z; + + default: + throw new Error('index is out of range: ' + index); + } + } + + clone() { + return new this.constructor(this.x, this.y, this.z); + } + + copy(v) { + this.x = v.x; + this.y = v.y; + this.z = v.z; + return this; + } + + add(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); + return this.addVectors(v, w); + } + + this.x += v.x; + this.y += v.y; + this.z += v.z; + return this; + } + + addScalar(s) { + this.x += s; + this.y += s; + this.z += s; + return this; + } + + addVectors(a, b) { + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + return this; + } + + addScaledVector(v, s) { + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + return this; + } + + sub(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); + return this.subVectors(v, w); + } + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + return this; + } + + subScalar(s) { + this.x -= s; + this.y -= s; + this.z -= s; + return this; + } + + subVectors(a, b) { + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + return this; + } + + multiply(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.'); + return this.multiplyVectors(v, w); + } + + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + return this; + } + + multiplyScalar(scalar) { + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + return this; + } + + multiplyVectors(a, b) { + this.x = a.x * b.x; + this.y = a.y * b.y; + this.z = a.z * b.z; + return this; + } + + applyEuler(euler) { + if (!(euler && euler.isEuler)) { + console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.'); + } + + return this.applyQuaternion(_quaternion$4.setFromEuler(euler)); + } + + applyAxisAngle(axis, angle) { + return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle)); + } + + applyMatrix3(m) { + const x = this.x, + y = this.y, + z = this.z; + const e = m.elements; + this.x = e[0] * x + e[3] * y + e[6] * z; + this.y = e[1] * x + e[4] * y + e[7] * z; + this.z = e[2] * x + e[5] * y + e[8] * z; + return this; + } + + applyNormalMatrix(m) { + return this.applyMatrix3(m).normalize(); + } + + applyMatrix4(m) { + const x = this.x, + y = this.y, + z = this.z; + const e = m.elements; + const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]); + this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w; + this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w; + this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w; + return this; + } + + applyQuaternion(q) { + const x = this.x, + y = this.y, + z = this.z; + const qx = q.x, + qy = q.y, + qz = q.z, + qw = q.w; // calculate quat * vector + + const ix = qw * x + qy * z - qz * y; + const iy = qw * y + qz * x - qx * z; + const iz = qw * z + qx * y - qy * x; + const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat + + this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; + this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; + this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; + return this; + } + + project(camera) { + return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix); + } + + unproject(camera) { + return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld); + } + + transformDirection(m) { + // input: THREE.Matrix4 affine matrix + // vector interpreted as a direction + const x = this.x, + y = this.y, + z = this.z; + const e = m.elements; + this.x = e[0] * x + e[4] * y + e[8] * z; + this.y = e[1] * x + e[5] * y + e[9] * z; + this.z = e[2] * x + e[6] * y + e[10] * z; + return this.normalize(); + } + + divide(v) { + this.x /= v.x; + this.y /= v.y; + this.z /= v.z; + return this; + } + + divideScalar(scalar) { + return this.multiplyScalar(1 / scalar); + } + + min(v) { + this.x = Math.min(this.x, v.x); + this.y = Math.min(this.y, v.y); + this.z = Math.min(this.z, v.z); + return this; + } + + max(v) { + this.x = Math.max(this.x, v.x); + this.y = Math.max(this.y, v.y); + this.z = Math.max(this.z, v.z); + return this; + } + + clamp(min, max) { + // assumes min < max, componentwise + this.x = Math.max(min.x, Math.min(max.x, this.x)); + this.y = Math.max(min.y, Math.min(max.y, this.y)); + this.z = Math.max(min.z, Math.min(max.z, this.z)); + return this; + } + + clampScalar(minVal, maxVal) { + this.x = Math.max(minVal, Math.min(maxVal, this.x)); + this.y = Math.max(minVal, Math.min(maxVal, this.y)); + this.z = Math.max(minVal, Math.min(maxVal, this.z)); + return this; + } + + clampLength(min, max) { + const length = this.length(); + return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); + } + + floor() { + this.x = Math.floor(this.x); + this.y = Math.floor(this.y); + this.z = Math.floor(this.z); + return this; + } + + ceil() { + this.x = Math.ceil(this.x); + this.y = Math.ceil(this.y); + this.z = Math.ceil(this.z); + return this; + } + + round() { + this.x = Math.round(this.x); + this.y = Math.round(this.y); + this.z = Math.round(this.z); + return this; + } + + roundToZero() { + this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); + this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); + this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); + return this; + } + + negate() { + this.x = -this.x; + this.y = -this.y; + this.z = -this.z; + return this; + } + + dot(v) { + return this.x * v.x + this.y * v.y + this.z * v.z; + } // TODO lengthSquared? + + + lengthSq() { + return this.x * this.x + this.y * this.y + this.z * this.z; + } + + length() { + return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); + } + + manhattanLength() { + return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z); + } + + normalize() { + return this.divideScalar(this.length() || 1); + } + + setLength(length) { + return this.normalize().multiplyScalar(length); + } + + lerp(v, alpha) { + this.x += (v.x - this.x) * alpha; + this.y += (v.y - this.y) * alpha; + this.z += (v.z - this.z) * alpha; + return this; + } + + lerpVectors(v1, v2, alpha) { + this.x = v1.x + (v2.x - v1.x) * alpha; + this.y = v1.y + (v2.y - v1.y) * alpha; + this.z = v1.z + (v2.z - v1.z) * alpha; + return this; + } + + cross(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.'); + return this.crossVectors(v, w); + } + + return this.crossVectors(this, v); + } + + crossVectors(a, b) { + const ax = a.x, + ay = a.y, + az = a.z; + const bx = b.x, + by = b.y, + bz = b.z; + this.x = ay * bz - az * by; + this.y = az * bx - ax * bz; + this.z = ax * by - ay * bx; + return this; + } + + projectOnVector(v) { + const denominator = v.lengthSq(); + if (denominator === 0) return this.set(0, 0, 0); + const scalar = v.dot(this) / denominator; + return this.copy(v).multiplyScalar(scalar); + } + + projectOnPlane(planeNormal) { + _vector$c.copy(this).projectOnVector(planeNormal); + + return this.sub(_vector$c); + } + + reflect(normal) { + // reflect incident vector off plane orthogonal to normal + // normal is assumed to have unit length + return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal))); + } + + angleTo(v) { + const denominator = Math.sqrt(this.lengthSq() * v.lengthSq()); + if (denominator === 0) return Math.PI / 2; + const theta = this.dot(v) / denominator; // clamp, to handle numerical problems + + return Math.acos(clamp(theta, -1, 1)); + } + + distanceTo(v) { + return Math.sqrt(this.distanceToSquared(v)); + } + + distanceToSquared(v) { + const dx = this.x - v.x, + dy = this.y - v.y, + dz = this.z - v.z; + return dx * dx + dy * dy + dz * dz; + } + + manhattanDistanceTo(v) { + return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z); + } + + setFromSpherical(s) { + return this.setFromSphericalCoords(s.radius, s.phi, s.theta); + } + + setFromSphericalCoords(radius, phi, theta) { + const sinPhiRadius = Math.sin(phi) * radius; + this.x = sinPhiRadius * Math.sin(theta); + this.y = Math.cos(phi) * radius; + this.z = sinPhiRadius * Math.cos(theta); + return this; + } + + setFromCylindrical(c) { + return this.setFromCylindricalCoords(c.radius, c.theta, c.y); + } + + setFromCylindricalCoords(radius, theta, y) { + this.x = radius * Math.sin(theta); + this.y = y; + this.z = radius * Math.cos(theta); + return this; + } + + setFromMatrixPosition(m) { + const e = m.elements; + this.x = e[12]; + this.y = e[13]; + this.z = e[14]; + return this; + } + + setFromMatrixScale(m) { + const sx = this.setFromMatrixColumn(m, 0).length(); + const sy = this.setFromMatrixColumn(m, 1).length(); + const sz = this.setFromMatrixColumn(m, 2).length(); + this.x = sx; + this.y = sy; + this.z = sz; + return this; + } + + setFromMatrixColumn(m, index) { + return this.fromArray(m.elements, index * 4); + } + + setFromMatrix3Column(m, index) { + return this.fromArray(m.elements, index * 3); + } + + equals(v) { + return v.x === this.x && v.y === this.y && v.z === this.z; + } + + fromArray(array, offset = 0) { + this.x = array[offset]; + this.y = array[offset + 1]; + this.z = array[offset + 2]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.x; + array[offset + 1] = this.y; + array[offset + 2] = this.z; + return array; + } + + fromBufferAttribute(attribute, index, offset) { + if (offset !== undefined) { + console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().'); + } + + this.x = attribute.getX(index); + this.y = attribute.getY(index); + this.z = attribute.getZ(index); + return this; + } + + random() { + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + return this; + } + + randomDirection() { + // Derived from https://mathworld.wolfram.com/SpherePointPicking.html + const u = (Math.random() - 0.5) * 2; + const t = Math.random() * Math.PI * 2; + const f = Math.sqrt(1 - u ** 2); + this.x = f * Math.cos(t); + this.y = f * Math.sin(t); + this.z = u; + return this; + } + + *[Symbol.iterator]() { + yield this.x; + yield this.y; + yield this.z; + } + +} + +Vector3.prototype.isVector3 = true; + +const _vector$c = /*@__PURE__*/new Vector3(); + +const _quaternion$4 = /*@__PURE__*/new Quaternion(); + +class Box3 { + constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) { + this.min = min; + this.max = max; + } + + set(min, max) { + this.min.copy(min); + this.max.copy(max); + return this; + } + + setFromArray(array) { + let minX = +Infinity; + let minY = +Infinity; + let minZ = +Infinity; + let maxX = -Infinity; + let maxY = -Infinity; + let maxZ = -Infinity; + + for (let i = 0, l = array.length; i < l; i += 3) { + const x = array[i]; + const y = array[i + 1]; + const z = array[i + 2]; + if (x < minX) minX = x; + if (y < minY) minY = y; + if (z < minZ) minZ = z; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + if (z > maxZ) maxZ = z; + } + + this.min.set(minX, minY, minZ); + this.max.set(maxX, maxY, maxZ); + return this; + } + + setFromBufferAttribute(attribute) { + let minX = +Infinity; + let minY = +Infinity; + let minZ = +Infinity; + let maxX = -Infinity; + let maxY = -Infinity; + let maxZ = -Infinity; + + for (let i = 0, l = attribute.count; i < l; i++) { + const x = attribute.getX(i); + const y = attribute.getY(i); + const z = attribute.getZ(i); + if (x < minX) minX = x; + if (y < minY) minY = y; + if (z < minZ) minZ = z; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + if (z > maxZ) maxZ = z; + } + + this.min.set(minX, minY, minZ); + this.max.set(maxX, maxY, maxZ); + return this; + } + + setFromPoints(points) { + this.makeEmpty(); + + for (let i = 0, il = points.length; i < il; i++) { + this.expandByPoint(points[i]); + } + + return this; + } + + setFromCenterAndSize(center, size) { + const halfSize = _vector$b.copy(size).multiplyScalar(0.5); + + this.min.copy(center).sub(halfSize); + this.max.copy(center).add(halfSize); + return this; + } + + setFromObject(object) { + this.makeEmpty(); + return this.expandByObject(object); + } + + clone() { + return new this.constructor().copy(this); + } + + copy(box) { + this.min.copy(box.min); + this.max.copy(box.max); + return this; + } + + makeEmpty() { + this.min.x = this.min.y = this.min.z = +Infinity; + this.max.x = this.max.y = this.max.z = -Infinity; + return this; + } + + isEmpty() { + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z; + } + + getCenter(target) { + return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); + } + + getSize(target) { + return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min); + } + + expandByPoint(point) { + this.min.min(point); + this.max.max(point); + return this; + } + + expandByVector(vector) { + this.min.sub(vector); + this.max.add(vector); + return this; + } + + expandByScalar(scalar) { + this.min.addScalar(-scalar); + this.max.addScalar(scalar); + return this; + } + + expandByObject(object) { + // Computes the world-axis-aligned bounding box of an object (including its children), + // accounting for both the object's, and children's, world transforms + object.updateWorldMatrix(false, false); + const geometry = object.geometry; + + if (geometry !== undefined) { + if (geometry.boundingBox === null) { + geometry.computeBoundingBox(); + } + + _box$3.copy(geometry.boundingBox); + + _box$3.applyMatrix4(object.matrixWorld); + + this.union(_box$3); + } + + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + this.expandByObject(children[i]); + } + + return this; + } + + containsPoint(point) { + return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; + } + + containsBox(box) { + return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; + } + + getParameter(point, target) { + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z)); + } + + intersectsBox(box) { + // using 6 splitting planes to rule out intersections. + return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; + } + + intersectsSphere(sphere) { + // Find the point on the AABB closest to the sphere center. + this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect. + + return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius; + } + + intersectsPlane(plane) { + // We compute the minimum and maximum dot product values. If those values + // are on the same side (back or front) of the plane, then there is no intersection. + let min, max; + + if (plane.normal.x > 0) { + min = plane.normal.x * this.min.x; + max = plane.normal.x * this.max.x; + } else { + min = plane.normal.x * this.max.x; + max = plane.normal.x * this.min.x; + } + + if (plane.normal.y > 0) { + min += plane.normal.y * this.min.y; + max += plane.normal.y * this.max.y; + } else { + min += plane.normal.y * this.max.y; + max += plane.normal.y * this.min.y; + } + + if (plane.normal.z > 0) { + min += plane.normal.z * this.min.z; + max += plane.normal.z * this.max.z; + } else { + min += plane.normal.z * this.max.z; + max += plane.normal.z * this.min.z; + } + + return min <= -plane.constant && max >= -plane.constant; + } + + intersectsTriangle(triangle) { + if (this.isEmpty()) { + return false; + } // compute box center and extents + + + this.getCenter(_center); + + _extents.subVectors(this.max, _center); // translate triangle to aabb origin + + + _v0$2.subVectors(triangle.a, _center); + + _v1$7.subVectors(triangle.b, _center); + + _v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle + + + _f0.subVectors(_v1$7, _v0$2); + + _f1.subVectors(_v2$3, _v1$7); + + _f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb + // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation + // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) + + + let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0]; + + if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { + return false; + } // test 3 face normals from the aabb + + + axes = [1, 0, 0, 0, 1, 0, 0, 0, 1]; + + if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { + return false; + } // finally testing the face normal of the triangle + // use already existing triangle edge vectors here + + + _triangleNormal.crossVectors(_f0, _f1); + + axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z]; + return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents); + } + + clampPoint(point, target) { + return target.copy(point).clamp(this.min, this.max); + } + + distanceToPoint(point) { + const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max); + + return clampedPoint.sub(point).length(); + } + + getBoundingSphere(target) { + this.getCenter(target.center); + target.radius = this.getSize(_vector$b).length() * 0.5; + return target; + } + + intersect(box) { + this.min.max(box.min); + this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. + + if (this.isEmpty()) this.makeEmpty(); + return this; + } + + union(box) { + this.min.min(box.min); + this.max.max(box.max); + return this; + } + + applyMatrix4(matrix) { + // transform of empty box is an empty box. + if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below + + _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000 + + + _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001 + + + _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010 + + + _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011 + + + _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100 + + + _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101 + + + _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110 + + + _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111 + + + this.setFromPoints(_points); + return this; + } + + translate(offset) { + this.min.add(offset); + this.max.add(offset); + return this; + } + + equals(box) { + return box.min.equals(this.min) && box.max.equals(this.max); + } + +} + +Box3.prototype.isBox3 = true; +const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()]; + +const _vector$b = /*@__PURE__*/new Vector3(); + +const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices + + +const _v0$2 = /*@__PURE__*/new Vector3(); + +const _v1$7 = /*@__PURE__*/new Vector3(); + +const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors + + +const _f0 = /*@__PURE__*/new Vector3(); + +const _f1 = /*@__PURE__*/new Vector3(); + +const _f2 = /*@__PURE__*/new Vector3(); + +const _center = /*@__PURE__*/new Vector3(); + +const _extents = /*@__PURE__*/new Vector3(); + +const _triangleNormal = /*@__PURE__*/new Vector3(); + +const _testAxis = /*@__PURE__*/new Vector3(); + +function satForAxes(axes, v0, v1, v2, extents) { + for (let i = 0, j = axes.length - 3; i <= j; i += 3) { + _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis + + + const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis + + const p0 = v0.dot(_testAxis); + const p1 = v1.dot(_testAxis); + const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r + + if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) { + // points of the projected triangle are outside the projected half-length of the aabb + // the axis is seperating and we can exit + return false; + } + } + + return true; +} + +const _box$2 = /*@__PURE__*/new Box3(); + +const _v1$6 = /*@__PURE__*/new Vector3(); + +const _toFarthestPoint = /*@__PURE__*/new Vector3(); + +const _toPoint = /*@__PURE__*/new Vector3(); + +class Sphere { + constructor(center = new Vector3(), radius = -1) { + this.center = center; + this.radius = radius; + } + + set(center, radius) { + this.center.copy(center); + this.radius = radius; + return this; + } + + setFromPoints(points, optionalCenter) { + const center = this.center; + + if (optionalCenter !== undefined) { + center.copy(optionalCenter); + } else { + _box$2.setFromPoints(points).getCenter(center); + } + + let maxRadiusSq = 0; + + for (let i = 0, il = points.length; i < il; i++) { + maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i])); + } + + this.radius = Math.sqrt(maxRadiusSq); + return this; + } + + copy(sphere) { + this.center.copy(sphere.center); + this.radius = sphere.radius; + return this; + } + + isEmpty() { + return this.radius < 0; + } + + makeEmpty() { + this.center.set(0, 0, 0); + this.radius = -1; + return this; + } + + containsPoint(point) { + return point.distanceToSquared(this.center) <= this.radius * this.radius; + } + + distanceToPoint(point) { + return point.distanceTo(this.center) - this.radius; + } + + intersectsSphere(sphere) { + const radiusSum = this.radius + sphere.radius; + return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum; + } + + intersectsBox(box) { + return box.intersectsSphere(this); + } + + intersectsPlane(plane) { + return Math.abs(plane.distanceToPoint(this.center)) <= this.radius; + } + + clampPoint(point, target) { + const deltaLengthSq = this.center.distanceToSquared(point); + target.copy(point); + + if (deltaLengthSq > this.radius * this.radius) { + target.sub(this.center).normalize(); + target.multiplyScalar(this.radius).add(this.center); + } + + return target; + } + + getBoundingBox(target) { + if (this.isEmpty()) { + // Empty sphere produces empty bounding box + target.makeEmpty(); + return target; + } + + target.set(this.center, this.center); + target.expandByScalar(this.radius); + return target; + } + + applyMatrix4(matrix) { + this.center.applyMatrix4(matrix); + this.radius = this.radius * matrix.getMaxScaleOnAxis(); + return this; + } + + translate(offset) { + this.center.add(offset); + return this; + } + + expandByPoint(point) { + // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671 + _toPoint.subVectors(point, this.center); + + const lengthSq = _toPoint.lengthSq(); + + if (lengthSq > this.radius * this.radius) { + const length = Math.sqrt(lengthSq); + const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius, + // and the other half to position. This gives a tighter enclosure, instead of if + // the whole missing distance were just added to radius. + + this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length)); + this.radius += missingRadiusHalf; + } + + return this; + } + + union(sphere) { + // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769 + // To enclose another sphere into this sphere, we only need to enclose two points: + // 1) Enclose the farthest point on the other sphere into this sphere. + // 2) Enclose the opposite point of the farthest point into this sphere. + if (this.center.equals(sphere.center) === true) { + _toFarthestPoint.set(0, 0, 1).multiplyScalar(sphere.radius); + } else { + _toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius); + } + + this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint)); + this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint)); + return this; + } + + equals(sphere) { + return sphere.center.equals(this.center) && sphere.radius === this.radius; + } + + clone() { + return new this.constructor().copy(this); + } + +} + +const _vector$a = /*@__PURE__*/new Vector3(); + +const _segCenter = /*@__PURE__*/new Vector3(); + +const _segDir = /*@__PURE__*/new Vector3(); + +const _diff = /*@__PURE__*/new Vector3(); + +const _edge1 = /*@__PURE__*/new Vector3(); + +const _edge2 = /*@__PURE__*/new Vector3(); + +const _normal$1 = /*@__PURE__*/new Vector3(); + +class Ray { + constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) { + this.origin = origin; + this.direction = direction; + } + + set(origin, direction) { + this.origin.copy(origin); + this.direction.copy(direction); + return this; + } + + copy(ray) { + this.origin.copy(ray.origin); + this.direction.copy(ray.direction); + return this; + } + + at(t, target) { + return target.copy(this.direction).multiplyScalar(t).add(this.origin); + } + + lookAt(v) { + this.direction.copy(v).sub(this.origin).normalize(); + return this; + } + + recast(t) { + this.origin.copy(this.at(t, _vector$a)); + return this; + } + + closestPointToPoint(point, target) { + target.subVectors(point, this.origin); + const directionDistance = target.dot(this.direction); + + if (directionDistance < 0) { + return target.copy(this.origin); + } + + return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); + } + + distanceToPoint(point) { + return Math.sqrt(this.distanceSqToPoint(point)); + } + + distanceSqToPoint(point) { + const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray + + + if (directionDistance < 0) { + return this.origin.distanceToSquared(point); + } + + _vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); + + return _vector$a.distanceToSquared(point); + } + + distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) { + // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h + // It returns the min distance between the ray and the segment + // defined by v0 and v1 + // It can also set two optional targets : + // - The closest point on the ray + // - The closest point on the segment + _segCenter.copy(v0).add(v1).multiplyScalar(0.5); + + _segDir.copy(v1).sub(v0).normalize(); + + _diff.copy(this.origin).sub(_segCenter); + + const segExtent = v0.distanceTo(v1) * 0.5; + const a01 = -this.direction.dot(_segDir); + + const b0 = _diff.dot(this.direction); + + const b1 = -_diff.dot(_segDir); + + const c = _diff.lengthSq(); + + const det = Math.abs(1 - a01 * a01); + let s0, s1, sqrDist, extDet; + + if (det > 0) { + // The ray and segment are not parallel. + s0 = a01 * b1 - b0; + s1 = a01 * b0 - b1; + extDet = segExtent * det; + + if (s0 >= 0) { + if (s1 >= -extDet) { + if (s1 <= extDet) { + // region 0 + // Minimum at interior points of ray and segment. + const invDet = 1 / det; + s0 *= invDet; + s1 *= invDet; + sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c; + } else { + // region 1 + s1 = segExtent; + s0 = Math.max(0, -(a01 * s1 + b0)); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + } else { + // region 5 + s1 = -segExtent; + s0 = Math.max(0, -(a01 * s1 + b0)); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + } else { + if (s1 <= -extDet) { + // region 4 + s0 = Math.max(0, -(-a01 * segExtent + b0)); + s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } else if (s1 <= extDet) { + // region 3 + s0 = 0; + s1 = Math.min(Math.max(-segExtent, -b1), segExtent); + sqrDist = s1 * (s1 + 2 * b1) + c; + } else { + // region 2 + s0 = Math.max(0, -(a01 * segExtent + b0)); + s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + } + } else { + // Ray and segment are parallel. + s1 = a01 > 0 ? -segExtent : segExtent; + s0 = Math.max(0, -(a01 * s1 + b0)); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + + if (optionalPointOnRay) { + optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin); + } + + if (optionalPointOnSegment) { + optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter); + } + + return sqrDist; + } + + intersectSphere(sphere, target) { + _vector$a.subVectors(sphere.center, this.origin); + + const tca = _vector$a.dot(this.direction); + + const d2 = _vector$a.dot(_vector$a) - tca * tca; + const radius2 = sphere.radius * sphere.radius; + if (d2 > radius2) return null; + const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere + + const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere + + const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null + + if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray: + // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, + // in order to always return an intersect point that is in front of the ray. + + if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0 + + return this.at(t0, target); + } + + intersectsSphere(sphere) { + return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius; + } + + distanceToPlane(plane) { + const denominator = plane.normal.dot(this.direction); + + if (denominator === 0) { + // line is coplanar, return origin + if (plane.distanceToPoint(this.origin) === 0) { + return 0; + } // Null is preferable to undefined since undefined means.... it is undefined + + + return null; + } + + const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane + + return t >= 0 ? t : null; + } + + intersectPlane(plane, target) { + const t = this.distanceToPlane(plane); + + if (t === null) { + return null; + } + + return this.at(t, target); + } + + intersectsPlane(plane) { + // check if the ray lies on the plane first + const distToPoint = plane.distanceToPoint(this.origin); + + if (distToPoint === 0) { + return true; + } + + const denominator = plane.normal.dot(this.direction); + + if (denominator * distToPoint < 0) { + return true; + } // ray origin is behind the plane (and is pointing behind it) + + + return false; + } + + intersectBox(box, target) { + let tmin, tmax, tymin, tymax, tzmin, tzmax; + const invdirx = 1 / this.direction.x, + invdiry = 1 / this.direction.y, + invdirz = 1 / this.direction.z; + const origin = this.origin; + + if (invdirx >= 0) { + tmin = (box.min.x - origin.x) * invdirx; + tmax = (box.max.x - origin.x) * invdirx; + } else { + tmin = (box.max.x - origin.x) * invdirx; + tmax = (box.min.x - origin.x) * invdirx; + } + + if (invdiry >= 0) { + tymin = (box.min.y - origin.y) * invdiry; + tymax = (box.max.y - origin.y) * invdiry; + } else { + tymin = (box.max.y - origin.y) * invdiry; + tymax = (box.min.y - origin.y) * invdiry; + } + + if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN + // (result of 0 * Infinity). x !== x returns true if x is NaN + + if (tymin > tmin || tmin !== tmin) tmin = tymin; + if (tymax < tmax || tmax !== tmax) tmax = tymax; + + if (invdirz >= 0) { + tzmin = (box.min.z - origin.z) * invdirz; + tzmax = (box.max.z - origin.z) * invdirz; + } else { + tzmin = (box.max.z - origin.z) * invdirz; + tzmax = (box.min.z - origin.z) * invdirz; + } + + if (tmin > tzmax || tzmin > tmax) return null; + if (tzmin > tmin || tmin !== tmin) tmin = tzmin; + if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side) + + if (tmax < 0) return null; + return this.at(tmin >= 0 ? tmin : tmax, target); + } + + intersectsBox(box) { + return this.intersectBox(box, _vector$a) !== null; + } + + intersectTriangle(a, b, c, backfaceCulling, target) { + // Compute the offset origin, edges, and normal. + // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h + _edge1.subVectors(b, a); + + _edge2.subVectors(c, a); + + _normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, + // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by + // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) + // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) + // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) + + + let DdN = this.direction.dot(_normal$1); + let sign; + + if (DdN > 0) { + if (backfaceCulling) return null; + sign = 1; + } else if (DdN < 0) { + sign = -1; + DdN = -DdN; + } else { + return null; + } + + _diff.subVectors(this.origin, a); + + const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection + + if (DdQxE2 < 0) { + return null; + } + + const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection + + if (DdE1xQ < 0) { + return null; + } // b1+b2 > 1, no intersection + + + if (DdQxE2 + DdE1xQ > DdN) { + return null; + } // Line intersects triangle, check if ray does. + + + const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection + + + if (QdN < 0) { + return null; + } // Ray intersects triangle. + + + return this.at(QdN / DdN, target); + } + + applyMatrix4(matrix4) { + this.origin.applyMatrix4(matrix4); + this.direction.transformDirection(matrix4); + return this; + } + + equals(ray) { + return ray.origin.equals(this.origin) && ray.direction.equals(this.direction); + } + + clone() { + return new this.constructor().copy(this); + } + +} + +class Matrix4 { + constructor() { + this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; + + if (arguments.length > 0) { + console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.'); + } + } + + set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { + const te = this.elements; + te[0] = n11; + te[4] = n12; + te[8] = n13; + te[12] = n14; + te[1] = n21; + te[5] = n22; + te[9] = n23; + te[13] = n24; + te[2] = n31; + te[6] = n32; + te[10] = n33; + te[14] = n34; + te[3] = n41; + te[7] = n42; + te[11] = n43; + te[15] = n44; + return this; + } + + identity() { + this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); + return this; + } + + clone() { + return new Matrix4().fromArray(this.elements); + } + + copy(m) { + const te = this.elements; + const me = m.elements; + te[0] = me[0]; + te[1] = me[1]; + te[2] = me[2]; + te[3] = me[3]; + te[4] = me[4]; + te[5] = me[5]; + te[6] = me[6]; + te[7] = me[7]; + te[8] = me[8]; + te[9] = me[9]; + te[10] = me[10]; + te[11] = me[11]; + te[12] = me[12]; + te[13] = me[13]; + te[14] = me[14]; + te[15] = me[15]; + return this; + } + + copyPosition(m) { + const te = this.elements, + me = m.elements; + te[12] = me[12]; + te[13] = me[13]; + te[14] = me[14]; + return this; + } + + setFromMatrix3(m) { + const me = m.elements; + this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1); + return this; + } + + extractBasis(xAxis, yAxis, zAxis) { + xAxis.setFromMatrixColumn(this, 0); + yAxis.setFromMatrixColumn(this, 1); + zAxis.setFromMatrixColumn(this, 2); + return this; + } + + makeBasis(xAxis, yAxis, zAxis) { + this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1); + return this; + } + + extractRotation(m) { + // this method does not support reflection matrices + const te = this.elements; + const me = m.elements; + + const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length(); + + const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length(); + + const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length(); + + te[0] = me[0] * scaleX; + te[1] = me[1] * scaleX; + te[2] = me[2] * scaleX; + te[3] = 0; + te[4] = me[4] * scaleY; + te[5] = me[5] * scaleY; + te[6] = me[6] * scaleY; + te[7] = 0; + te[8] = me[8] * scaleZ; + te[9] = me[9] * scaleZ; + te[10] = me[10] * scaleZ; + te[11] = 0; + te[12] = 0; + te[13] = 0; + te[14] = 0; + te[15] = 1; + return this; + } + + makeRotationFromEuler(euler) { + if (!(euler && euler.isEuler)) { + console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.'); + } + + const te = this.elements; + const x = euler.x, + y = euler.y, + z = euler.z; + const a = Math.cos(x), + b = Math.sin(x); + const c = Math.cos(y), + d = Math.sin(y); + const e = Math.cos(z), + f = Math.sin(z); + + if (euler.order === 'XYZ') { + const ae = a * e, + af = a * f, + be = b * e, + bf = b * f; + te[0] = c * e; + te[4] = -c * f; + te[8] = d; + te[1] = af + be * d; + te[5] = ae - bf * d; + te[9] = -b * c; + te[2] = bf - ae * d; + te[6] = be + af * d; + te[10] = a * c; + } else if (euler.order === 'YXZ') { + const ce = c * e, + cf = c * f, + de = d * e, + df = d * f; + te[0] = ce + df * b; + te[4] = de * b - cf; + te[8] = a * d; + te[1] = a * f; + te[5] = a * e; + te[9] = -b; + te[2] = cf * b - de; + te[6] = df + ce * b; + te[10] = a * c; + } else if (euler.order === 'ZXY') { + const ce = c * e, + cf = c * f, + de = d * e, + df = d * f; + te[0] = ce - df * b; + te[4] = -a * f; + te[8] = de + cf * b; + te[1] = cf + de * b; + te[5] = a * e; + te[9] = df - ce * b; + te[2] = -a * d; + te[6] = b; + te[10] = a * c; + } else if (euler.order === 'ZYX') { + const ae = a * e, + af = a * f, + be = b * e, + bf = b * f; + te[0] = c * e; + te[4] = be * d - af; + te[8] = ae * d + bf; + te[1] = c * f; + te[5] = bf * d + ae; + te[9] = af * d - be; + te[2] = -d; + te[6] = b * c; + te[10] = a * c; + } else if (euler.order === 'YZX') { + const ac = a * c, + ad = a * d, + bc = b * c, + bd = b * d; + te[0] = c * e; + te[4] = bd - ac * f; + te[8] = bc * f + ad; + te[1] = f; + te[5] = a * e; + te[9] = -b * e; + te[2] = -d * e; + te[6] = ad * f + bc; + te[10] = ac - bd * f; + } else if (euler.order === 'XZY') { + const ac = a * c, + ad = a * d, + bc = b * c, + bd = b * d; + te[0] = c * e; + te[4] = -f; + te[8] = d * e; + te[1] = ac * f + bd; + te[5] = a * e; + te[9] = ad * f - bc; + te[2] = bc * f - ad; + te[6] = b * e; + te[10] = bd * f + ac; + } // bottom row + + + te[3] = 0; + te[7] = 0; + te[11] = 0; // last column + + te[12] = 0; + te[13] = 0; + te[14] = 0; + te[15] = 1; + return this; + } + + makeRotationFromQuaternion(q) { + return this.compose(_zero, q, _one); + } + + lookAt(eye, target, up) { + const te = this.elements; + + _z.subVectors(eye, target); + + if (_z.lengthSq() === 0) { + // eye and target are in the same position + _z.z = 1; + } + + _z.normalize(); + + _x.crossVectors(up, _z); + + if (_x.lengthSq() === 0) { + // up and z are parallel + if (Math.abs(up.z) === 1) { + _z.x += 0.0001; + } else { + _z.z += 0.0001; + } + + _z.normalize(); + + _x.crossVectors(up, _z); + } + + _x.normalize(); + + _y.crossVectors(_z, _x); + + te[0] = _x.x; + te[4] = _y.x; + te[8] = _z.x; + te[1] = _x.y; + te[5] = _y.y; + te[9] = _z.y; + te[2] = _x.z; + te[6] = _y.z; + te[10] = _z.z; + return this; + } + + multiply(m, n) { + if (n !== undefined) { + console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.'); + return this.multiplyMatrices(m, n); + } + + return this.multiplyMatrices(this, m); + } + + premultiply(m) { + return this.multiplyMatrices(m, this); + } + + multiplyMatrices(a, b) { + const ae = a.elements; + const be = b.elements; + const te = this.elements; + const a11 = ae[0], + a12 = ae[4], + a13 = ae[8], + a14 = ae[12]; + const a21 = ae[1], + a22 = ae[5], + a23 = ae[9], + a24 = ae[13]; + const a31 = ae[2], + a32 = ae[6], + a33 = ae[10], + a34 = ae[14]; + const a41 = ae[3], + a42 = ae[7], + a43 = ae[11], + a44 = ae[15]; + const b11 = be[0], + b12 = be[4], + b13 = be[8], + b14 = be[12]; + const b21 = be[1], + b22 = be[5], + b23 = be[9], + b24 = be[13]; + const b31 = be[2], + b32 = be[6], + b33 = be[10], + b34 = be[14]; + const b41 = be[3], + b42 = be[7], + b43 = be[11], + b44 = be[15]; + te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; + te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; + te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; + te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; + te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; + te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; + te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; + te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; + te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; + te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; + te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; + te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; + te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; + te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; + te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; + te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; + return this; + } + + multiplyScalar(s) { + const te = this.elements; + te[0] *= s; + te[4] *= s; + te[8] *= s; + te[12] *= s; + te[1] *= s; + te[5] *= s; + te[9] *= s; + te[13] *= s; + te[2] *= s; + te[6] *= s; + te[10] *= s; + te[14] *= s; + te[3] *= s; + te[7] *= s; + te[11] *= s; + te[15] *= s; + return this; + } + + determinant() { + const te = this.elements; + const n11 = te[0], + n12 = te[4], + n13 = te[8], + n14 = te[12]; + const n21 = te[1], + n22 = te[5], + n23 = te[9], + n24 = te[13]; + const n31 = te[2], + n32 = te[6], + n33 = te[10], + n34 = te[14]; + const n41 = te[3], + n42 = te[7], + n43 = te[11], + n44 = te[15]; //TODO: make this more efficient + //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) + + return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31); + } + + transpose() { + const te = this.elements; + let tmp; + tmp = te[1]; + te[1] = te[4]; + te[4] = tmp; + tmp = te[2]; + te[2] = te[8]; + te[8] = tmp; + tmp = te[6]; + te[6] = te[9]; + te[9] = tmp; + tmp = te[3]; + te[3] = te[12]; + te[12] = tmp; + tmp = te[7]; + te[7] = te[13]; + te[13] = tmp; + tmp = te[11]; + te[11] = te[14]; + te[14] = tmp; + return this; + } + + setPosition(x, y, z) { + const te = this.elements; + + if (x.isVector3) { + te[12] = x.x; + te[13] = x.y; + te[14] = x.z; + } else { + te[12] = x; + te[13] = y; + te[14] = z; + } + + return this; + } + + invert() { + // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm + const te = this.elements, + n11 = te[0], + n21 = te[1], + n31 = te[2], + n41 = te[3], + n12 = te[4], + n22 = te[5], + n32 = te[6], + n42 = te[7], + n13 = te[8], + n23 = te[9], + n33 = te[10], + n43 = te[11], + n14 = te[12], + n24 = te[13], + n34 = te[14], + n44 = te[15], + t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, + t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, + t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, + t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; + const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; + if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); + const detInv = 1 / det; + te[0] = t11 * detInv; + te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv; + te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv; + te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv; + te[4] = t12 * detInv; + te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv; + te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv; + te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv; + te[8] = t13 * detInv; + te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv; + te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv; + te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv; + te[12] = t14 * detInv; + te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv; + te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv; + te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv; + return this; + } + + scale(v) { + const te = this.elements; + const x = v.x, + y = v.y, + z = v.z; + te[0] *= x; + te[4] *= y; + te[8] *= z; + te[1] *= x; + te[5] *= y; + te[9] *= z; + te[2] *= x; + te[6] *= y; + te[10] *= z; + te[3] *= x; + te[7] *= y; + te[11] *= z; + return this; + } + + getMaxScaleOnAxis() { + const te = this.elements; + const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2]; + const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6]; + const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10]; + return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)); + } + + makeTranslation(x, y, z) { + this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1); + return this; + } + + makeRotationX(theta) { + const c = Math.cos(theta), + s = Math.sin(theta); + this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); + return this; + } + + makeRotationY(theta) { + const c = Math.cos(theta), + s = Math.sin(theta); + this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); + return this; + } + + makeRotationZ(theta) { + const c = Math.cos(theta), + s = Math.sin(theta); + this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); + return this; + } + + makeRotationAxis(axis, angle) { + // Based on http://www.gamedev.net/reference/articles/article1199.asp + const c = Math.cos(angle); + const s = Math.sin(angle); + const t = 1 - c; + const x = axis.x, + y = axis.y, + z = axis.z; + const tx = t * x, + ty = t * y; + this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1); + return this; + } + + makeScale(x, y, z) { + this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1); + return this; + } + + makeShear(xy, xz, yx, yz, zx, zy) { + this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1); + return this; + } + + compose(position, quaternion, scale) { + const te = this.elements; + const x = quaternion._x, + y = quaternion._y, + z = quaternion._z, + w = quaternion._w; + const x2 = x + x, + y2 = y + y, + z2 = z + z; + const xx = x * x2, + xy = x * y2, + xz = x * z2; + const yy = y * y2, + yz = y * z2, + zz = z * z2; + const wx = w * x2, + wy = w * y2, + wz = w * z2; + const sx = scale.x, + sy = scale.y, + sz = scale.z; + te[0] = (1 - (yy + zz)) * sx; + te[1] = (xy + wz) * sx; + te[2] = (xz - wy) * sx; + te[3] = 0; + te[4] = (xy - wz) * sy; + te[5] = (1 - (xx + zz)) * sy; + te[6] = (yz + wx) * sy; + te[7] = 0; + te[8] = (xz + wy) * sz; + te[9] = (yz - wx) * sz; + te[10] = (1 - (xx + yy)) * sz; + te[11] = 0; + te[12] = position.x; + te[13] = position.y; + te[14] = position.z; + te[15] = 1; + return this; + } + + decompose(position, quaternion, scale) { + const te = this.elements; + + let sx = _v1$5.set(te[0], te[1], te[2]).length(); + + const sy = _v1$5.set(te[4], te[5], te[6]).length(); + + const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale + + + const det = this.determinant(); + if (det < 0) sx = -sx; + position.x = te[12]; + position.y = te[13]; + position.z = te[14]; // scale the rotation part + + _m1$2.copy(this); + + const invSX = 1 / sx; + const invSY = 1 / sy; + const invSZ = 1 / sz; + _m1$2.elements[0] *= invSX; + _m1$2.elements[1] *= invSX; + _m1$2.elements[2] *= invSX; + _m1$2.elements[4] *= invSY; + _m1$2.elements[5] *= invSY; + _m1$2.elements[6] *= invSY; + _m1$2.elements[8] *= invSZ; + _m1$2.elements[9] *= invSZ; + _m1$2.elements[10] *= invSZ; + quaternion.setFromRotationMatrix(_m1$2); + scale.x = sx; + scale.y = sy; + scale.z = sz; + return this; + } + + makePerspective(left, right, top, bottom, near, far) { + if (far === undefined) { + console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.'); + } + + const te = this.elements; + const x = 2 * near / (right - left); + const y = 2 * near / (top - bottom); + const a = (right + left) / (right - left); + const b = (top + bottom) / (top - bottom); + const c = -(far + near) / (far - near); + const d = -2 * far * near / (far - near); + te[0] = x; + te[4] = 0; + te[8] = a; + te[12] = 0; + te[1] = 0; + te[5] = y; + te[9] = b; + te[13] = 0; + te[2] = 0; + te[6] = 0; + te[10] = c; + te[14] = d; + te[3] = 0; + te[7] = 0; + te[11] = -1; + te[15] = 0; + return this; + } + + makeOrthographic(left, right, top, bottom, near, far) { + const te = this.elements; + const w = 1.0 / (right - left); + const h = 1.0 / (top - bottom); + const p = 1.0 / (far - near); + const x = (right + left) * w; + const y = (top + bottom) * h; + const z = (far + near) * p; + te[0] = 2 * w; + te[4] = 0; + te[8] = 0; + te[12] = -x; + te[1] = 0; + te[5] = 2 * h; + te[9] = 0; + te[13] = -y; + te[2] = 0; + te[6] = 0; + te[10] = -2 * p; + te[14] = -z; + te[3] = 0; + te[7] = 0; + te[11] = 0; + te[15] = 1; + return this; + } + + equals(matrix) { + const te = this.elements; + const me = matrix.elements; + + for (let i = 0; i < 16; i++) { + if (te[i] !== me[i]) return false; + } + + return true; + } + + fromArray(array, offset = 0) { + for (let i = 0; i < 16; i++) { + this.elements[i] = array[i + offset]; + } + + return this; + } + + toArray(array = [], offset = 0) { + const te = this.elements; + array[offset] = te[0]; + array[offset + 1] = te[1]; + array[offset + 2] = te[2]; + array[offset + 3] = te[3]; + array[offset + 4] = te[4]; + array[offset + 5] = te[5]; + array[offset + 6] = te[6]; + array[offset + 7] = te[7]; + array[offset + 8] = te[8]; + array[offset + 9] = te[9]; + array[offset + 10] = te[10]; + array[offset + 11] = te[11]; + array[offset + 12] = te[12]; + array[offset + 13] = te[13]; + array[offset + 14] = te[14]; + array[offset + 15] = te[15]; + return array; + } + +} + +Matrix4.prototype.isMatrix4 = true; + +const _v1$5 = /*@__PURE__*/new Vector3(); + +const _m1$2 = /*@__PURE__*/new Matrix4(); + +const _zero = /*@__PURE__*/new Vector3(0, 0, 0); + +const _one = /*@__PURE__*/new Vector3(1, 1, 1); + +const _x = /*@__PURE__*/new Vector3(); + +const _y = /*@__PURE__*/new Vector3(); + +const _z = /*@__PURE__*/new Vector3(); + +const _matrix$1 = /*@__PURE__*/new Matrix4(); + +const _quaternion$3 = /*@__PURE__*/new Quaternion(); + +class Euler { + constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) { + this._x = x; + this._y = y; + this._z = z; + this._order = order; + } + + get x() { + return this._x; + } + + set x(value) { + this._x = value; + + this._onChangeCallback(); + } + + get y() { + return this._y; + } + + set y(value) { + this._y = value; + + this._onChangeCallback(); + } + + get z() { + return this._z; + } + + set z(value) { + this._z = value; + + this._onChangeCallback(); + } + + get order() { + return this._order; + } + + set order(value) { + this._order = value; + + this._onChangeCallback(); + } + + set(x, y, z, order = this._order) { + this._x = x; + this._y = y; + this._z = z; + this._order = order; + + this._onChangeCallback(); + + return this; + } + + clone() { + return new this.constructor(this._x, this._y, this._z, this._order); + } + + copy(euler) { + this._x = euler._x; + this._y = euler._y; + this._z = euler._z; + this._order = euler._order; + + this._onChangeCallback(); + + return this; + } + + setFromRotationMatrix(m, order = this._order, update = true) { + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + const te = m.elements; + const m11 = te[0], + m12 = te[4], + m13 = te[8]; + const m21 = te[1], + m22 = te[5], + m23 = te[9]; + const m31 = te[2], + m32 = te[6], + m33 = te[10]; + + switch (order) { + case 'XYZ': + this._y = Math.asin(clamp(m13, -1, 1)); + + if (Math.abs(m13) < 0.9999999) { + this._x = Math.atan2(-m23, m33); + this._z = Math.atan2(-m12, m11); + } else { + this._x = Math.atan2(m32, m22); + this._z = 0; + } + + break; + + case 'YXZ': + this._x = Math.asin(-clamp(m23, -1, 1)); + + if (Math.abs(m23) < 0.9999999) { + this._y = Math.atan2(m13, m33); + this._z = Math.atan2(m21, m22); + } else { + this._y = Math.atan2(-m31, m11); + this._z = 0; + } + + break; + + case 'ZXY': + this._x = Math.asin(clamp(m32, -1, 1)); + + if (Math.abs(m32) < 0.9999999) { + this._y = Math.atan2(-m31, m33); + this._z = Math.atan2(-m12, m22); + } else { + this._y = 0; + this._z = Math.atan2(m21, m11); + } + + break; + + case 'ZYX': + this._y = Math.asin(-clamp(m31, -1, 1)); + + if (Math.abs(m31) < 0.9999999) { + this._x = Math.atan2(m32, m33); + this._z = Math.atan2(m21, m11); + } else { + this._x = 0; + this._z = Math.atan2(-m12, m22); + } + + break; + + case 'YZX': + this._z = Math.asin(clamp(m21, -1, 1)); + + if (Math.abs(m21) < 0.9999999) { + this._x = Math.atan2(-m23, m22); + this._y = Math.atan2(-m31, m11); + } else { + this._x = 0; + this._y = Math.atan2(m13, m33); + } + + break; + + case 'XZY': + this._z = Math.asin(-clamp(m12, -1, 1)); + + if (Math.abs(m12) < 0.9999999) { + this._x = Math.atan2(m32, m22); + this._y = Math.atan2(m13, m11); + } else { + this._x = Math.atan2(-m23, m33); + this._y = 0; + } + + break; + + default: + console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order); + } + + this._order = order; + if (update === true) this._onChangeCallback(); + return this; + } + + setFromQuaternion(q, order, update) { + _matrix$1.makeRotationFromQuaternion(q); + + return this.setFromRotationMatrix(_matrix$1, order, update); + } + + setFromVector3(v, order = this._order) { + return this.set(v.x, v.y, v.z, order); + } + + reorder(newOrder) { + // WARNING: this discards revolution information -bhouston + _quaternion$3.setFromEuler(this); + + return this.setFromQuaternion(_quaternion$3, newOrder); + } + + equals(euler) { + return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order; + } + + fromArray(array) { + this._x = array[0]; + this._y = array[1]; + this._z = array[2]; + if (array[3] !== undefined) this._order = array[3]; + + this._onChangeCallback(); + + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this._x; + array[offset + 1] = this._y; + array[offset + 2] = this._z; + array[offset + 3] = this._order; + return array; + } + + toVector3(optionalResult) { + if (optionalResult) { + return optionalResult.set(this._x, this._y, this._z); + } else { + return new Vector3(this._x, this._y, this._z); + } + } + + _onChange(callback) { + this._onChangeCallback = callback; + return this; + } + + _onChangeCallback() {} + +} + +Euler.prototype.isEuler = true; +Euler.DefaultOrder = 'XYZ'; +Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX']; + +class Layers { + constructor() { + this.mask = 1 | 0; + } + + set(channel) { + this.mask = (1 << channel | 0) >>> 0; + } + + enable(channel) { + this.mask |= 1 << channel | 0; + } + + enableAll() { + this.mask = 0xffffffff | 0; + } + + toggle(channel) { + this.mask ^= 1 << channel | 0; + } + + disable(channel) { + this.mask &= ~(1 << channel | 0); + } + + disableAll() { + this.mask = 0; + } + + test(layers) { + return (this.mask & layers.mask) !== 0; + } + + isEnabled(channel) { + return (this.mask & (1 << channel | 0)) !== 0; + } + +} + +let _object3DId = 0; + +const _v1$4 = /*@__PURE__*/new Vector3(); + +const _q1 = /*@__PURE__*/new Quaternion(); + +const _m1$1 = /*@__PURE__*/new Matrix4(); + +const _target = /*@__PURE__*/new Vector3(); + +const _position$3 = /*@__PURE__*/new Vector3(); + +const _scale$2 = /*@__PURE__*/new Vector3(); + +const _quaternion$2 = /*@__PURE__*/new Quaternion(); + +const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0); + +const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0); + +const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1); + +const _addedEvent = { + type: 'added' +}; +const _removedEvent = { + type: 'removed' +}; + +class Object3D extends EventDispatcher { + constructor() { + super(); + Object.defineProperty(this, 'id', { + value: _object3DId++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.type = 'Object3D'; + this.parent = null; + this.children = []; + this.up = Object3D.DefaultUp.clone(); + const position = new Vector3(); + const rotation = new Euler(); + const quaternion = new Quaternion(); + const scale = new Vector3(1, 1, 1); + + function onRotationChange() { + quaternion.setFromEuler(rotation, false); + } + + function onQuaternionChange() { + rotation.setFromQuaternion(quaternion, undefined, false); + } + + rotation._onChange(onRotationChange); + + quaternion._onChange(onQuaternionChange); + + Object.defineProperties(this, { + position: { + configurable: true, + enumerable: true, + value: position + }, + rotation: { + configurable: true, + enumerable: true, + value: rotation + }, + quaternion: { + configurable: true, + enumerable: true, + value: quaternion + }, + scale: { + configurable: true, + enumerable: true, + value: scale + }, + modelViewMatrix: { + value: new Matrix4() + }, + normalMatrix: { + value: new Matrix3() + } + }); + this.matrix = new Matrix4(); + this.matrixWorld = new Matrix4(); + this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; + this.matrixWorldNeedsUpdate = false; + this.layers = new Layers(); + this.visible = true; + this.castShadow = false; + this.receiveShadow = false; + this.frustumCulled = true; + this.renderOrder = 0; + this.animations = []; + this.userData = {}; + } + + onBeforeRender() {} + + onAfterRender() {} + + applyMatrix4(matrix) { + if (this.matrixAutoUpdate) this.updateMatrix(); + this.matrix.premultiply(matrix); + this.matrix.decompose(this.position, this.quaternion, this.scale); + } + + applyQuaternion(q) { + this.quaternion.premultiply(q); + return this; + } + + setRotationFromAxisAngle(axis, angle) { + // assumes axis is normalized + this.quaternion.setFromAxisAngle(axis, angle); + } + + setRotationFromEuler(euler) { + this.quaternion.setFromEuler(euler, true); + } + + setRotationFromMatrix(m) { + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + this.quaternion.setFromRotationMatrix(m); + } + + setRotationFromQuaternion(q) { + // assumes q is normalized + this.quaternion.copy(q); + } + + rotateOnAxis(axis, angle) { + // rotate object on axis in object space + // axis is assumed to be normalized + _q1.setFromAxisAngle(axis, angle); + + this.quaternion.multiply(_q1); + return this; + } + + rotateOnWorldAxis(axis, angle) { + // rotate object on axis in world space + // axis is assumed to be normalized + // method assumes no rotated parent + _q1.setFromAxisAngle(axis, angle); + + this.quaternion.premultiply(_q1); + return this; + } + + rotateX(angle) { + return this.rotateOnAxis(_xAxis, angle); + } + + rotateY(angle) { + return this.rotateOnAxis(_yAxis, angle); + } + + rotateZ(angle) { + return this.rotateOnAxis(_zAxis, angle); + } + + translateOnAxis(axis, distance) { + // translate object by distance along axis in object space + // axis is assumed to be normalized + _v1$4.copy(axis).applyQuaternion(this.quaternion); + + this.position.add(_v1$4.multiplyScalar(distance)); + return this; + } + + translateX(distance) { + return this.translateOnAxis(_xAxis, distance); + } + + translateY(distance) { + return this.translateOnAxis(_yAxis, distance); + } + + translateZ(distance) { + return this.translateOnAxis(_zAxis, distance); + } + + localToWorld(vector) { + return vector.applyMatrix4(this.matrixWorld); + } + + worldToLocal(vector) { + return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert()); + } + + lookAt(x, y, z) { + // This method does not support objects having non-uniformly-scaled parent(s) + if (x.isVector3) { + _target.copy(x); + } else { + _target.set(x, y, z); + } + + const parent = this.parent; + this.updateWorldMatrix(true, false); + + _position$3.setFromMatrixPosition(this.matrixWorld); + + if (this.isCamera || this.isLight) { + _m1$1.lookAt(_position$3, _target, this.up); + } else { + _m1$1.lookAt(_target, _position$3, this.up); + } + + this.quaternion.setFromRotationMatrix(_m1$1); + + if (parent) { + _m1$1.extractRotation(parent.matrixWorld); + + _q1.setFromRotationMatrix(_m1$1); + + this.quaternion.premultiply(_q1.invert()); + } + } + + add(object) { + if (arguments.length > 1) { + for (let i = 0; i < arguments.length; i++) { + this.add(arguments[i]); + } + + return this; + } + + if (object === this) { + console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object); + return this; + } + + if (object && object.isObject3D) { + if (object.parent !== null) { + object.parent.remove(object); + } + + object.parent = this; + this.children.push(object); + object.dispatchEvent(_addedEvent); + } else { + console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object); + } + + return this; + } + + remove(object) { + if (arguments.length > 1) { + for (let i = 0; i < arguments.length; i++) { + this.remove(arguments[i]); + } + + return this; + } + + const index = this.children.indexOf(object); + + if (index !== -1) { + object.parent = null; + this.children.splice(index, 1); + object.dispatchEvent(_removedEvent); + } + + return this; + } + + removeFromParent() { + const parent = this.parent; + + if (parent !== null) { + parent.remove(this); + } + + return this; + } + + clear() { + for (let i = 0; i < this.children.length; i++) { + const object = this.children[i]; + object.parent = null; + object.dispatchEvent(_removedEvent); + } + + this.children.length = 0; + return this; + } + + attach(object) { + // adds object as a child of this, while maintaining the object's world transform + // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) + this.updateWorldMatrix(true, false); + + _m1$1.copy(this.matrixWorld).invert(); + + if (object.parent !== null) { + object.parent.updateWorldMatrix(true, false); + + _m1$1.multiply(object.parent.matrixWorld); + } + + object.applyMatrix4(_m1$1); + this.add(object); + object.updateWorldMatrix(false, true); + return this; + } + + getObjectById(id) { + return this.getObjectByProperty('id', id); + } + + getObjectByName(name) { + return this.getObjectByProperty('name', name); + } + + getObjectByProperty(name, value) { + if (this[name] === value) return this; + + for (let i = 0, l = this.children.length; i < l; i++) { + const child = this.children[i]; + const object = child.getObjectByProperty(name, value); + + if (object !== undefined) { + return object; + } + } + + return undefined; + } + + getWorldPosition(target) { + this.updateWorldMatrix(true, false); + return target.setFromMatrixPosition(this.matrixWorld); + } + + getWorldQuaternion(target) { + this.updateWorldMatrix(true, false); + this.matrixWorld.decompose(_position$3, target, _scale$2); + return target; + } + + getWorldScale(target) { + this.updateWorldMatrix(true, false); + this.matrixWorld.decompose(_position$3, _quaternion$2, target); + return target; + } + + getWorldDirection(target) { + this.updateWorldMatrix(true, false); + const e = this.matrixWorld.elements; + return target.set(e[8], e[9], e[10]).normalize(); + } + + raycast() {} + + traverse(callback) { + callback(this); + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].traverse(callback); + } + } + + traverseVisible(callback) { + if (this.visible === false) return; + callback(this); + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].traverseVisible(callback); + } + } + + traverseAncestors(callback) { + const parent = this.parent; + + if (parent !== null) { + callback(parent); + parent.traverseAncestors(callback); + } + } + + updateMatrix() { + this.matrix.compose(this.position, this.quaternion, this.scale); + this.matrixWorldNeedsUpdate = true; + } + + updateMatrixWorld(force) { + if (this.matrixAutoUpdate) this.updateMatrix(); + + if (this.matrixWorldNeedsUpdate || force) { + if (this.parent === null) { + this.matrixWorld.copy(this.matrix); + } else { + this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); + } + + this.matrixWorldNeedsUpdate = false; + force = true; + } // update children + + + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].updateMatrixWorld(force); + } + } + + updateWorldMatrix(updateParents, updateChildren) { + const parent = this.parent; + + if (updateParents === true && parent !== null) { + parent.updateWorldMatrix(true, false); + } + + if (this.matrixAutoUpdate) this.updateMatrix(); + + if (this.parent === null) { + this.matrixWorld.copy(this.matrix); + } else { + this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); + } // update children + + + if (updateChildren === true) { + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].updateWorldMatrix(false, true); + } + } + } + + toJSON(meta) { + // meta is a string when called from JSON.stringify + const isRootObject = meta === undefined || typeof meta === 'string'; + const output = {}; // meta is a hash used to collect geometries, materials. + // not providing it implies that this is the root object + // being serialized. + + if (isRootObject) { + // initialize meta obj + meta = { + geometries: {}, + materials: {}, + textures: {}, + images: {}, + shapes: {}, + skeletons: {}, + animations: {} + }; + output.metadata = { + version: 4.5, + type: 'Object', + generator: 'Object3D.toJSON' + }; + } // standard Object3D serialization + + + const object = {}; + object.uuid = this.uuid; + object.type = this.type; + if (this.name !== '') object.name = this.name; + if (this.castShadow === true) object.castShadow = true; + if (this.receiveShadow === true) object.receiveShadow = true; + if (this.visible === false) object.visible = false; + if (this.frustumCulled === false) object.frustumCulled = false; + if (this.renderOrder !== 0) object.renderOrder = this.renderOrder; + if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData; + object.layers = this.layers.mask; + object.matrix = this.matrix.toArray(); + if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties + + if (this.isInstancedMesh) { + object.type = 'InstancedMesh'; + object.count = this.count; + object.instanceMatrix = this.instanceMatrix.toJSON(); + if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON(); + } // + + + function serialize(library, element) { + if (library[element.uuid] === undefined) { + library[element.uuid] = element.toJSON(meta); + } + + return element.uuid; + } + + if (this.isScene) { + if (this.background) { + if (this.background.isColor) { + object.background = this.background.toJSON(); + } else if (this.background.isTexture) { + object.background = this.background.toJSON(meta).uuid; + } + } + + if (this.environment && this.environment.isTexture) { + object.environment = this.environment.toJSON(meta).uuid; + } + } else if (this.isMesh || this.isLine || this.isPoints) { + object.geometry = serialize(meta.geometries, this.geometry); + const parameters = this.geometry.parameters; + + if (parameters !== undefined && parameters.shapes !== undefined) { + const shapes = parameters.shapes; + + if (Array.isArray(shapes)) { + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + serialize(meta.shapes, shape); + } + } else { + serialize(meta.shapes, shapes); + } + } + } + + if (this.isSkinnedMesh) { + object.bindMode = this.bindMode; + object.bindMatrix = this.bindMatrix.toArray(); + + if (this.skeleton !== undefined) { + serialize(meta.skeletons, this.skeleton); + object.skeleton = this.skeleton.uuid; + } + } + + if (this.material !== undefined) { + if (Array.isArray(this.material)) { + const uuids = []; + + for (let i = 0, l = this.material.length; i < l; i++) { + uuids.push(serialize(meta.materials, this.material[i])); + } + + object.material = uuids; + } else { + object.material = serialize(meta.materials, this.material); + } + } // + + + if (this.children.length > 0) { + object.children = []; + + for (let i = 0; i < this.children.length; i++) { + object.children.push(this.children[i].toJSON(meta).object); + } + } // + + + if (this.animations.length > 0) { + object.animations = []; + + for (let i = 0; i < this.animations.length; i++) { + const animation = this.animations[i]; + object.animations.push(serialize(meta.animations, animation)); + } + } + + if (isRootObject) { + const geometries = extractFromCache(meta.geometries); + const materials = extractFromCache(meta.materials); + const textures = extractFromCache(meta.textures); + const images = extractFromCache(meta.images); + const shapes = extractFromCache(meta.shapes); + const skeletons = extractFromCache(meta.skeletons); + const animations = extractFromCache(meta.animations); + if (geometries.length > 0) output.geometries = geometries; + if (materials.length > 0) output.materials = materials; + if (textures.length > 0) output.textures = textures; + if (images.length > 0) output.images = images; + if (shapes.length > 0) output.shapes = shapes; + if (skeletons.length > 0) output.skeletons = skeletons; + if (animations.length > 0) output.animations = animations; + } + + output.object = object; + return output; // extract data from the cache hash + // remove metadata on each item + // and return as array + + function extractFromCache(cache) { + const values = []; + + for (const key in cache) { + const data = cache[key]; + delete data.metadata; + values.push(data); + } + + return values; + } + } + + clone(recursive) { + return new this.constructor().copy(this, recursive); + } + + copy(source, recursive = true) { + this.name = source.name; + this.up.copy(source.up); + this.position.copy(source.position); + this.rotation.order = source.rotation.order; + this.quaternion.copy(source.quaternion); + this.scale.copy(source.scale); + this.matrix.copy(source.matrix); + this.matrixWorld.copy(source.matrixWorld); + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; + this.layers.mask = source.layers.mask; + this.visible = source.visible; + this.castShadow = source.castShadow; + this.receiveShadow = source.receiveShadow; + this.frustumCulled = source.frustumCulled; + this.renderOrder = source.renderOrder; + this.userData = JSON.parse(JSON.stringify(source.userData)); + + if (recursive === true) { + for (let i = 0; i < source.children.length; i++) { + const child = source.children[i]; + this.add(child.clone()); + } + } + + return this; + } + +} + +Object3D.DefaultUp = new Vector3(0, 1, 0); +Object3D.DefaultMatrixAutoUpdate = true; +Object3D.prototype.isObject3D = true; + +const _v0$1 = /*@__PURE__*/new Vector3(); + +const _v1$3 = /*@__PURE__*/new Vector3(); + +const _v2$2 = /*@__PURE__*/new Vector3(); + +const _v3$1 = /*@__PURE__*/new Vector3(); + +const _vab = /*@__PURE__*/new Vector3(); + +const _vac = /*@__PURE__*/new Vector3(); + +const _vbc = /*@__PURE__*/new Vector3(); + +const _vap = /*@__PURE__*/new Vector3(); + +const _vbp = /*@__PURE__*/new Vector3(); + +const _vcp = /*@__PURE__*/new Vector3(); + +class Triangle { + constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) { + this.a = a; + this.b = b; + this.c = c; + } + + static getNormal(a, b, c, target) { + target.subVectors(c, b); + + _v0$1.subVectors(a, b); + + target.cross(_v0$1); + const targetLengthSq = target.lengthSq(); + + if (targetLengthSq > 0) { + return target.multiplyScalar(1 / Math.sqrt(targetLengthSq)); + } + + return target.set(0, 0, 0); + } // static/instance method to calculate barycentric coordinates + // based on: http://www.blackpawn.com/texts/pointinpoly/default.html + + + static getBarycoord(point, a, b, c, target) { + _v0$1.subVectors(c, a); + + _v1$3.subVectors(b, a); + + _v2$2.subVectors(point, a); + + const dot00 = _v0$1.dot(_v0$1); + + const dot01 = _v0$1.dot(_v1$3); + + const dot02 = _v0$1.dot(_v2$2); + + const dot11 = _v1$3.dot(_v1$3); + + const dot12 = _v1$3.dot(_v2$2); + + const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle + + if (denom === 0) { + // arbitrary location outside of triangle? + // not sure if this is the best idea, maybe should be returning undefined + return target.set(-2, -1, -1); + } + + const invDenom = 1 / denom; + const u = (dot11 * dot02 - dot01 * dot12) * invDenom; + const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1 + + return target.set(1 - u - v, v, u); + } + + static containsPoint(point, a, b, c) { + this.getBarycoord(point, a, b, c, _v3$1); + return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1; + } + + static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) { + this.getBarycoord(point, p1, p2, p3, _v3$1); + target.set(0, 0); + target.addScaledVector(uv1, _v3$1.x); + target.addScaledVector(uv2, _v3$1.y); + target.addScaledVector(uv3, _v3$1.z); + return target; + } + + static isFrontFacing(a, b, c, direction) { + _v0$1.subVectors(c, b); + + _v1$3.subVectors(a, b); // strictly front facing + + + return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false; + } + + set(a, b, c) { + this.a.copy(a); + this.b.copy(b); + this.c.copy(c); + return this; + } + + setFromPointsAndIndices(points, i0, i1, i2) { + this.a.copy(points[i0]); + this.b.copy(points[i1]); + this.c.copy(points[i2]); + return this; + } + + setFromAttributeAndIndices(attribute, i0, i1, i2) { + this.a.fromBufferAttribute(attribute, i0); + this.b.fromBufferAttribute(attribute, i1); + this.c.fromBufferAttribute(attribute, i2); + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(triangle) { + this.a.copy(triangle.a); + this.b.copy(triangle.b); + this.c.copy(triangle.c); + return this; + } + + getArea() { + _v0$1.subVectors(this.c, this.b); + + _v1$3.subVectors(this.a, this.b); + + return _v0$1.cross(_v1$3).length() * 0.5; + } + + getMidpoint(target) { + return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3); + } + + getNormal(target) { + return Triangle.getNormal(this.a, this.b, this.c, target); + } + + getPlane(target) { + return target.setFromCoplanarPoints(this.a, this.b, this.c); + } + + getBarycoord(point, target) { + return Triangle.getBarycoord(point, this.a, this.b, this.c, target); + } + + getUV(point, uv1, uv2, uv3, target) { + return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target); + } + + containsPoint(point) { + return Triangle.containsPoint(point, this.a, this.b, this.c); + } + + isFrontFacing(direction) { + return Triangle.isFrontFacing(this.a, this.b, this.c, direction); + } + + intersectsBox(box) { + return box.intersectsTriangle(this); + } + + closestPointToPoint(p, target) { + const a = this.a, + b = this.b, + c = this.c; + let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, + // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., + // under the accompanying license; see chapter 5.1.5 for detailed explanation. + // basically, we're distinguishing which of the voronoi regions of the triangle + // the point lies in with the minimum amount of redundant computation. + + _vab.subVectors(b, a); + + _vac.subVectors(c, a); + + _vap.subVectors(p, a); + + const d1 = _vab.dot(_vap); + + const d2 = _vac.dot(_vap); + + if (d1 <= 0 && d2 <= 0) { + // vertex region of A; barycentric coords (1, 0, 0) + return target.copy(a); + } + + _vbp.subVectors(p, b); + + const d3 = _vab.dot(_vbp); + + const d4 = _vac.dot(_vbp); + + if (d3 >= 0 && d4 <= d3) { + // vertex region of B; barycentric coords (0, 1, 0) + return target.copy(b); + } + + const vc = d1 * d4 - d3 * d2; + + if (vc <= 0 && d1 >= 0 && d3 <= 0) { + v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0) + + return target.copy(a).addScaledVector(_vab, v); + } + + _vcp.subVectors(p, c); + + const d5 = _vab.dot(_vcp); + + const d6 = _vac.dot(_vcp); + + if (d6 >= 0 && d5 <= d6) { + // vertex region of C; barycentric coords (0, 0, 1) + return target.copy(c); + } + + const vb = d5 * d2 - d1 * d6; + + if (vb <= 0 && d2 >= 0 && d6 <= 0) { + w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w) + + return target.copy(a).addScaledVector(_vac, w); + } + + const va = d3 * d6 - d5 * d4; + + if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) { + _vbc.subVectors(c, b); + + w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w) + + return target.copy(b).addScaledVector(_vbc, w); // edge region of BC + } // face region + + + const denom = 1 / (va + vb + vc); // u = va * denom + + v = vb * denom; + w = vc * denom; + return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w); + } + + equals(triangle) { + return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c); + } + +} + +let materialId = 0; + +class Material extends EventDispatcher { + constructor() { + super(); + Object.defineProperty(this, 'id', { + value: materialId++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.type = 'Material'; + this.fog = true; + this.blending = NormalBlending; + this.side = FrontSide; + this.vertexColors = false; + this.opacity = 1; + this.format = RGBAFormat; + this.transparent = false; + this.blendSrc = SrcAlphaFactor; + this.blendDst = OneMinusSrcAlphaFactor; + this.blendEquation = AddEquation; + this.blendSrcAlpha = null; + this.blendDstAlpha = null; + this.blendEquationAlpha = null; + this.depthFunc = LessEqualDepth; + this.depthTest = true; + this.depthWrite = true; + this.stencilWriteMask = 0xff; + this.stencilFunc = AlwaysStencilFunc; + this.stencilRef = 0; + this.stencilFuncMask = 0xff; + this.stencilFail = KeepStencilOp; + this.stencilZFail = KeepStencilOp; + this.stencilZPass = KeepStencilOp; + this.stencilWrite = false; + this.clippingPlanes = null; + this.clipIntersection = false; + this.clipShadows = false; + this.shadowSide = null; + this.colorWrite = true; + this.precision = null; // override the renderer's default precision for this material + + this.polygonOffset = false; + this.polygonOffsetFactor = 0; + this.polygonOffsetUnits = 0; + this.dithering = false; + this.alphaToCoverage = false; + this.premultipliedAlpha = false; + this.visible = true; + this.toneMapped = true; + this.userData = {}; + this.version = 0; + this._alphaTest = 0; + } + + get alphaTest() { + return this._alphaTest; + } + + set alphaTest(value) { + if (this._alphaTest > 0 !== value > 0) { + this.version++; + } + + this._alphaTest = value; + } + + onBuild() {} + + onBeforeRender() {} + + onBeforeCompile() {} + + customProgramCacheKey() { + return this.onBeforeCompile.toString(); + } + + setValues(values) { + if (values === undefined) return; + + for (const key in values) { + const newValue = values[key]; + + if (newValue === undefined) { + console.warn('THREE.Material: \'' + key + '\' parameter is undefined.'); + continue; + } // for backward compatability if shading is set in the constructor + + + if (key === 'shading') { + console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); + this.flatShading = newValue === FlatShading ? true : false; + continue; + } + + const currentValue = this[key]; + + if (currentValue === undefined) { + console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.'); + continue; + } + + if (currentValue && currentValue.isColor) { + currentValue.set(newValue); + } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) { + currentValue.copy(newValue); + } else { + this[key] = newValue; + } + } + } + + toJSON(meta) { + const isRoot = meta === undefined || typeof meta === 'string'; + + if (isRoot) { + meta = { + textures: {}, + images: {} + }; + } + + const data = { + metadata: { + version: 4.5, + type: 'Material', + generator: 'Material.toJSON' + } + }; // standard Material serialization + + data.uuid = this.uuid; + data.type = this.type; + if (this.name !== '') data.name = this.name; + if (this.color && this.color.isColor) data.color = this.color.getHex(); + if (this.roughness !== undefined) data.roughness = this.roughness; + if (this.metalness !== undefined) data.metalness = this.metalness; + if (this.sheen !== undefined) data.sheen = this.sheen; + if (this.sheenColor && this.sheenColor.isColor) data.sheenColor = this.sheenColor.getHex(); + if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness; + if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex(); + if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity; + if (this.specular && this.specular.isColor) data.specular = this.specular.getHex(); + if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity; + if (this.specularColor && this.specularColor.isColor) data.specularColor = this.specularColor.getHex(); + if (this.shininess !== undefined) data.shininess = this.shininess; + if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat; + if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness; + + if (this.clearcoatMap && this.clearcoatMap.isTexture) { + data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid; + } + + if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) { + data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid; + } + + if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) { + data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid; + data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); + } + + if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid; + if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid; + if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid; + + if (this.lightMap && this.lightMap.isTexture) { + data.lightMap = this.lightMap.toJSON(meta).uuid; + data.lightMapIntensity = this.lightMapIntensity; + } + + if (this.aoMap && this.aoMap.isTexture) { + data.aoMap = this.aoMap.toJSON(meta).uuid; + data.aoMapIntensity = this.aoMapIntensity; + } + + if (this.bumpMap && this.bumpMap.isTexture) { + data.bumpMap = this.bumpMap.toJSON(meta).uuid; + data.bumpScale = this.bumpScale; + } + + if (this.normalMap && this.normalMap.isTexture) { + data.normalMap = this.normalMap.toJSON(meta).uuid; + data.normalMapType = this.normalMapType; + data.normalScale = this.normalScale.toArray(); + } + + if (this.displacementMap && this.displacementMap.isTexture) { + data.displacementMap = this.displacementMap.toJSON(meta).uuid; + data.displacementScale = this.displacementScale; + data.displacementBias = this.displacementBias; + } + + if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid; + if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid; + if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid; + if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid; + if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid; + if (this.specularColorMap && this.specularColorMap.isTexture) data.specularColorMap = this.specularColorMap.toJSON(meta).uuid; + + if (this.envMap && this.envMap.isTexture) { + data.envMap = this.envMap.toJSON(meta).uuid; + if (this.combine !== undefined) data.combine = this.combine; + } + + if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity; + if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity; + if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio; + + if (this.gradientMap && this.gradientMap.isTexture) { + data.gradientMap = this.gradientMap.toJSON(meta).uuid; + } + + if (this.transmission !== undefined) data.transmission = this.transmission; + if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid; + if (this.thickness !== undefined) data.thickness = this.thickness; + if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid; + if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance; + if (this.attenuationColor !== undefined) data.attenuationColor = this.attenuationColor.getHex(); + if (this.size !== undefined) data.size = this.size; + if (this.shadowSide !== null) data.shadowSide = this.shadowSide; + if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation; + if (this.blending !== NormalBlending) data.blending = this.blending; + if (this.side !== FrontSide) data.side = this.side; + if (this.vertexColors) data.vertexColors = true; + if (this.opacity < 1) data.opacity = this.opacity; + if (this.format !== RGBAFormat) data.format = this.format; + if (this.transparent === true) data.transparent = this.transparent; + data.depthFunc = this.depthFunc; + data.depthTest = this.depthTest; + data.depthWrite = this.depthWrite; + data.colorWrite = this.colorWrite; + data.stencilWrite = this.stencilWrite; + data.stencilWriteMask = this.stencilWriteMask; + data.stencilFunc = this.stencilFunc; + data.stencilRef = this.stencilRef; + data.stencilFuncMask = this.stencilFuncMask; + data.stencilFail = this.stencilFail; + data.stencilZFail = this.stencilZFail; + data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial) + + if (this.rotation && this.rotation !== 0) data.rotation = this.rotation; + if (this.polygonOffset === true) data.polygonOffset = true; + if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor; + if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits; + if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth; + if (this.dashSize !== undefined) data.dashSize = this.dashSize; + if (this.gapSize !== undefined) data.gapSize = this.gapSize; + if (this.scale !== undefined) data.scale = this.scale; + if (this.dithering === true) data.dithering = true; + if (this.alphaTest > 0) data.alphaTest = this.alphaTest; + if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage; + if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha; + if (this.wireframe === true) data.wireframe = this.wireframe; + if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth; + if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap; + if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin; + if (this.flatShading === true) data.flatShading = this.flatShading; + if (this.visible === false) data.visible = false; + if (this.toneMapped === false) data.toneMapped = false; + if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON + + function extractFromCache(cache) { + const values = []; + + for (const key in cache) { + const data = cache[key]; + delete data.metadata; + values.push(data); + } + + return values; + } + + if (isRoot) { + const textures = extractFromCache(meta.textures); + const images = extractFromCache(meta.images); + if (textures.length > 0) data.textures = textures; + if (images.length > 0) data.images = images; + } + + return data; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.name = source.name; + this.fog = source.fog; + this.blending = source.blending; + this.side = source.side; + this.vertexColors = source.vertexColors; + this.opacity = source.opacity; + this.format = source.format; + this.transparent = source.transparent; + this.blendSrc = source.blendSrc; + this.blendDst = source.blendDst; + this.blendEquation = source.blendEquation; + this.blendSrcAlpha = source.blendSrcAlpha; + this.blendDstAlpha = source.blendDstAlpha; + this.blendEquationAlpha = source.blendEquationAlpha; + this.depthFunc = source.depthFunc; + this.depthTest = source.depthTest; + this.depthWrite = source.depthWrite; + this.stencilWriteMask = source.stencilWriteMask; + this.stencilFunc = source.stencilFunc; + this.stencilRef = source.stencilRef; + this.stencilFuncMask = source.stencilFuncMask; + this.stencilFail = source.stencilFail; + this.stencilZFail = source.stencilZFail; + this.stencilZPass = source.stencilZPass; + this.stencilWrite = source.stencilWrite; + const srcPlanes = source.clippingPlanes; + let dstPlanes = null; + + if (srcPlanes !== null) { + const n = srcPlanes.length; + dstPlanes = new Array(n); + + for (let i = 0; i !== n; ++i) { + dstPlanes[i] = srcPlanes[i].clone(); + } + } + + this.clippingPlanes = dstPlanes; + this.clipIntersection = source.clipIntersection; + this.clipShadows = source.clipShadows; + this.shadowSide = source.shadowSide; + this.colorWrite = source.colorWrite; + this.precision = source.precision; + this.polygonOffset = source.polygonOffset; + this.polygonOffsetFactor = source.polygonOffsetFactor; + this.polygonOffsetUnits = source.polygonOffsetUnits; + this.dithering = source.dithering; + this.alphaTest = source.alphaTest; + this.alphaToCoverage = source.alphaToCoverage; + this.premultipliedAlpha = source.premultipliedAlpha; + this.visible = source.visible; + this.toneMapped = source.toneMapped; + this.userData = JSON.parse(JSON.stringify(source.userData)); + return this; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + + set needsUpdate(value) { + if (value === true) this.version++; + } + +} + +Material.prototype.isMaterial = true; + +const _colorKeywords = { + 'aliceblue': 0xF0F8FF, + 'antiquewhite': 0xFAEBD7, + 'aqua': 0x00FFFF, + 'aquamarine': 0x7FFFD4, + 'azure': 0xF0FFFF, + 'beige': 0xF5F5DC, + 'bisque': 0xFFE4C4, + 'black': 0x000000, + 'blanchedalmond': 0xFFEBCD, + 'blue': 0x0000FF, + 'blueviolet': 0x8A2BE2, + 'brown': 0xA52A2A, + 'burlywood': 0xDEB887, + 'cadetblue': 0x5F9EA0, + 'chartreuse': 0x7FFF00, + 'chocolate': 0xD2691E, + 'coral': 0xFF7F50, + 'cornflowerblue': 0x6495ED, + 'cornsilk': 0xFFF8DC, + 'crimson': 0xDC143C, + 'cyan': 0x00FFFF, + 'darkblue': 0x00008B, + 'darkcyan': 0x008B8B, + 'darkgoldenrod': 0xB8860B, + 'darkgray': 0xA9A9A9, + 'darkgreen': 0x006400, + 'darkgrey': 0xA9A9A9, + 'darkkhaki': 0xBDB76B, + 'darkmagenta': 0x8B008B, + 'darkolivegreen': 0x556B2F, + 'darkorange': 0xFF8C00, + 'darkorchid': 0x9932CC, + 'darkred': 0x8B0000, + 'darksalmon': 0xE9967A, + 'darkseagreen': 0x8FBC8F, + 'darkslateblue': 0x483D8B, + 'darkslategray': 0x2F4F4F, + 'darkslategrey': 0x2F4F4F, + 'darkturquoise': 0x00CED1, + 'darkviolet': 0x9400D3, + 'deeppink': 0xFF1493, + 'deepskyblue': 0x00BFFF, + 'dimgray': 0x696969, + 'dimgrey': 0x696969, + 'dodgerblue': 0x1E90FF, + 'firebrick': 0xB22222, + 'floralwhite': 0xFFFAF0, + 'forestgreen': 0x228B22, + 'fuchsia': 0xFF00FF, + 'gainsboro': 0xDCDCDC, + 'ghostwhite': 0xF8F8FF, + 'gold': 0xFFD700, + 'goldenrod': 0xDAA520, + 'gray': 0x808080, + 'green': 0x008000, + 'greenyellow': 0xADFF2F, + 'grey': 0x808080, + 'honeydew': 0xF0FFF0, + 'hotpink': 0xFF69B4, + 'indianred': 0xCD5C5C, + 'indigo': 0x4B0082, + 'ivory': 0xFFFFF0, + 'khaki': 0xF0E68C, + 'lavender': 0xE6E6FA, + 'lavenderblush': 0xFFF0F5, + 'lawngreen': 0x7CFC00, + 'lemonchiffon': 0xFFFACD, + 'lightblue': 0xADD8E6, + 'lightcoral': 0xF08080, + 'lightcyan': 0xE0FFFF, + 'lightgoldenrodyellow': 0xFAFAD2, + 'lightgray': 0xD3D3D3, + 'lightgreen': 0x90EE90, + 'lightgrey': 0xD3D3D3, + 'lightpink': 0xFFB6C1, + 'lightsalmon': 0xFFA07A, + 'lightseagreen': 0x20B2AA, + 'lightskyblue': 0x87CEFA, + 'lightslategray': 0x778899, + 'lightslategrey': 0x778899, + 'lightsteelblue': 0xB0C4DE, + 'lightyellow': 0xFFFFE0, + 'lime': 0x00FF00, + 'limegreen': 0x32CD32, + 'linen': 0xFAF0E6, + 'magenta': 0xFF00FF, + 'maroon': 0x800000, + 'mediumaquamarine': 0x66CDAA, + 'mediumblue': 0x0000CD, + 'mediumorchid': 0xBA55D3, + 'mediumpurple': 0x9370DB, + 'mediumseagreen': 0x3CB371, + 'mediumslateblue': 0x7B68EE, + 'mediumspringgreen': 0x00FA9A, + 'mediumturquoise': 0x48D1CC, + 'mediumvioletred': 0xC71585, + 'midnightblue': 0x191970, + 'mintcream': 0xF5FFFA, + 'mistyrose': 0xFFE4E1, + 'moccasin': 0xFFE4B5, + 'navajowhite': 0xFFDEAD, + 'navy': 0x000080, + 'oldlace': 0xFDF5E6, + 'olive': 0x808000, + 'olivedrab': 0x6B8E23, + 'orange': 0xFFA500, + 'orangered': 0xFF4500, + 'orchid': 0xDA70D6, + 'palegoldenrod': 0xEEE8AA, + 'palegreen': 0x98FB98, + 'paleturquoise': 0xAFEEEE, + 'palevioletred': 0xDB7093, + 'papayawhip': 0xFFEFD5, + 'peachpuff': 0xFFDAB9, + 'peru': 0xCD853F, + 'pink': 0xFFC0CB, + 'plum': 0xDDA0DD, + 'powderblue': 0xB0E0E6, + 'purple': 0x800080, + 'rebeccapurple': 0x663399, + 'red': 0xFF0000, + 'rosybrown': 0xBC8F8F, + 'royalblue': 0x4169E1, + 'saddlebrown': 0x8B4513, + 'salmon': 0xFA8072, + 'sandybrown': 0xF4A460, + 'seagreen': 0x2E8B57, + 'seashell': 0xFFF5EE, + 'sienna': 0xA0522D, + 'silver': 0xC0C0C0, + 'skyblue': 0x87CEEB, + 'slateblue': 0x6A5ACD, + 'slategray': 0x708090, + 'slategrey': 0x708090, + 'snow': 0xFFFAFA, + 'springgreen': 0x00FF7F, + 'steelblue': 0x4682B4, + 'tan': 0xD2B48C, + 'teal': 0x008080, + 'thistle': 0xD8BFD8, + 'tomato': 0xFF6347, + 'turquoise': 0x40E0D0, + 'violet': 0xEE82EE, + 'wheat': 0xF5DEB3, + 'white': 0xFFFFFF, + 'whitesmoke': 0xF5F5F5, + 'yellow': 0xFFFF00, + 'yellowgreen': 0x9ACD32 +}; +const _hslA = { + h: 0, + s: 0, + l: 0 +}; +const _hslB = { + h: 0, + s: 0, + l: 0 +}; + +function hue2rgb(p, q, t) { + if (t < 0) t += 1; + if (t > 1) t -= 1; + if (t < 1 / 6) return p + (q - p) * 6 * t; + if (t < 1 / 2) return q; + if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t); + return p; +} + +function SRGBToLinear(c) { + return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4); +} + +function LinearToSRGB(c) { + return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055; +} + +class Color { + constructor(r, g, b) { + if (g === undefined && b === undefined) { + // r is THREE.Color, hex or string + return this.set(r); + } + + return this.setRGB(r, g, b); + } + + set(value) { + if (value && value.isColor) { + this.copy(value); + } else if (typeof value === 'number') { + this.setHex(value); + } else if (typeof value === 'string') { + this.setStyle(value); + } + + return this; + } + + setScalar(scalar) { + this.r = scalar; + this.g = scalar; + this.b = scalar; + return this; + } + + setHex(hex) { + hex = Math.floor(hex); + this.r = (hex >> 16 & 255) / 255; + this.g = (hex >> 8 & 255) / 255; + this.b = (hex & 255) / 255; + return this; + } + + setRGB(r, g, b) { + this.r = r; + this.g = g; + this.b = b; + return this; + } + + setHSL(h, s, l) { + // h,s,l ranges are in 0.0 - 1.0 + h = euclideanModulo(h, 1); + s = clamp(s, 0, 1); + l = clamp(l, 0, 1); + + if (s === 0) { + this.r = this.g = this.b = l; + } else { + const p = l <= 0.5 ? l * (1 + s) : l + s - l * s; + const q = 2 * l - p; + this.r = hue2rgb(q, p, h + 1 / 3); + this.g = hue2rgb(q, p, h); + this.b = hue2rgb(q, p, h - 1 / 3); + } + + return this; + } + + setStyle(style) { + function handleAlpha(string) { + if (string === undefined) return; + + if (parseFloat(string) < 1) { + console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.'); + } + } + + let m; + + if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) { + // rgb / hsl + let color; + const name = m[1]; + const components = m[2]; + + switch (name) { + case 'rgb': + case 'rgba': + if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { + // rgb(255,0,0) rgba(255,0,0,0.5) + this.r = Math.min(255, parseInt(color[1], 10)) / 255; + this.g = Math.min(255, parseInt(color[2], 10)) / 255; + this.b = Math.min(255, parseInt(color[3], 10)) / 255; + handleAlpha(color[4]); + return this; + } + + if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { + // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) + this.r = Math.min(100, parseInt(color[1], 10)) / 100; + this.g = Math.min(100, parseInt(color[2], 10)) / 100; + this.b = Math.min(100, parseInt(color[3], 10)) / 100; + handleAlpha(color[4]); + return this; + } + + break; + + case 'hsl': + case 'hsla': + if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { + // hsl(120,50%,50%) hsla(120,50%,50%,0.5) + const h = parseFloat(color[1]) / 360; + const s = parseInt(color[2], 10) / 100; + const l = parseInt(color[3], 10) / 100; + handleAlpha(color[4]); + return this.setHSL(h, s, l); + } + + break; + } + } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) { + // hex color + const hex = m[1]; + const size = hex.length; + + if (size === 3) { + // #ff0 + this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255; + this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255; + this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255; + return this; + } else if (size === 6) { + // #ff0000 + this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255; + this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255; + this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255; + return this; + } + } + + if (style && style.length > 0) { + return this.setColorName(style); + } + + return this; + } + + setColorName(style) { + // color keywords + const hex = _colorKeywords[style.toLowerCase()]; + + if (hex !== undefined) { + // red + this.setHex(hex); + } else { + // unknown color + console.warn('THREE.Color: Unknown color ' + style); + } + + return this; + } + + clone() { + return new this.constructor(this.r, this.g, this.b); + } + + copy(color) { + this.r = color.r; + this.g = color.g; + this.b = color.b; + return this; + } + + copySRGBToLinear(color) { + this.r = SRGBToLinear(color.r); + this.g = SRGBToLinear(color.g); + this.b = SRGBToLinear(color.b); + return this; + } + + copyLinearToSRGB(color) { + this.r = LinearToSRGB(color.r); + this.g = LinearToSRGB(color.g); + this.b = LinearToSRGB(color.b); + return this; + } + + convertSRGBToLinear() { + this.copySRGBToLinear(this); + return this; + } + + convertLinearToSRGB() { + this.copyLinearToSRGB(this); + return this; + } + + getHex() { + return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0; + } + + getHexString() { + return ('000000' + this.getHex().toString(16)).slice(-6); + } + + getHSL(target) { + // h,s,l ranges are in 0.0 - 1.0 + const r = this.r, + g = this.g, + b = this.b; + const max = Math.max(r, g, b); + const min = Math.min(r, g, b); + let hue, saturation; + const lightness = (min + max) / 2.0; + + if (min === max) { + hue = 0; + saturation = 0; + } else { + const delta = max - min; + saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min); + + switch (max) { + case r: + hue = (g - b) / delta + (g < b ? 6 : 0); + break; + + case g: + hue = (b - r) / delta + 2; + break; + + case b: + hue = (r - g) / delta + 4; + break; + } + + hue /= 6; + } + + target.h = hue; + target.s = saturation; + target.l = lightness; + return target; + } + + getStyle() { + return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')'; + } + + offsetHSL(h, s, l) { + this.getHSL(_hslA); + _hslA.h += h; + _hslA.s += s; + _hslA.l += l; + this.setHSL(_hslA.h, _hslA.s, _hslA.l); + return this; + } + + add(color) { + this.r += color.r; + this.g += color.g; + this.b += color.b; + return this; + } + + addColors(color1, color2) { + this.r = color1.r + color2.r; + this.g = color1.g + color2.g; + this.b = color1.b + color2.b; + return this; + } + + addScalar(s) { + this.r += s; + this.g += s; + this.b += s; + return this; + } + + sub(color) { + this.r = Math.max(0, this.r - color.r); + this.g = Math.max(0, this.g - color.g); + this.b = Math.max(0, this.b - color.b); + return this; + } + + multiply(color) { + this.r *= color.r; + this.g *= color.g; + this.b *= color.b; + return this; + } + + multiplyScalar(s) { + this.r *= s; + this.g *= s; + this.b *= s; + return this; + } + + lerp(color, alpha) { + this.r += (color.r - this.r) * alpha; + this.g += (color.g - this.g) * alpha; + this.b += (color.b - this.b) * alpha; + return this; + } + + lerpColors(color1, color2, alpha) { + this.r = color1.r + (color2.r - color1.r) * alpha; + this.g = color1.g + (color2.g - color1.g) * alpha; + this.b = color1.b + (color2.b - color1.b) * alpha; + return this; + } + + lerpHSL(color, alpha) { + this.getHSL(_hslA); + color.getHSL(_hslB); + const h = lerp(_hslA.h, _hslB.h, alpha); + const s = lerp(_hslA.s, _hslB.s, alpha); + const l = lerp(_hslA.l, _hslB.l, alpha); + this.setHSL(h, s, l); + return this; + } + + equals(c) { + return c.r === this.r && c.g === this.g && c.b === this.b; + } + + fromArray(array, offset = 0) { + this.r = array[offset]; + this.g = array[offset + 1]; + this.b = array[offset + 2]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.r; + array[offset + 1] = this.g; + array[offset + 2] = this.b; + return array; + } + + fromBufferAttribute(attribute, index) { + this.r = attribute.getX(index); + this.g = attribute.getY(index); + this.b = attribute.getZ(index); + + if (attribute.normalized === true) { + // assuming Uint8Array + this.r /= 255; + this.g /= 255; + this.b /= 255; + } + + return this; + } + + toJSON() { + return this.getHex(); + } + +} + +Color.NAMES = _colorKeywords; +Color.prototype.isColor = true; +Color.prototype.r = 1; +Color.prototype.g = 1; +Color.prototype.b = 1; + +/** + * parameters = { + * color: , + * opacity: , + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.Multiply, + * reflectivity: , + * refractionRatio: , + * + * depthTest: , + * depthWrite: , + * + * wireframe: , + * wireframeLinewidth: , + * } + */ + +class MeshBasicMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshBasicMaterial'; + this.color = new Color(0xffffff); // emissive + + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.specularMap = null; + this.alphaMap = null; + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.specularMap = source.specularMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + return this; + } + +} + +MeshBasicMaterial.prototype.isMeshBasicMaterial = true; + +const _vector$9 = /*@__PURE__*/new Vector3(); + +const _vector2$1 = /*@__PURE__*/new Vector2(); + +class BufferAttribute { + constructor(array, itemSize, normalized) { + if (Array.isArray(array)) { + throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.'); + } + + this.name = ''; + this.array = array; + this.itemSize = itemSize; + this.count = array !== undefined ? array.length / itemSize : 0; + this.normalized = normalized === true; + this.usage = StaticDrawUsage; + this.updateRange = { + offset: 0, + count: -1 + }; + this.version = 0; + } + + onUploadCallback() {} + + set needsUpdate(value) { + if (value === true) this.version++; + } + + setUsage(value) { + this.usage = value; + return this; + } + + copy(source) { + this.name = source.name; + this.array = new source.array.constructor(source.array); + this.itemSize = source.itemSize; + this.count = source.count; + this.normalized = source.normalized; + this.usage = source.usage; + return this; + } + + copyAt(index1, attribute, index2) { + index1 *= this.itemSize; + index2 *= attribute.itemSize; + + for (let i = 0, l = this.itemSize; i < l; i++) { + this.array[index1 + i] = attribute.array[index2 + i]; + } + + return this; + } + + copyArray(array) { + this.array.set(array); + return this; + } + + copyColorsArray(colors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = colors.length; i < l; i++) { + let color = colors[i]; + + if (color === undefined) { + console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i); + color = new Color(); + } + + array[offset++] = color.r; + array[offset++] = color.g; + array[offset++] = color.b; + } + + return this; + } + + copyVector2sArray(vectors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = vectors.length; i < l; i++) { + let vector = vectors[i]; + + if (vector === undefined) { + console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i); + vector = new Vector2(); + } + + array[offset++] = vector.x; + array[offset++] = vector.y; + } + + return this; + } + + copyVector3sArray(vectors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = vectors.length; i < l; i++) { + let vector = vectors[i]; + + if (vector === undefined) { + console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i); + vector = new Vector3(); + } + + array[offset++] = vector.x; + array[offset++] = vector.y; + array[offset++] = vector.z; + } + + return this; + } + + copyVector4sArray(vectors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = vectors.length; i < l; i++) { + let vector = vectors[i]; + + if (vector === undefined) { + console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i); + vector = new Vector4(); + } + + array[offset++] = vector.x; + array[offset++] = vector.y; + array[offset++] = vector.z; + array[offset++] = vector.w; + } + + return this; + } + + applyMatrix3(m) { + if (this.itemSize === 2) { + for (let i = 0, l = this.count; i < l; i++) { + _vector2$1.fromBufferAttribute(this, i); + + _vector2$1.applyMatrix3(m); + + this.setXY(i, _vector2$1.x, _vector2$1.y); + } + } else if (this.itemSize === 3) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.fromBufferAttribute(this, i); + + _vector$9.applyMatrix3(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + } + + return this; + } + + applyMatrix4(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.x = this.getX(i); + _vector$9.y = this.getY(i); + _vector$9.z = this.getZ(i); + + _vector$9.applyMatrix4(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + + return this; + } + + applyNormalMatrix(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.x = this.getX(i); + _vector$9.y = this.getY(i); + _vector$9.z = this.getZ(i); + + _vector$9.applyNormalMatrix(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + + return this; + } + + transformDirection(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.x = this.getX(i); + _vector$9.y = this.getY(i); + _vector$9.z = this.getZ(i); + + _vector$9.transformDirection(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + + return this; + } + + set(value, offset = 0) { + this.array.set(value, offset); + return this; + } + + getX(index) { + return this.array[index * this.itemSize]; + } + + setX(index, x) { + this.array[index * this.itemSize] = x; + return this; + } + + getY(index) { + return this.array[index * this.itemSize + 1]; + } + + setY(index, y) { + this.array[index * this.itemSize + 1] = y; + return this; + } + + getZ(index) { + return this.array[index * this.itemSize + 2]; + } + + setZ(index, z) { + this.array[index * this.itemSize + 2] = z; + return this; + } + + getW(index) { + return this.array[index * this.itemSize + 3]; + } + + setW(index, w) { + this.array[index * this.itemSize + 3] = w; + return this; + } + + setXY(index, x, y) { + index *= this.itemSize; + this.array[index + 0] = x; + this.array[index + 1] = y; + return this; + } + + setXYZ(index, x, y, z) { + index *= this.itemSize; + this.array[index + 0] = x; + this.array[index + 1] = y; + this.array[index + 2] = z; + return this; + } + + setXYZW(index, x, y, z, w) { + index *= this.itemSize; + this.array[index + 0] = x; + this.array[index + 1] = y; + this.array[index + 2] = z; + this.array[index + 3] = w; + return this; + } + + onUpload(callback) { + this.onUploadCallback = callback; + return this; + } + + clone() { + return new this.constructor(this.array, this.itemSize).copy(this); + } + + toJSON() { + const data = { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: Array.prototype.slice.call(this.array), + normalized: this.normalized + }; + if (this.name !== '') data.name = this.name; + if (this.usage !== StaticDrawUsage) data.usage = this.usage; + if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange; + return data; + } + +} + +BufferAttribute.prototype.isBufferAttribute = true; // + +class Int8BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Int8Array(array), itemSize, normalized); + } + +} + +class Uint8BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint8Array(array), itemSize, normalized); + } + +} + +class Uint8ClampedBufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint8ClampedArray(array), itemSize, normalized); + } + +} + +class Int16BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Int16Array(array), itemSize, normalized); + } + +} + +class Uint16BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint16Array(array), itemSize, normalized); + } + +} + +class Int32BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Int32Array(array), itemSize, normalized); + } + +} + +class Uint32BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint32Array(array), itemSize, normalized); + } + +} + +class Float16BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint16Array(array), itemSize, normalized); + } + +} + +Float16BufferAttribute.prototype.isFloat16BufferAttribute = true; + +class Float32BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Float32Array(array), itemSize, normalized); + } + +} + +class Float64BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Float64Array(array), itemSize, normalized); + } + +} // + +let _id$1 = 0; + +const _m1 = /*@__PURE__*/new Matrix4(); + +const _obj = /*@__PURE__*/new Object3D(); + +const _offset = /*@__PURE__*/new Vector3(); + +const _box$1 = /*@__PURE__*/new Box3(); + +const _boxMorphTargets = /*@__PURE__*/new Box3(); + +const _vector$8 = /*@__PURE__*/new Vector3(); + +class BufferGeometry extends EventDispatcher { + constructor() { + super(); + Object.defineProperty(this, 'id', { + value: _id$1++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.type = 'BufferGeometry'; + this.index = null; + this.attributes = {}; + this.morphAttributes = {}; + this.morphTargetsRelative = false; + this.groups = []; + this.boundingBox = null; + this.boundingSphere = null; + this.drawRange = { + start: 0, + count: Infinity + }; + this.userData = {}; + } + + getIndex() { + return this.index; + } + + setIndex(index) { + if (Array.isArray(index)) { + this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1); + } else { + this.index = index; + } + + return this; + } + + getAttribute(name) { + return this.attributes[name]; + } + + setAttribute(name, attribute) { + this.attributes[name] = attribute; + return this; + } + + deleteAttribute(name) { + delete this.attributes[name]; + return this; + } + + hasAttribute(name) { + return this.attributes[name] !== undefined; + } + + addGroup(start, count, materialIndex = 0) { + this.groups.push({ + start: start, + count: count, + materialIndex: materialIndex + }); + } + + clearGroups() { + this.groups = []; + } + + setDrawRange(start, count) { + this.drawRange.start = start; + this.drawRange.count = count; + } + + applyMatrix4(matrix) { + const position = this.attributes.position; + + if (position !== undefined) { + position.applyMatrix4(matrix); + position.needsUpdate = true; + } + + const normal = this.attributes.normal; + + if (normal !== undefined) { + const normalMatrix = new Matrix3().getNormalMatrix(matrix); + normal.applyNormalMatrix(normalMatrix); + normal.needsUpdate = true; + } + + const tangent = this.attributes.tangent; + + if (tangent !== undefined) { + tangent.transformDirection(matrix); + tangent.needsUpdate = true; + } + + if (this.boundingBox !== null) { + this.computeBoundingBox(); + } + + if (this.boundingSphere !== null) { + this.computeBoundingSphere(); + } + + return this; + } + + applyQuaternion(q) { + _m1.makeRotationFromQuaternion(q); + + this.applyMatrix4(_m1); + return this; + } + + rotateX(angle) { + // rotate geometry around world x-axis + _m1.makeRotationX(angle); + + this.applyMatrix4(_m1); + return this; + } + + rotateY(angle) { + // rotate geometry around world y-axis + _m1.makeRotationY(angle); + + this.applyMatrix4(_m1); + return this; + } + + rotateZ(angle) { + // rotate geometry around world z-axis + _m1.makeRotationZ(angle); + + this.applyMatrix4(_m1); + return this; + } + + translate(x, y, z) { + // translate geometry + _m1.makeTranslation(x, y, z); + + this.applyMatrix4(_m1); + return this; + } + + scale(x, y, z) { + // scale geometry + _m1.makeScale(x, y, z); + + this.applyMatrix4(_m1); + return this; + } + + lookAt(vector) { + _obj.lookAt(vector); + + _obj.updateMatrix(); + + this.applyMatrix4(_obj.matrix); + return this; + } + + center() { + this.computeBoundingBox(); + this.boundingBox.getCenter(_offset).negate(); + this.translate(_offset.x, _offset.y, _offset.z); + return this; + } + + setFromPoints(points) { + const position = []; + + for (let i = 0, l = points.length; i < l; i++) { + const point = points[i]; + position.push(point.x, point.y, point.z || 0); + } + + this.setAttribute('position', new Float32BufferAttribute(position, 3)); + return this; + } + + computeBoundingBox() { + if (this.boundingBox === null) { + this.boundingBox = new Box3(); + } + + const position = this.attributes.position; + const morphAttributesPosition = this.morphAttributes.position; + + if (position && position.isGLBufferAttribute) { + console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this); + this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity)); + return; + } + + if (position !== undefined) { + this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present + + if (morphAttributesPosition) { + for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { + const morphAttribute = morphAttributesPosition[i]; + + _box$1.setFromBufferAttribute(morphAttribute); + + if (this.morphTargetsRelative) { + _vector$8.addVectors(this.boundingBox.min, _box$1.min); + + this.boundingBox.expandByPoint(_vector$8); + + _vector$8.addVectors(this.boundingBox.max, _box$1.max); + + this.boundingBox.expandByPoint(_vector$8); + } else { + this.boundingBox.expandByPoint(_box$1.min); + this.boundingBox.expandByPoint(_box$1.max); + } + } + } + } else { + this.boundingBox.makeEmpty(); + } + + if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) { + console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this); + } + } + + computeBoundingSphere() { + if (this.boundingSphere === null) { + this.boundingSphere = new Sphere(); + } + + const position = this.attributes.position; + const morphAttributesPosition = this.morphAttributes.position; + + if (position && position.isGLBufferAttribute) { + console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this); + this.boundingSphere.set(new Vector3(), Infinity); + return; + } + + if (position) { + // first, find the center of the bounding sphere + const center = this.boundingSphere.center; + + _box$1.setFromBufferAttribute(position); // process morph attributes if present + + + if (morphAttributesPosition) { + for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { + const morphAttribute = morphAttributesPosition[i]; + + _boxMorphTargets.setFromBufferAttribute(morphAttribute); + + if (this.morphTargetsRelative) { + _vector$8.addVectors(_box$1.min, _boxMorphTargets.min); + + _box$1.expandByPoint(_vector$8); + + _vector$8.addVectors(_box$1.max, _boxMorphTargets.max); + + _box$1.expandByPoint(_vector$8); + } else { + _box$1.expandByPoint(_boxMorphTargets.min); + + _box$1.expandByPoint(_boxMorphTargets.max); + } + } + } + + _box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the + // boundingSphere of the boundingBox: sqrt(3) smaller in the best case + + + let maxRadiusSq = 0; + + for (let i = 0, il = position.count; i < il; i++) { + _vector$8.fromBufferAttribute(position, i); + + maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); + } // process morph attributes if present + + + if (morphAttributesPosition) { + for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { + const morphAttribute = morphAttributesPosition[i]; + const morphTargetsRelative = this.morphTargetsRelative; + + for (let j = 0, jl = morphAttribute.count; j < jl; j++) { + _vector$8.fromBufferAttribute(morphAttribute, j); + + if (morphTargetsRelative) { + _offset.fromBufferAttribute(position, j); + + _vector$8.add(_offset); + } + + maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); + } + } + } + + this.boundingSphere.radius = Math.sqrt(maxRadiusSq); + + if (isNaN(this.boundingSphere.radius)) { + console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this); + } + } + } + + computeTangents() { + const index = this.index; + const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html + // (per vertex tangents) + + if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) { + console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)'); + return; + } + + const indices = index.array; + const positions = attributes.position.array; + const normals = attributes.normal.array; + const uvs = attributes.uv.array; + const nVertices = positions.length / 3; + + if (attributes.tangent === undefined) { + this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4)); + } + + const tangents = attributes.tangent.array; + const tan1 = [], + tan2 = []; + + for (let i = 0; i < nVertices; i++) { + tan1[i] = new Vector3(); + tan2[i] = new Vector3(); + } + + const vA = new Vector3(), + vB = new Vector3(), + vC = new Vector3(), + uvA = new Vector2(), + uvB = new Vector2(), + uvC = new Vector2(), + sdir = new Vector3(), + tdir = new Vector3(); + + function handleTriangle(a, b, c) { + vA.fromArray(positions, a * 3); + vB.fromArray(positions, b * 3); + vC.fromArray(positions, c * 3); + uvA.fromArray(uvs, a * 2); + uvB.fromArray(uvs, b * 2); + uvC.fromArray(uvs, c * 2); + vB.sub(vA); + vC.sub(vA); + uvB.sub(uvA); + uvC.sub(uvA); + const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices + + if (!isFinite(r)) return; + sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r); + tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r); + tan1[a].add(sdir); + tan1[b].add(sdir); + tan1[c].add(sdir); + tan2[a].add(tdir); + tan2[b].add(tdir); + tan2[c].add(tdir); + } + + let groups = this.groups; + + if (groups.length === 0) { + groups = [{ + start: 0, + count: indices.length + }]; + } + + for (let i = 0, il = groups.length; i < il; ++i) { + const group = groups[i]; + const start = group.start; + const count = group.count; + + for (let j = start, jl = start + count; j < jl; j += 3) { + handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]); + } + } + + const tmp = new Vector3(), + tmp2 = new Vector3(); + const n = new Vector3(), + n2 = new Vector3(); + + function handleVertex(v) { + n.fromArray(normals, v * 3); + n2.copy(n); + const t = tan1[v]; // Gram-Schmidt orthogonalize + + tmp.copy(t); + tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness + + tmp2.crossVectors(n2, t); + const test = tmp2.dot(tan2[v]); + const w = test < 0.0 ? -1.0 : 1.0; + tangents[v * 4] = tmp.x; + tangents[v * 4 + 1] = tmp.y; + tangents[v * 4 + 2] = tmp.z; + tangents[v * 4 + 3] = w; + } + + for (let i = 0, il = groups.length; i < il; ++i) { + const group = groups[i]; + const start = group.start; + const count = group.count; + + for (let j = start, jl = start + count; j < jl; j += 3) { + handleVertex(indices[j + 0]); + handleVertex(indices[j + 1]); + handleVertex(indices[j + 2]); + } + } + } + + computeVertexNormals() { + const index = this.index; + const positionAttribute = this.getAttribute('position'); + + if (positionAttribute !== undefined) { + let normalAttribute = this.getAttribute('normal'); + + if (normalAttribute === undefined) { + normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3); + this.setAttribute('normal', normalAttribute); + } else { + // reset existing normals to zero + for (let i = 0, il = normalAttribute.count; i < il; i++) { + normalAttribute.setXYZ(i, 0, 0, 0); + } + } + + const pA = new Vector3(), + pB = new Vector3(), + pC = new Vector3(); + const nA = new Vector3(), + nB = new Vector3(), + nC = new Vector3(); + const cb = new Vector3(), + ab = new Vector3(); // indexed elements + + if (index) { + for (let i = 0, il = index.count; i < il; i += 3) { + const vA = index.getX(i + 0); + const vB = index.getX(i + 1); + const vC = index.getX(i + 2); + pA.fromBufferAttribute(positionAttribute, vA); + pB.fromBufferAttribute(positionAttribute, vB); + pC.fromBufferAttribute(positionAttribute, vC); + cb.subVectors(pC, pB); + ab.subVectors(pA, pB); + cb.cross(ab); + nA.fromBufferAttribute(normalAttribute, vA); + nB.fromBufferAttribute(normalAttribute, vB); + nC.fromBufferAttribute(normalAttribute, vC); + nA.add(cb); + nB.add(cb); + nC.add(cb); + normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z); + normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z); + normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z); + } + } else { + // non-indexed elements (unconnected triangle soup) + for (let i = 0, il = positionAttribute.count; i < il; i += 3) { + pA.fromBufferAttribute(positionAttribute, i + 0); + pB.fromBufferAttribute(positionAttribute, i + 1); + pC.fromBufferAttribute(positionAttribute, i + 2); + cb.subVectors(pC, pB); + ab.subVectors(pA, pB); + cb.cross(ab); + normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z); + normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z); + normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z); + } + } + + this.normalizeNormals(); + normalAttribute.needsUpdate = true; + } + } + + merge(geometry, offset) { + if (!(geometry && geometry.isBufferGeometry)) { + console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry); + return; + } + + if (offset === undefined) { + offset = 0; + console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'); + } + + const attributes = this.attributes; + + for (const key in attributes) { + if (geometry.attributes[key] === undefined) continue; + const attribute1 = attributes[key]; + const attributeArray1 = attribute1.array; + const attribute2 = geometry.attributes[key]; + const attributeArray2 = attribute2.array; + const attributeOffset = attribute2.itemSize * offset; + const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset); + + for (let i = 0, j = attributeOffset; i < length; i++, j++) { + attributeArray1[j] = attributeArray2[i]; + } + } + + return this; + } + + normalizeNormals() { + const normals = this.attributes.normal; + + for (let i = 0, il = normals.count; i < il; i++) { + _vector$8.fromBufferAttribute(normals, i); + + _vector$8.normalize(); + + normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z); + } + } + + toNonIndexed() { + function convertBufferAttribute(attribute, indices) { + const array = attribute.array; + const itemSize = attribute.itemSize; + const normalized = attribute.normalized; + const array2 = new array.constructor(indices.length * itemSize); + let index = 0, + index2 = 0; + + for (let i = 0, l = indices.length; i < l; i++) { + if (attribute.isInterleavedBufferAttribute) { + index = indices[i] * attribute.data.stride + attribute.offset; + } else { + index = indices[i] * itemSize; + } + + for (let j = 0; j < itemSize; j++) { + array2[index2++] = array[index++]; + } + } + + return new BufferAttribute(array2, itemSize, normalized); + } // + + + if (this.index === null) { + console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.'); + return this; + } + + const geometry2 = new BufferGeometry(); + const indices = this.index.array; + const attributes = this.attributes; // attributes + + for (const name in attributes) { + const attribute = attributes[name]; + const newAttribute = convertBufferAttribute(attribute, indices); + geometry2.setAttribute(name, newAttribute); + } // morph attributes + + + const morphAttributes = this.morphAttributes; + + for (const name in morphAttributes) { + const morphArray = []; + const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes + + for (let i = 0, il = morphAttribute.length; i < il; i++) { + const attribute = morphAttribute[i]; + const newAttribute = convertBufferAttribute(attribute, indices); + morphArray.push(newAttribute); + } + + geometry2.morphAttributes[name] = morphArray; + } + + geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups + + const groups = this.groups; + + for (let i = 0, l = groups.length; i < l; i++) { + const group = groups[i]; + geometry2.addGroup(group.start, group.count, group.materialIndex); + } + + return geometry2; + } + + toJSON() { + const data = { + metadata: { + version: 4.5, + type: 'BufferGeometry', + generator: 'BufferGeometry.toJSON' + } + }; // standard BufferGeometry serialization + + data.uuid = this.uuid; + data.type = this.type; + if (this.name !== '') data.name = this.name; + if (Object.keys(this.userData).length > 0) data.userData = this.userData; + + if (this.parameters !== undefined) { + const parameters = this.parameters; + + for (const key in parameters) { + if (parameters[key] !== undefined) data[key] = parameters[key]; + } + + return data; + } // for simplicity the code assumes attributes are not shared across geometries, see #15811 + + + data.data = { + attributes: {} + }; + const index = this.index; + + if (index !== null) { + data.data.index = { + type: index.array.constructor.name, + array: Array.prototype.slice.call(index.array) + }; + } + + const attributes = this.attributes; + + for (const key in attributes) { + const attribute = attributes[key]; + data.data.attributes[key] = attribute.toJSON(data.data); + } + + const morphAttributes = {}; + let hasMorphAttributes = false; + + for (const key in this.morphAttributes) { + const attributeArray = this.morphAttributes[key]; + const array = []; + + for (let i = 0, il = attributeArray.length; i < il; i++) { + const attribute = attributeArray[i]; + array.push(attribute.toJSON(data.data)); + } + + if (array.length > 0) { + morphAttributes[key] = array; + hasMorphAttributes = true; + } + } + + if (hasMorphAttributes) { + data.data.morphAttributes = morphAttributes; + data.data.morphTargetsRelative = this.morphTargetsRelative; + } + + const groups = this.groups; + + if (groups.length > 0) { + data.data.groups = JSON.parse(JSON.stringify(groups)); + } + + const boundingSphere = this.boundingSphere; + + if (boundingSphere !== null) { + data.data.boundingSphere = { + center: boundingSphere.center.toArray(), + radius: boundingSphere.radius + }; + } + + return data; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + // reset + this.index = null; + this.attributes = {}; + this.morphAttributes = {}; + this.groups = []; + this.boundingBox = null; + this.boundingSphere = null; // used for storing cloned, shared data + + const data = {}; // name + + this.name = source.name; // index + + const index = source.index; + + if (index !== null) { + this.setIndex(index.clone(data)); + } // attributes + + + const attributes = source.attributes; + + for (const name in attributes) { + const attribute = attributes[name]; + this.setAttribute(name, attribute.clone(data)); + } // morph attributes + + + const morphAttributes = source.morphAttributes; + + for (const name in morphAttributes) { + const array = []; + const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes + + for (let i = 0, l = morphAttribute.length; i < l; i++) { + array.push(morphAttribute[i].clone(data)); + } + + this.morphAttributes[name] = array; + } + + this.morphTargetsRelative = source.morphTargetsRelative; // groups + + const groups = source.groups; + + for (let i = 0, l = groups.length; i < l; i++) { + const group = groups[i]; + this.addGroup(group.start, group.count, group.materialIndex); + } // bounding box + + + const boundingBox = source.boundingBox; + + if (boundingBox !== null) { + this.boundingBox = boundingBox.clone(); + } // bounding sphere + + + const boundingSphere = source.boundingSphere; + + if (boundingSphere !== null) { + this.boundingSphere = boundingSphere.clone(); + } // draw range + + + this.drawRange.start = source.drawRange.start; + this.drawRange.count = source.drawRange.count; // user data + + this.userData = source.userData; // geometry generator parameters + + if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters); + return this; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + +} + +BufferGeometry.prototype.isBufferGeometry = true; + +const _inverseMatrix$2 = /*@__PURE__*/new Matrix4(); + +const _ray$2 = /*@__PURE__*/new Ray(); + +const _sphere$3 = /*@__PURE__*/new Sphere(); + +const _vA$1 = /*@__PURE__*/new Vector3(); + +const _vB$1 = /*@__PURE__*/new Vector3(); + +const _vC$1 = /*@__PURE__*/new Vector3(); + +const _tempA = /*@__PURE__*/new Vector3(); + +const _tempB = /*@__PURE__*/new Vector3(); + +const _tempC = /*@__PURE__*/new Vector3(); + +const _morphA = /*@__PURE__*/new Vector3(); + +const _morphB = /*@__PURE__*/new Vector3(); + +const _morphC = /*@__PURE__*/new Vector3(); + +const _uvA$1 = /*@__PURE__*/new Vector2(); + +const _uvB$1 = /*@__PURE__*/new Vector2(); + +const _uvC$1 = /*@__PURE__*/new Vector2(); + +const _intersectionPoint = /*@__PURE__*/new Vector3(); + +const _intersectionPointWorld = /*@__PURE__*/new Vector3(); + +class Mesh extends Object3D { + constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) { + super(); + this.type = 'Mesh'; + this.geometry = geometry; + this.material = material; + this.updateMorphTargets(); + } + + copy(source) { + super.copy(source); + + if (source.morphTargetInfluences !== undefined) { + this.morphTargetInfluences = source.morphTargetInfluences.slice(); + } + + if (source.morphTargetDictionary !== undefined) { + this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary); + } + + this.material = source.material; + this.geometry = source.geometry; + return this; + } + + updateMorphTargets() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys(morphAttributes); + + if (keys.length > 0) { + const morphAttribute = morphAttributes[keys[0]]; + + if (morphAttribute !== undefined) { + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for (let m = 0, ml = morphAttribute.length; m < ml; m++) { + const name = morphAttribute[m].name || String(m); + this.morphTargetInfluences.push(0); + this.morphTargetDictionary[name] = m; + } + } + } + } else { + const morphTargets = geometry.morphTargets; + + if (morphTargets !== undefined && morphTargets.length > 0) { + console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + } + + raycast(raycaster, intersects) { + const geometry = this.geometry; + const material = this.material; + const matrixWorld = this.matrixWorld; + if (material === undefined) return; // Checking boundingSphere distance to ray + + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere$3.copy(geometry.boundingSphere); + + _sphere$3.applyMatrix4(matrixWorld); + + if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; // + + _inverseMatrix$2.copy(matrixWorld).invert(); + + _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing + + + if (geometry.boundingBox !== null) { + if (_ray$2.intersectsBox(geometry.boundingBox) === false) return; + } + + let intersection; + + if (geometry.isBufferGeometry) { + const index = geometry.index; + const position = geometry.attributes.position; + const morphPosition = geometry.morphAttributes.position; + const morphTargetsRelative = geometry.morphTargetsRelative; + const uv = geometry.attributes.uv; + const uv2 = geometry.attributes.uv2; + const groups = geometry.groups; + const drawRange = geometry.drawRange; + + if (index !== null) { + // indexed buffer geometry + if (Array.isArray(material)) { + for (let i = 0, il = groups.length; i < il; i++) { + const group = groups[i]; + const groupMaterial = material[group.materialIndex]; + const start = Math.max(group.start, drawRange.start); + const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); + + for (let j = start, jl = end; j < jl; j += 3) { + const a = index.getX(j); + const b = index.getX(j + 1); + const c = index.getX(j + 2); + intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics + + intersection.face.materialIndex = group.materialIndex; + intersects.push(intersection); + } + } + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(index.count, drawRange.start + drawRange.count); + + for (let i = start, il = end; i < il; i += 3) { + const a = index.getX(i); + const b = index.getX(i + 1); + const c = index.getX(i + 2); + intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics + + intersects.push(intersection); + } + } + } + } else if (position !== undefined) { + // non-indexed buffer geometry + if (Array.isArray(material)) { + for (let i = 0, il = groups.length; i < il; i++) { + const group = groups[i]; + const groupMaterial = material[group.materialIndex]; + const start = Math.max(group.start, drawRange.start); + const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); + + for (let j = start, jl = end; j < jl; j += 3) { + const a = j; + const b = j + 1; + const c = j + 2; + intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics + + intersection.face.materialIndex = group.materialIndex; + intersects.push(intersection); + } + } + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(position.count, drawRange.start + drawRange.count); + + for (let i = start, il = end; i < il; i += 3) { + const a = i; + const b = i + 1; + const c = i + 2; + intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics + + intersects.push(intersection); + } + } + } + } + } else if (geometry.isGeometry) { + console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + +} + +Mesh.prototype.isMesh = true; + +function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) { + let intersect; + + if (material.side === BackSide) { + intersect = ray.intersectTriangle(pC, pB, pA, true, point); + } else { + intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point); + } + + if (intersect === null) return null; + + _intersectionPointWorld.copy(point); + + _intersectionPointWorld.applyMatrix4(object.matrixWorld); + + const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld); + if (distance < raycaster.near || distance > raycaster.far) return null; + return { + distance: distance, + point: _intersectionPointWorld.clone(), + object: object + }; +} + +function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) { + _vA$1.fromBufferAttribute(position, a); + + _vB$1.fromBufferAttribute(position, b); + + _vC$1.fromBufferAttribute(position, c); + + const morphInfluences = object.morphTargetInfluences; + + if (morphPosition && morphInfluences) { + _morphA.set(0, 0, 0); + + _morphB.set(0, 0, 0); + + _morphC.set(0, 0, 0); + + for (let i = 0, il = morphPosition.length; i < il; i++) { + const influence = morphInfluences[i]; + const morphAttribute = morphPosition[i]; + if (influence === 0) continue; + + _tempA.fromBufferAttribute(morphAttribute, a); + + _tempB.fromBufferAttribute(morphAttribute, b); + + _tempC.fromBufferAttribute(morphAttribute, c); + + if (morphTargetsRelative) { + _morphA.addScaledVector(_tempA, influence); + + _morphB.addScaledVector(_tempB, influence); + + _morphC.addScaledVector(_tempC, influence); + } else { + _morphA.addScaledVector(_tempA.sub(_vA$1), influence); + + _morphB.addScaledVector(_tempB.sub(_vB$1), influence); + + _morphC.addScaledVector(_tempC.sub(_vC$1), influence); + } + } + + _vA$1.add(_morphA); + + _vB$1.add(_morphB); + + _vC$1.add(_morphC); + } + + if (object.isSkinnedMesh) { + object.boneTransform(a, _vA$1); + object.boneTransform(b, _vB$1); + object.boneTransform(c, _vC$1); + } + + const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint); + + if (intersection) { + if (uv) { + _uvA$1.fromBufferAttribute(uv, a); + + _uvB$1.fromBufferAttribute(uv, b); + + _uvC$1.fromBufferAttribute(uv, c); + + intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); + } + + if (uv2) { + _uvA$1.fromBufferAttribute(uv2, a); + + _uvB$1.fromBufferAttribute(uv2, b); + + _uvC$1.fromBufferAttribute(uv2, c); + + intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); + } + + const face = { + a: a, + b: b, + c: c, + normal: new Vector3(), + materialIndex: 0 + }; + Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal); + intersection.face = face; + } + + return intersection; +} + +class BoxGeometry extends BufferGeometry { + constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) { + super(); + this.type = 'BoxGeometry'; + this.parameters = { + width: width, + height: height, + depth: depth, + widthSegments: widthSegments, + heightSegments: heightSegments, + depthSegments: depthSegments + }; + const scope = this; // segments + + widthSegments = Math.floor(widthSegments); + heightSegments = Math.floor(heightSegments); + depthSegments = Math.floor(depthSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + let numberOfVertices = 0; + let groupStart = 0; // build each side of the box geometry + + buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px + + buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx + + buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py + + buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny + + buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz + + buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz + // build geometry + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + + function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) { + const segmentWidth = width / gridX; + const segmentHeight = height / gridY; + const widthHalf = width / 2; + const heightHalf = height / 2; + const depthHalf = depth / 2; + const gridX1 = gridX + 1; + const gridY1 = gridY + 1; + let vertexCounter = 0; + let groupCount = 0; + const vector = new Vector3(); // generate vertices, normals and uvs + + for (let iy = 0; iy < gridY1; iy++) { + const y = iy * segmentHeight - heightHalf; + + for (let ix = 0; ix < gridX1; ix++) { + const x = ix * segmentWidth - widthHalf; // set values to correct vector component + + vector[u] = x * udir; + vector[v] = y * vdir; + vector[w] = depthHalf; // now apply vector to vertex buffer + + vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component + + vector[u] = 0; + vector[v] = 0; + vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer + + normals.push(vector.x, vector.y, vector.z); // uvs + + uvs.push(ix / gridX); + uvs.push(1 - iy / gridY); // counters + + vertexCounter += 1; + } + } // indices + // 1. you need three indices to draw a single face + // 2. a single segment consists of two faces + // 3. so we need to generate six (2*3) indices per segment + + + for (let iy = 0; iy < gridY; iy++) { + for (let ix = 0; ix < gridX; ix++) { + const a = numberOfVertices + ix + gridX1 * iy; + const b = numberOfVertices + ix + gridX1 * (iy + 1); + const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1); + const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces + + indices.push(a, b, d); + indices.push(b, c, d); // increase counter + + groupCount += 6; + } + } // add a group to the geometry. this will ensure multi material support + + + scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups + + groupStart += groupCount; // update total number of vertices + + numberOfVertices += vertexCounter; + } + } + + static fromJSON(data) { + return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments); + } + +} + +/** + * Uniform Utilities + */ +function cloneUniforms(src) { + const dst = {}; + + for (const u in src) { + dst[u] = {}; + + for (const p in src[u]) { + const property = src[u][p]; + + if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) { + dst[u][p] = property.clone(); + } else if (Array.isArray(property)) { + dst[u][p] = property.slice(); + } else { + dst[u][p] = property; + } + } + } + + return dst; +} +function mergeUniforms(uniforms) { + const merged = {}; + + for (let u = 0; u < uniforms.length; u++) { + const tmp = cloneUniforms(uniforms[u]); + + for (const p in tmp) { + merged[p] = tmp[p]; + } + } + + return merged; +} // Legacy + +const UniformsUtils = { + clone: cloneUniforms, + merge: mergeUniforms +}; + +var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; + +var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; + +/** + * parameters = { + * defines: { "label" : "value" }, + * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, + * + * fragmentShader: , + * vertexShader: , + * + * wireframe: , + * wireframeLinewidth: , + * + * lights: + * } + */ + +class ShaderMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'ShaderMaterial'; + this.defines = {}; + this.uniforms = {}; + this.vertexShader = default_vertex; + this.fragmentShader = default_fragment; + this.linewidth = 1; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.fog = false; // set to use scene fog + + this.lights = false; // set to use scene lights + + this.clipping = false; // set to use user-defined clipping planes + + this.extensions = { + derivatives: false, + // set to use derivatives + fragDepth: false, + // set to use fragment depth values + drawBuffers: false, + // set to use draw buffers + shaderTextureLOD: false // set to use shader texture LOD + + }; // When rendered geometry doesn't include these attributes but the material does, + // use these default values in WebGL. This avoids errors when buffer data is missing. + + this.defaultAttributeValues = { + 'color': [1, 1, 1], + 'uv': [0, 0], + 'uv2': [0, 0] + }; + this.index0AttributeName = undefined; + this.uniformsNeedUpdate = false; + this.glslVersion = null; + + if (parameters !== undefined) { + if (parameters.attributes !== undefined) { + console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.'); + } + + this.setValues(parameters); + } + } + + copy(source) { + super.copy(source); + this.fragmentShader = source.fragmentShader; + this.vertexShader = source.vertexShader; + this.uniforms = cloneUniforms(source.uniforms); + this.defines = Object.assign({}, source.defines); + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.lights = source.lights; + this.clipping = source.clipping; + this.extensions = Object.assign({}, source.extensions); + this.glslVersion = source.glslVersion; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.glslVersion = this.glslVersion; + data.uniforms = {}; + + for (const name in this.uniforms) { + const uniform = this.uniforms[name]; + const value = uniform.value; + + if (value && value.isTexture) { + data.uniforms[name] = { + type: 't', + value: value.toJSON(meta).uuid + }; + } else if (value && value.isColor) { + data.uniforms[name] = { + type: 'c', + value: value.getHex() + }; + } else if (value && value.isVector2) { + data.uniforms[name] = { + type: 'v2', + value: value.toArray() + }; + } else if (value && value.isVector3) { + data.uniforms[name] = { + type: 'v3', + value: value.toArray() + }; + } else if (value && value.isVector4) { + data.uniforms[name] = { + type: 'v4', + value: value.toArray() + }; + } else if (value && value.isMatrix3) { + data.uniforms[name] = { + type: 'm3', + value: value.toArray() + }; + } else if (value && value.isMatrix4) { + data.uniforms[name] = { + type: 'm4', + value: value.toArray() + }; + } else { + data.uniforms[name] = { + value: value + }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far + } + } + + if (Object.keys(this.defines).length > 0) data.defines = this.defines; + data.vertexShader = this.vertexShader; + data.fragmentShader = this.fragmentShader; + const extensions = {}; + + for (const key in this.extensions) { + if (this.extensions[key] === true) extensions[key] = true; + } + + if (Object.keys(extensions).length > 0) data.extensions = extensions; + return data; + } + +} + +ShaderMaterial.prototype.isShaderMaterial = true; + +class Camera extends Object3D { + constructor() { + super(); + this.type = 'Camera'; + this.matrixWorldInverse = new Matrix4(); + this.projectionMatrix = new Matrix4(); + this.projectionMatrixInverse = new Matrix4(); + } + + copy(source, recursive) { + super.copy(source, recursive); + this.matrixWorldInverse.copy(source.matrixWorldInverse); + this.projectionMatrix.copy(source.projectionMatrix); + this.projectionMatrixInverse.copy(source.projectionMatrixInverse); + return this; + } + + getWorldDirection(target) { + this.updateWorldMatrix(true, false); + const e = this.matrixWorld.elements; + return target.set(-e[8], -e[9], -e[10]).normalize(); + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + this.matrixWorldInverse.copy(this.matrixWorld).invert(); + } + + updateWorldMatrix(updateParents, updateChildren) { + super.updateWorldMatrix(updateParents, updateChildren); + this.matrixWorldInverse.copy(this.matrixWorld).invert(); + } + + clone() { + return new this.constructor().copy(this); + } + +} + +Camera.prototype.isCamera = true; + +class PerspectiveCamera extends Camera { + constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) { + super(); + this.type = 'PerspectiveCamera'; + this.fov = fov; + this.zoom = 1; + this.near = near; + this.far = far; + this.focus = 10; + this.aspect = aspect; + this.view = null; + this.filmGauge = 35; // width of the film (default in millimeters) + + this.filmOffset = 0; // horizontal film offset (same unit as gauge) + + this.updateProjectionMatrix(); + } + + copy(source, recursive) { + super.copy(source, recursive); + this.fov = source.fov; + this.zoom = source.zoom; + this.near = source.near; + this.far = source.far; + this.focus = source.focus; + this.aspect = source.aspect; + this.view = source.view === null ? null : Object.assign({}, source.view); + this.filmGauge = source.filmGauge; + this.filmOffset = source.filmOffset; + return this; + } + /** + * Sets the FOV by focal length in respect to the current .filmGauge. + * + * The default film gauge is 35, so that the focal length can be specified for + * a 35mm (full frame) camera. + * + * Values for focal length and film gauge must have the same unit. + */ + + + setFocalLength(focalLength) { + /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ + const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; + this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope); + this.updateProjectionMatrix(); + } + /** + * Calculates the focal length from the current .fov and .filmGauge. + */ + + + getFocalLength() { + const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov); + return 0.5 * this.getFilmHeight() / vExtentSlope; + } + + getEffectiveFOV() { + return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom); + } + + getFilmWidth() { + // film not completely covered in portrait format (aspect < 1) + return this.filmGauge * Math.min(this.aspect, 1); + } + + getFilmHeight() { + // film not completely covered in landscape format (aspect > 1) + return this.filmGauge / Math.max(this.aspect, 1); + } + /** + * Sets an offset in a larger frustum. This is useful for multi-window or + * multi-monitor/multi-machine setups. + * + * For example, if you have 3x2 monitors and each monitor is 1920x1080 and + * the monitors are in grid like this + * + * +---+---+---+ + * | A | B | C | + * +---+---+---+ + * | D | E | F | + * +---+---+---+ + * + * then for each monitor you would call it like this + * + * const w = 1920; + * const h = 1080; + * const fullWidth = w * 3; + * const fullHeight = h * 2; + * + * --A-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); + * --B-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); + * --C-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); + * --D-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); + * --E-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); + * --F-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); + * + * Note there is no reason monitors have to be the same size or in a grid. + */ + + + setViewOffset(fullWidth, fullHeight, x, y, width, height) { + this.aspect = fullWidth / fullHeight; + + if (this.view === null) { + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + this.updateProjectionMatrix(); + } + + clearViewOffset() { + if (this.view !== null) { + this.view.enabled = false; + } + + this.updateProjectionMatrix(); + } + + updateProjectionMatrix() { + const near = this.near; + let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom; + let height = 2 * top; + let width = this.aspect * height; + let left = -0.5 * width; + const view = this.view; + + if (this.view !== null && this.view.enabled) { + const fullWidth = view.fullWidth, + fullHeight = view.fullHeight; + left += view.offsetX * width / fullWidth; + top -= view.offsetY * height / fullHeight; + width *= view.width / fullWidth; + height *= view.height / fullHeight; + } + + const skew = this.filmOffset; + if (skew !== 0) left += near * skew / this.getFilmWidth(); + this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far); + this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.fov = this.fov; + data.object.zoom = this.zoom; + data.object.near = this.near; + data.object.far = this.far; + data.object.focus = this.focus; + data.object.aspect = this.aspect; + if (this.view !== null) data.object.view = Object.assign({}, this.view); + data.object.filmGauge = this.filmGauge; + data.object.filmOffset = this.filmOffset; + return data; + } + +} + +PerspectiveCamera.prototype.isPerspectiveCamera = true; + +const fov = 90, + aspect = 1; + +class CubeCamera extends Object3D { + constructor(near, far, renderTarget) { + super(); + this.type = 'CubeCamera'; + + if (renderTarget.isWebGLCubeRenderTarget !== true) { + console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.'); + return; + } + + this.renderTarget = renderTarget; + const cameraPX = new PerspectiveCamera(fov, aspect, near, far); + cameraPX.layers = this.layers; + cameraPX.up.set(0, -1, 0); + cameraPX.lookAt(new Vector3(1, 0, 0)); + this.add(cameraPX); + const cameraNX = new PerspectiveCamera(fov, aspect, near, far); + cameraNX.layers = this.layers; + cameraNX.up.set(0, -1, 0); + cameraNX.lookAt(new Vector3(-1, 0, 0)); + this.add(cameraNX); + const cameraPY = new PerspectiveCamera(fov, aspect, near, far); + cameraPY.layers = this.layers; + cameraPY.up.set(0, 0, 1); + cameraPY.lookAt(new Vector3(0, 1, 0)); + this.add(cameraPY); + const cameraNY = new PerspectiveCamera(fov, aspect, near, far); + cameraNY.layers = this.layers; + cameraNY.up.set(0, 0, -1); + cameraNY.lookAt(new Vector3(0, -1, 0)); + this.add(cameraNY); + const cameraPZ = new PerspectiveCamera(fov, aspect, near, far); + cameraPZ.layers = this.layers; + cameraPZ.up.set(0, -1, 0); + cameraPZ.lookAt(new Vector3(0, 0, 1)); + this.add(cameraPZ); + const cameraNZ = new PerspectiveCamera(fov, aspect, near, far); + cameraNZ.layers = this.layers; + cameraNZ.up.set(0, -1, 0); + cameraNZ.lookAt(new Vector3(0, 0, -1)); + this.add(cameraNZ); + } + + update(renderer, scene) { + if (this.parent === null) this.updateMatrixWorld(); + const renderTarget = this.renderTarget; + const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children; + const currentXrEnabled = renderer.xr.enabled; + const currentRenderTarget = renderer.getRenderTarget(); + renderer.xr.enabled = false; + const generateMipmaps = renderTarget.texture.generateMipmaps; + renderTarget.texture.generateMipmaps = false; + renderer.setRenderTarget(renderTarget, 0); + renderer.render(scene, cameraPX); + renderer.setRenderTarget(renderTarget, 1); + renderer.render(scene, cameraNX); + renderer.setRenderTarget(renderTarget, 2); + renderer.render(scene, cameraPY); + renderer.setRenderTarget(renderTarget, 3); + renderer.render(scene, cameraNY); + renderer.setRenderTarget(renderTarget, 4); + renderer.render(scene, cameraPZ); + renderTarget.texture.generateMipmaps = generateMipmaps; + renderer.setRenderTarget(renderTarget, 5); + renderer.render(scene, cameraNZ); + renderer.setRenderTarget(currentRenderTarget); + renderer.xr.enabled = currentXrEnabled; + } + +} + +class CubeTexture extends Texture { + constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) { + images = images !== undefined ? images : []; + mapping = mapping !== undefined ? mapping : CubeReflectionMapping; + super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); + this.flipY = false; + } + + get images() { + return this.image; + } + + set images(value) { + this.image = value; + } + +} + +CubeTexture.prototype.isCubeTexture = true; + +class WebGLCubeRenderTarget extends WebGLRenderTarget { + constructor(size, options, dummy) { + if (Number.isInteger(options)) { + console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )'); + options = dummy; + } + + super(size, size, options); + options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) + // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, + // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. + // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped + // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture + // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). + + this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); + this.texture.isRenderTargetTexture = true; + this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; + this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; + this.texture._needsFlipEnvMap = false; + } + + fromEquirectangularTexture(renderer, texture) { + this.texture.type = texture.type; + this.texture.format = RGBAFormat; // see #18859 + + this.texture.encoding = texture.encoding; + this.texture.generateMipmaps = texture.generateMipmaps; + this.texture.minFilter = texture.minFilter; + this.texture.magFilter = texture.magFilter; + const shader = { + uniforms: { + tEquirect: { + value: null + } + }, + vertexShader: + /* glsl */ + ` + + varying vec3 vWorldDirection; + + vec3 transformDirection( in vec3 dir, in mat4 matrix ) { + + return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); + + } + + void main() { + + vWorldDirection = transformDirection( position, modelMatrix ); + + #include + #include + + } + `, + fragmentShader: + /* glsl */ + ` + + uniform sampler2D tEquirect; + + varying vec3 vWorldDirection; + + #include + + void main() { + + vec3 direction = normalize( vWorldDirection ); + + vec2 sampleUV = equirectUv( direction ); + + gl_FragColor = texture2D( tEquirect, sampleUV ); + + } + ` + }; + const geometry = new BoxGeometry(5, 5, 5); + const material = new ShaderMaterial({ + name: 'CubemapFromEquirect', + uniforms: cloneUniforms(shader.uniforms), + vertexShader: shader.vertexShader, + fragmentShader: shader.fragmentShader, + side: BackSide, + blending: NoBlending + }); + material.uniforms.tEquirect.value = texture; + const mesh = new Mesh(geometry, material); + const currentMinFilter = texture.minFilter; // Avoid blurred poles + + if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter; + const camera = new CubeCamera(1, 10, this); + camera.update(renderer, mesh); + texture.minFilter = currentMinFilter; + mesh.geometry.dispose(); + mesh.material.dispose(); + return this; + } + + clear(renderer, color, depth, stencil) { + const currentRenderTarget = renderer.getRenderTarget(); + + for (let i = 0; i < 6; i++) { + renderer.setRenderTarget(this, i); + renderer.clear(color, depth, stencil); + } + + renderer.setRenderTarget(currentRenderTarget); + } + +} + +WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true; + +const _vector1 = /*@__PURE__*/new Vector3(); + +const _vector2 = /*@__PURE__*/new Vector3(); + +const _normalMatrix = /*@__PURE__*/new Matrix3(); + +class Plane { + constructor(normal = new Vector3(1, 0, 0), constant = 0) { + // normal is assumed to be normalized + this.normal = normal; + this.constant = constant; + } + + set(normal, constant) { + this.normal.copy(normal); + this.constant = constant; + return this; + } + + setComponents(x, y, z, w) { + this.normal.set(x, y, z); + this.constant = w; + return this; + } + + setFromNormalAndCoplanarPoint(normal, point) { + this.normal.copy(normal); + this.constant = -point.dot(this.normal); + return this; + } + + setFromCoplanarPoints(a, b, c) { + const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? + + + this.setFromNormalAndCoplanarPoint(normal, a); + return this; + } + + copy(plane) { + this.normal.copy(plane.normal); + this.constant = plane.constant; + return this; + } + + normalize() { + // Note: will lead to a divide by zero if the plane is invalid. + const inverseNormalLength = 1.0 / this.normal.length(); + this.normal.multiplyScalar(inverseNormalLength); + this.constant *= inverseNormalLength; + return this; + } + + negate() { + this.constant *= -1; + this.normal.negate(); + return this; + } + + distanceToPoint(point) { + return this.normal.dot(point) + this.constant; + } + + distanceToSphere(sphere) { + return this.distanceToPoint(sphere.center) - sphere.radius; + } + + projectPoint(point, target) { + return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point); + } + + intersectLine(line, target) { + const direction = line.delta(_vector1); + const denominator = this.normal.dot(direction); + + if (denominator === 0) { + // line is coplanar, return origin + if (this.distanceToPoint(line.start) === 0) { + return target.copy(line.start); + } // Unsure if this is the correct method to handle this case. + + + return null; + } + + const t = -(line.start.dot(this.normal) + this.constant) / denominator; + + if (t < 0 || t > 1) { + return null; + } + + return target.copy(direction).multiplyScalar(t).add(line.start); + } + + intersectsLine(line) { + // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. + const startSign = this.distanceToPoint(line.start); + const endSign = this.distanceToPoint(line.end); + return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0; + } + + intersectsBox(box) { + return box.intersectsPlane(this); + } + + intersectsSphere(sphere) { + return sphere.intersectsPlane(this); + } + + coplanarPoint(target) { + return target.copy(this.normal).multiplyScalar(-this.constant); + } + + applyMatrix4(matrix, optionalNormalMatrix) { + const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix); + + const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix); + const normal = this.normal.applyMatrix3(normalMatrix).normalize(); + this.constant = -referencePoint.dot(normal); + return this; + } + + translate(offset) { + this.constant -= offset.dot(this.normal); + return this; + } + + equals(plane) { + return plane.normal.equals(this.normal) && plane.constant === this.constant; + } + + clone() { + return new this.constructor().copy(this); + } + +} + +Plane.prototype.isPlane = true; + +const _sphere$2 = /*@__PURE__*/new Sphere(); + +const _vector$7 = /*@__PURE__*/new Vector3(); + +class Frustum { + constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) { + this.planes = [p0, p1, p2, p3, p4, p5]; + } + + set(p0, p1, p2, p3, p4, p5) { + const planes = this.planes; + planes[0].copy(p0); + planes[1].copy(p1); + planes[2].copy(p2); + planes[3].copy(p3); + planes[4].copy(p4); + planes[5].copy(p5); + return this; + } + + copy(frustum) { + const planes = this.planes; + + for (let i = 0; i < 6; i++) { + planes[i].copy(frustum.planes[i]); + } + + return this; + } + + setFromProjectionMatrix(m) { + const planes = this.planes; + const me = m.elements; + const me0 = me[0], + me1 = me[1], + me2 = me[2], + me3 = me[3]; + const me4 = me[4], + me5 = me[5], + me6 = me[6], + me7 = me[7]; + const me8 = me[8], + me9 = me[9], + me10 = me[10], + me11 = me[11]; + const me12 = me[12], + me13 = me[13], + me14 = me[14], + me15 = me[15]; + planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize(); + planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize(); + planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize(); + planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize(); + planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize(); + planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize(); + return this; + } + + intersectsObject(object) { + const geometry = object.geometry; + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld); + + return this.intersectsSphere(_sphere$2); + } + + intersectsSprite(sprite) { + _sphere$2.center.set(0, 0, 0); + + _sphere$2.radius = 0.7071067811865476; + + _sphere$2.applyMatrix4(sprite.matrixWorld); + + return this.intersectsSphere(_sphere$2); + } + + intersectsSphere(sphere) { + const planes = this.planes; + const center = sphere.center; + const negRadius = -sphere.radius; + + for (let i = 0; i < 6; i++) { + const distance = planes[i].distanceToPoint(center); + + if (distance < negRadius) { + return false; + } + } + + return true; + } + + intersectsBox(box) { + const planes = this.planes; + + for (let i = 0; i < 6; i++) { + const plane = planes[i]; // corner at max distance + + _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; + _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; + _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; + + if (plane.distanceToPoint(_vector$7) < 0) { + return false; + } + } + + return true; + } + + containsPoint(point) { + const planes = this.planes; + + for (let i = 0; i < 6; i++) { + if (planes[i].distanceToPoint(point) < 0) { + return false; + } + } + + return true; + } + + clone() { + return new this.constructor().copy(this); + } + +} + +function WebGLAnimation() { + let context = null; + let isAnimating = false; + let animationLoop = null; + let requestId = null; + + function onAnimationFrame(time, frame) { + animationLoop(time, frame); + requestId = context.requestAnimationFrame(onAnimationFrame); + } + + return { + start: function () { + if (isAnimating === true) return; + if (animationLoop === null) return; + requestId = context.requestAnimationFrame(onAnimationFrame); + isAnimating = true; + }, + stop: function () { + context.cancelAnimationFrame(requestId); + isAnimating = false; + }, + setAnimationLoop: function (callback) { + animationLoop = callback; + }, + setContext: function (value) { + context = value; + } + }; +} + +function WebGLAttributes(gl, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + const buffers = new WeakMap(); + + function createBuffer(attribute, bufferType) { + const array = attribute.array; + const usage = attribute.usage; + const buffer = gl.createBuffer(); + gl.bindBuffer(bufferType, buffer); + gl.bufferData(bufferType, array, usage); + attribute.onUploadCallback(); + let type = gl.FLOAT; + + if (array instanceof Float32Array) { + type = gl.FLOAT; + } else if (array instanceof Float64Array) { + console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.'); + } else if (array instanceof Uint16Array) { + if (attribute.isFloat16BufferAttribute) { + if (isWebGL2) { + type = gl.HALF_FLOAT; + } else { + console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.'); + } + } else { + type = gl.UNSIGNED_SHORT; + } + } else if (array instanceof Int16Array) { + type = gl.SHORT; + } else if (array instanceof Uint32Array) { + type = gl.UNSIGNED_INT; + } else if (array instanceof Int32Array) { + type = gl.INT; + } else if (array instanceof Int8Array) { + type = gl.BYTE; + } else if (array instanceof Uint8Array) { + type = gl.UNSIGNED_BYTE; + } else if (array instanceof Uint8ClampedArray) { + type = gl.UNSIGNED_BYTE; + } + + return { + buffer: buffer, + type: type, + bytesPerElement: array.BYTES_PER_ELEMENT, + version: attribute.version + }; + } + + function updateBuffer(buffer, attribute, bufferType) { + const array = attribute.array; + const updateRange = attribute.updateRange; + gl.bindBuffer(bufferType, buffer); + + if (updateRange.count === -1) { + // Not using update ranges + gl.bufferSubData(bufferType, 0, array); + } else { + if (isWebGL2) { + gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count); + } else { + gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count)); + } + + updateRange.count = -1; // reset range + } + } // + + + function get(attribute) { + if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; + return buffers.get(attribute); + } + + function remove(attribute) { + if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; + const data = buffers.get(attribute); + + if (data) { + gl.deleteBuffer(data.buffer); + buffers.delete(attribute); + } + } + + function update(attribute, bufferType) { + if (attribute.isGLBufferAttribute) { + const cached = buffers.get(attribute); + + if (!cached || cached.version < attribute.version) { + buffers.set(attribute, { + buffer: attribute.buffer, + type: attribute.type, + bytesPerElement: attribute.elementSize, + version: attribute.version + }); + } + + return; + } + + if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; + const data = buffers.get(attribute); + + if (data === undefined) { + buffers.set(attribute, createBuffer(attribute, bufferType)); + } else if (data.version < attribute.version) { + updateBuffer(data.buffer, attribute, bufferType); + data.version = attribute.version; + } + } + + return { + get: get, + remove: remove, + update: update + }; +} + +class PlaneGeometry extends BufferGeometry { + constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) { + super(); + this.type = 'PlaneGeometry'; + this.parameters = { + width: width, + height: height, + widthSegments: widthSegments, + heightSegments: heightSegments + }; + const width_half = width / 2; + const height_half = height / 2; + const gridX = Math.floor(widthSegments); + const gridY = Math.floor(heightSegments); + const gridX1 = gridX + 1; + const gridY1 = gridY + 1; + const segment_width = width / gridX; + const segment_height = height / gridY; // + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + for (let iy = 0; iy < gridY1; iy++) { + const y = iy * segment_height - height_half; + + for (let ix = 0; ix < gridX1; ix++) { + const x = ix * segment_width - width_half; + vertices.push(x, -y, 0); + normals.push(0, 0, 1); + uvs.push(ix / gridX); + uvs.push(1 - iy / gridY); + } + } + + for (let iy = 0; iy < gridY; iy++) { + for (let ix = 0; ix < gridX; ix++) { + const a = ix + gridX1 * iy; + const b = ix + gridX1 * (iy + 1); + const c = ix + 1 + gridX1 * (iy + 1); + const d = ix + 1 + gridX1 * iy; + indices.push(a, b, d); + indices.push(b, c, d); + } + } + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments); + } + +} + +var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif"; + +var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; + +var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif"; + +var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif"; + +var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif"; + +var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; + +var begin_vertex = "vec3 transformed = vec3( position );"; + +var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; + +var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif"; + +var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; + +var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif"; + +var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; + +var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; + +var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; + +var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif"; + +var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif"; + +var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif"; + +var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif"; + +var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}"; + +var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 ) + 0.5;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\treturn texture2D( envMap, uv ).rgb;\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; + +var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; + +var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; + +var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif"; + +var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; + +var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; + +var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; + +var encodings_pars_fragment = "vec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}"; + +var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; + +var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; + +var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; + +var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; + +var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; + +var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif"; + +var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif"; + +var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; + +var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; + +var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}"; + +var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif"; + +var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; + +var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif"; + +var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif"; + +var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif"; + +var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; + +var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)"; + +var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; + +var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)"; + +var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARCOLORMAP\n\t\t\tspecularColorFactor *= specularColorMapTexelToLinear( texture2D( specularColorMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tmaterial.sheenColor *= sheenColorMapTexelToLinear( texture2D( sheenColorMap, vUv ) ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a;\n\t#endif\n#endif"; + +var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec3 sheenSpecular = vec3( 0.0 );\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; + +var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; + +var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif"; + +var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif"; + +var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; + +var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; + +var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; + +var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; + +var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif"; + +var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; + +var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; + +var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; + +var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; + +var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; + +var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif"; + +var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif"; + +var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif"; + +var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;"; + +var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; + +var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; + +var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; + +var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif"; + +var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif"; + +var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif"; + +var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif"; + +var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif"; + +var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );"; + +var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}"; + +var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; + +var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; + +var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; + +var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; + +var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; + +var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; + +var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; + +var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; + +var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif"; + +var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; + +var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; + +var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif"; + +var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; + +var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; + +var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; + +var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; + +var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; + +var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; + +var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif"; + +var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif"; + +var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif"; + +var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif"; + +var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif"; + +var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; + +var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif"; + +var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif"; + +var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; + +const vertex$g = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; +const fragment$g = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; + +const vertex$f = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; +const fragment$f = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; + +const vertex$e = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; +const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; + +const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; +const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; + +const vertex$c = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; +const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; + +const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; +const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$a = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; +const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$9 = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; +const fragment$9 = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; +const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; +const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}"; + +const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; +const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}"; +const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; +const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$3 = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; +const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const vertex$2 = "#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; +const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; + +const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; +const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + +const ShaderChunk = { + alphamap_fragment: alphamap_fragment, + alphamap_pars_fragment: alphamap_pars_fragment, + alphatest_fragment: alphatest_fragment, + alphatest_pars_fragment: alphatest_pars_fragment, + aomap_fragment: aomap_fragment, + aomap_pars_fragment: aomap_pars_fragment, + begin_vertex: begin_vertex, + beginnormal_vertex: beginnormal_vertex, + bsdfs: bsdfs, + bumpmap_pars_fragment: bumpmap_pars_fragment, + clipping_planes_fragment: clipping_planes_fragment, + clipping_planes_pars_fragment: clipping_planes_pars_fragment, + clipping_planes_pars_vertex: clipping_planes_pars_vertex, + clipping_planes_vertex: clipping_planes_vertex, + color_fragment: color_fragment, + color_pars_fragment: color_pars_fragment, + color_pars_vertex: color_pars_vertex, + color_vertex: color_vertex, + common: common, + cube_uv_reflection_fragment: cube_uv_reflection_fragment, + defaultnormal_vertex: defaultnormal_vertex, + displacementmap_pars_vertex: displacementmap_pars_vertex, + displacementmap_vertex: displacementmap_vertex, + emissivemap_fragment: emissivemap_fragment, + emissivemap_pars_fragment: emissivemap_pars_fragment, + encodings_fragment: encodings_fragment, + encodings_pars_fragment: encodings_pars_fragment, + envmap_fragment: envmap_fragment, + envmap_common_pars_fragment: envmap_common_pars_fragment, + envmap_pars_fragment: envmap_pars_fragment, + envmap_pars_vertex: envmap_pars_vertex, + envmap_physical_pars_fragment: envmap_physical_pars_fragment, + envmap_vertex: envmap_vertex, + fog_vertex: fog_vertex, + fog_pars_vertex: fog_pars_vertex, + fog_fragment: fog_fragment, + fog_pars_fragment: fog_pars_fragment, + gradientmap_pars_fragment: gradientmap_pars_fragment, + lightmap_fragment: lightmap_fragment, + lightmap_pars_fragment: lightmap_pars_fragment, + lights_lambert_vertex: lights_lambert_vertex, + lights_pars_begin: lights_pars_begin, + lights_toon_fragment: lights_toon_fragment, + lights_toon_pars_fragment: lights_toon_pars_fragment, + lights_phong_fragment: lights_phong_fragment, + lights_phong_pars_fragment: lights_phong_pars_fragment, + lights_physical_fragment: lights_physical_fragment, + lights_physical_pars_fragment: lights_physical_pars_fragment, + lights_fragment_begin: lights_fragment_begin, + lights_fragment_maps: lights_fragment_maps, + lights_fragment_end: lights_fragment_end, + logdepthbuf_fragment: logdepthbuf_fragment, + logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, + logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, + logdepthbuf_vertex: logdepthbuf_vertex, + map_fragment: map_fragment, + map_pars_fragment: map_pars_fragment, + map_particle_fragment: map_particle_fragment, + map_particle_pars_fragment: map_particle_pars_fragment, + metalnessmap_fragment: metalnessmap_fragment, + metalnessmap_pars_fragment: metalnessmap_pars_fragment, + morphnormal_vertex: morphnormal_vertex, + morphtarget_pars_vertex: morphtarget_pars_vertex, + morphtarget_vertex: morphtarget_vertex, + normal_fragment_begin: normal_fragment_begin, + normal_fragment_maps: normal_fragment_maps, + normal_pars_fragment: normal_pars_fragment, + normal_pars_vertex: normal_pars_vertex, + normal_vertex: normal_vertex, + normalmap_pars_fragment: normalmap_pars_fragment, + clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, + clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, + clearcoat_pars_fragment: clearcoat_pars_fragment, + output_fragment: output_fragment, + packing: packing, + premultiplied_alpha_fragment: premultiplied_alpha_fragment, + project_vertex: project_vertex, + dithering_fragment: dithering_fragment, + dithering_pars_fragment: dithering_pars_fragment, + roughnessmap_fragment: roughnessmap_fragment, + roughnessmap_pars_fragment: roughnessmap_pars_fragment, + shadowmap_pars_fragment: shadowmap_pars_fragment, + shadowmap_pars_vertex: shadowmap_pars_vertex, + shadowmap_vertex: shadowmap_vertex, + shadowmask_pars_fragment: shadowmask_pars_fragment, + skinbase_vertex: skinbase_vertex, + skinning_pars_vertex: skinning_pars_vertex, + skinning_vertex: skinning_vertex, + skinnormal_vertex: skinnormal_vertex, + specularmap_fragment: specularmap_fragment, + specularmap_pars_fragment: specularmap_pars_fragment, + tonemapping_fragment: tonemapping_fragment, + tonemapping_pars_fragment: tonemapping_pars_fragment, + transmission_fragment: transmission_fragment, + transmission_pars_fragment: transmission_pars_fragment, + uv_pars_fragment: uv_pars_fragment, + uv_pars_vertex: uv_pars_vertex, + uv_vertex: uv_vertex, + uv2_pars_fragment: uv2_pars_fragment, + uv2_pars_vertex: uv2_pars_vertex, + uv2_vertex: uv2_vertex, + worldpos_vertex: worldpos_vertex, + background_vert: vertex$g, + background_frag: fragment$g, + cube_vert: vertex$f, + cube_frag: fragment$f, + depth_vert: vertex$e, + depth_frag: fragment$e, + distanceRGBA_vert: vertex$d, + distanceRGBA_frag: fragment$d, + equirect_vert: vertex$c, + equirect_frag: fragment$c, + linedashed_vert: vertex$b, + linedashed_frag: fragment$b, + meshbasic_vert: vertex$a, + meshbasic_frag: fragment$a, + meshlambert_vert: vertex$9, + meshlambert_frag: fragment$9, + meshmatcap_vert: vertex$8, + meshmatcap_frag: fragment$8, + meshnormal_vert: vertex$7, + meshnormal_frag: fragment$7, + meshphong_vert: vertex$6, + meshphong_frag: fragment$6, + meshphysical_vert: vertex$5, + meshphysical_frag: fragment$5, + meshtoon_vert: vertex$4, + meshtoon_frag: fragment$4, + points_vert: vertex$3, + points_frag: fragment$3, + shadow_vert: vertex$2, + shadow_frag: fragment$2, + sprite_vert: vertex$1, + sprite_frag: fragment$1 +}; + +/** + * Uniforms library for shared webgl shaders + */ + +const UniformsLib = { + common: { + diffuse: { + value: new Color(0xffffff) + }, + opacity: { + value: 1.0 + }, + map: { + value: null + }, + uvTransform: { + value: new Matrix3() + }, + uv2Transform: { + value: new Matrix3() + }, + alphaMap: { + value: null + }, + alphaTest: { + value: 0 + } + }, + specularmap: { + specularMap: { + value: null + } + }, + envmap: { + envMap: { + value: null + }, + flipEnvMap: { + value: -1 + }, + reflectivity: { + value: 1.0 + }, + // basic, lambert, phong + ior: { + value: 1.5 + }, + // standard, physical + refractionRatio: { + value: 0.98 + } + }, + aomap: { + aoMap: { + value: null + }, + aoMapIntensity: { + value: 1 + } + }, + lightmap: { + lightMap: { + value: null + }, + lightMapIntensity: { + value: 1 + } + }, + emissivemap: { + emissiveMap: { + value: null + } + }, + bumpmap: { + bumpMap: { + value: null + }, + bumpScale: { + value: 1 + } + }, + normalmap: { + normalMap: { + value: null + }, + normalScale: { + value: new Vector2(1, 1) + } + }, + displacementmap: { + displacementMap: { + value: null + }, + displacementScale: { + value: 1 + }, + displacementBias: { + value: 0 + } + }, + roughnessmap: { + roughnessMap: { + value: null + } + }, + metalnessmap: { + metalnessMap: { + value: null + } + }, + gradientmap: { + gradientMap: { + value: null + } + }, + fog: { + fogDensity: { + value: 0.00025 + }, + fogNear: { + value: 1 + }, + fogFar: { + value: 2000 + }, + fogColor: { + value: new Color(0xffffff) + } + }, + lights: { + ambientLightColor: { + value: [] + }, + lightProbe: { + value: [] + }, + directionalLights: { + value: [], + properties: { + direction: {}, + color: {} + } + }, + directionalLightShadows: { + value: [], + properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } + }, + directionalShadowMap: { + value: [] + }, + directionalShadowMatrix: { + value: [] + }, + spotLights: { + value: [], + properties: { + color: {}, + position: {}, + direction: {}, + distance: {}, + coneCos: {}, + penumbraCos: {}, + decay: {} + } + }, + spotLightShadows: { + value: [], + properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } + }, + spotShadowMap: { + value: [] + }, + spotShadowMatrix: { + value: [] + }, + pointLights: { + value: [], + properties: { + color: {}, + position: {}, + decay: {}, + distance: {} + } + }, + pointLightShadows: { + value: [], + properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {}, + shadowCameraNear: {}, + shadowCameraFar: {} + } + }, + pointShadowMap: { + value: [] + }, + pointShadowMatrix: { + value: [] + }, + hemisphereLights: { + value: [], + properties: { + direction: {}, + skyColor: {}, + groundColor: {} + } + }, + // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src + rectAreaLights: { + value: [], + properties: { + color: {}, + position: {}, + width: {}, + height: {} + } + }, + ltc_1: { + value: null + }, + ltc_2: { + value: null + } + }, + points: { + diffuse: { + value: new Color(0xffffff) + }, + opacity: { + value: 1.0 + }, + size: { + value: 1.0 + }, + scale: { + value: 1.0 + }, + map: { + value: null + }, + alphaMap: { + value: null + }, + alphaTest: { + value: 0 + }, + uvTransform: { + value: new Matrix3() + } + }, + sprite: { + diffuse: { + value: new Color(0xffffff) + }, + opacity: { + value: 1.0 + }, + center: { + value: new Vector2(0.5, 0.5) + }, + rotation: { + value: 0.0 + }, + map: { + value: null + }, + alphaMap: { + value: null + }, + alphaTest: { + value: 0 + }, + uvTransform: { + value: new Matrix3() + } + } +}; + +const ShaderLib = { + basic: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]), + vertexShader: ShaderChunk.meshbasic_vert, + fragmentShader: ShaderChunk.meshbasic_frag + }, + lambert: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + } + }]), + vertexShader: ShaderChunk.meshlambert_vert, + fragmentShader: ShaderChunk.meshlambert_frag + }, + phong: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + }, + specular: { + value: new Color(0x111111) + }, + shininess: { + value: 30 + } + }]), + vertexShader: ShaderChunk.meshphong_vert, + fragmentShader: ShaderChunk.meshphong_frag + }, + standard: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + }, + roughness: { + value: 1.0 + }, + metalness: { + value: 0.0 + }, + envMapIntensity: { + value: 1 + } // temporary + + }]), + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag + }, + toon: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + } + }]), + vertexShader: ShaderChunk.meshtoon_vert, + fragmentShader: ShaderChunk.meshtoon_frag + }, + matcap: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { + matcap: { + value: null + } + }]), + vertexShader: ShaderChunk.meshmatcap_vert, + fragmentShader: ShaderChunk.meshmatcap_frag + }, + points: { + uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]), + vertexShader: ShaderChunk.points_vert, + fragmentShader: ShaderChunk.points_frag + }, + dashed: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, { + scale: { + value: 1 + }, + dashSize: { + value: 1 + }, + totalSize: { + value: 2 + } + }]), + vertexShader: ShaderChunk.linedashed_vert, + fragmentShader: ShaderChunk.linedashed_frag + }, + depth: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]), + vertexShader: ShaderChunk.depth_vert, + fragmentShader: ShaderChunk.depth_frag + }, + normal: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { + opacity: { + value: 1.0 + } + }]), + vertexShader: ShaderChunk.meshnormal_vert, + fragmentShader: ShaderChunk.meshnormal_frag + }, + sprite: { + uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]), + vertexShader: ShaderChunk.sprite_vert, + fragmentShader: ShaderChunk.sprite_frag + }, + background: { + uniforms: { + uvTransform: { + value: new Matrix3() + }, + t2D: { + value: null + } + }, + vertexShader: ShaderChunk.background_vert, + fragmentShader: ShaderChunk.background_frag + }, + + /* ------------------------------------------------------------------------- + // Cube map shader + ------------------------------------------------------------------------- */ + cube: { + uniforms: mergeUniforms([UniformsLib.envmap, { + opacity: { + value: 1.0 + } + }]), + vertexShader: ShaderChunk.cube_vert, + fragmentShader: ShaderChunk.cube_frag + }, + equirect: { + uniforms: { + tEquirect: { + value: null + } + }, + vertexShader: ShaderChunk.equirect_vert, + fragmentShader: ShaderChunk.equirect_frag + }, + distanceRGBA: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, { + referencePosition: { + value: new Vector3() + }, + nearDistance: { + value: 1 + }, + farDistance: { + value: 1000 + } + }]), + vertexShader: ShaderChunk.distanceRGBA_vert, + fragmentShader: ShaderChunk.distanceRGBA_frag + }, + shadow: { + uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, { + color: { + value: new Color(0x00000) + }, + opacity: { + value: 1.0 + } + }]), + vertexShader: ShaderChunk.shadow_vert, + fragmentShader: ShaderChunk.shadow_frag + } +}; +ShaderLib.physical = { + uniforms: mergeUniforms([ShaderLib.standard.uniforms, { + clearcoat: { + value: 0 + }, + clearcoatMap: { + value: null + }, + clearcoatRoughness: { + value: 0 + }, + clearcoatRoughnessMap: { + value: null + }, + clearcoatNormalScale: { + value: new Vector2(1, 1) + }, + clearcoatNormalMap: { + value: null + }, + sheen: { + value: 0 + }, + sheenColor: { + value: new Color(0x000000) + }, + sheenColorMap: { + value: null + }, + sheenRoughness: { + value: 0 + }, + sheenRoughnessMap: { + value: null + }, + transmission: { + value: 0 + }, + transmissionMap: { + value: null + }, + transmissionSamplerSize: { + value: new Vector2() + }, + transmissionSamplerMap: { + value: null + }, + thickness: { + value: 0 + }, + thicknessMap: { + value: null + }, + attenuationDistance: { + value: 0 + }, + attenuationColor: { + value: new Color(0x000000) + }, + specularIntensity: { + value: 0 + }, + specularIntensityMap: { + value: null + }, + specularColor: { + value: new Color(1, 1, 1) + }, + specularColorMap: { + value: null + } + }]), + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag +}; + +function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) { + const clearColor = new Color(0x000000); + let clearAlpha = 0; + let planeMesh; + let boxMesh; + let currentBackground = null; + let currentBackgroundVersion = 0; + let currentTonemapping = null; + + function render(renderList, scene) { + let forceClear = false; + let background = scene.isScene === true ? scene.background : null; + + if (background && background.isTexture) { + background = cubemaps.get(background); + } // Ignore background in AR + // TODO: Reconsider this. + + + const xr = renderer.xr; + const session = xr.getSession && xr.getSession(); + + if (session && session.environmentBlendMode === 'additive') { + background = null; + } + + if (background === null) { + setClear(clearColor, clearAlpha); + } else if (background && background.isColor) { + setClear(background, 1); + forceClear = true; + } + + if (renderer.autoClear || forceClear) { + renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil); + } + + if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) { + if (boxMesh === undefined) { + boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({ + name: 'BackgroundCubeMaterial', + uniforms: cloneUniforms(ShaderLib.cube.uniforms), + vertexShader: ShaderLib.cube.vertexShader, + fragmentShader: ShaderLib.cube.fragmentShader, + side: BackSide, + depthTest: false, + depthWrite: false, + fog: false + })); + boxMesh.geometry.deleteAttribute('normal'); + boxMesh.geometry.deleteAttribute('uv'); + + boxMesh.onBeforeRender = function (renderer, scene, camera) { + this.matrixWorld.copyPosition(camera.matrixWorld); + }; // enable code injection for non-built-in material + + + Object.defineProperty(boxMesh.material, 'envMap', { + get: function () { + return this.uniforms.envMap.value; + } + }); + objects.update(boxMesh); + } + + boxMesh.material.uniforms.envMap.value = background; + boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1; + + if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { + boxMesh.material.needsUpdate = true; + currentBackground = background; + currentBackgroundVersion = background.version; + currentTonemapping = renderer.toneMapping; + } // push to the pre-sorted opaque render list + + + renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null); + } else if (background && background.isTexture) { + if (planeMesh === undefined) { + planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({ + name: 'BackgroundMaterial', + uniforms: cloneUniforms(ShaderLib.background.uniforms), + vertexShader: ShaderLib.background.vertexShader, + fragmentShader: ShaderLib.background.fragmentShader, + side: FrontSide, + depthTest: false, + depthWrite: false, + fog: false + })); + planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material + + Object.defineProperty(planeMesh.material, 'map', { + get: function () { + return this.uniforms.t2D.value; + } + }); + objects.update(planeMesh); + } + + planeMesh.material.uniforms.t2D.value = background; + + if (background.matrixAutoUpdate === true) { + background.updateMatrix(); + } + + planeMesh.material.uniforms.uvTransform.value.copy(background.matrix); + + if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { + planeMesh.material.needsUpdate = true; + currentBackground = background; + currentBackgroundVersion = background.version; + currentTonemapping = renderer.toneMapping; + } // push to the pre-sorted opaque render list + + + renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null); + } + } + + function setClear(color, alpha) { + state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha); + } + + return { + getClearColor: function () { + return clearColor; + }, + setClearColor: function (color, alpha = 1) { + clearColor.set(color); + clearAlpha = alpha; + setClear(clearColor, clearAlpha); + }, + getClearAlpha: function () { + return clearAlpha; + }, + setClearAlpha: function (alpha) { + clearAlpha = alpha; + setClear(clearColor, clearAlpha); + }, + render: render + }; +} + +function WebGLBindingStates(gl, extensions, attributes, capabilities) { + const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); + const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object'); + const vaoAvailable = capabilities.isWebGL2 || extension !== null; + const bindingStates = {}; + const defaultState = createBindingState(null); + let currentState = defaultState; + + function setup(object, material, program, geometry, index) { + let updateBuffers = false; + + if (vaoAvailable) { + const state = getBindingState(geometry, program, material); + + if (currentState !== state) { + currentState = state; + bindVertexArrayObject(currentState.object); + } + + updateBuffers = needsUpdate(geometry, index); + if (updateBuffers) saveCache(geometry, index); + } else { + const wireframe = material.wireframe === true; + + if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) { + currentState.geometry = geometry.id; + currentState.program = program.id; + currentState.wireframe = wireframe; + updateBuffers = true; + } + } + + if (object.isInstancedMesh === true) { + updateBuffers = true; + } + + if (index !== null) { + attributes.update(index, gl.ELEMENT_ARRAY_BUFFER); + } + + if (updateBuffers) { + setupVertexAttributes(object, material, program, geometry); + + if (index !== null) { + gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer); + } + } + } + + function createVertexArrayObject() { + if (capabilities.isWebGL2) return gl.createVertexArray(); + return extension.createVertexArrayOES(); + } + + function bindVertexArrayObject(vao) { + if (capabilities.isWebGL2) return gl.bindVertexArray(vao); + return extension.bindVertexArrayOES(vao); + } + + function deleteVertexArrayObject(vao) { + if (capabilities.isWebGL2) return gl.deleteVertexArray(vao); + return extension.deleteVertexArrayOES(vao); + } + + function getBindingState(geometry, program, material) { + const wireframe = material.wireframe === true; + let programMap = bindingStates[geometry.id]; + + if (programMap === undefined) { + programMap = {}; + bindingStates[geometry.id] = programMap; + } + + let stateMap = programMap[program.id]; + + if (stateMap === undefined) { + stateMap = {}; + programMap[program.id] = stateMap; + } + + let state = stateMap[wireframe]; + + if (state === undefined) { + state = createBindingState(createVertexArrayObject()); + stateMap[wireframe] = state; + } + + return state; + } + + function createBindingState(vao) { + const newAttributes = []; + const enabledAttributes = []; + const attributeDivisors = []; + + for (let i = 0; i < maxVertexAttributes; i++) { + newAttributes[i] = 0; + enabledAttributes[i] = 0; + attributeDivisors[i] = 0; + } + + return { + // for backward compatibility on non-VAO support browser + geometry: null, + program: null, + wireframe: false, + newAttributes: newAttributes, + enabledAttributes: enabledAttributes, + attributeDivisors: attributeDivisors, + object: vao, + attributes: {}, + index: null + }; + } + + function needsUpdate(geometry, index) { + const cachedAttributes = currentState.attributes; + const geometryAttributes = geometry.attributes; + let attributesNum = 0; + + for (const key in geometryAttributes) { + const cachedAttribute = cachedAttributes[key]; + const geometryAttribute = geometryAttributes[key]; + if (cachedAttribute === undefined) return true; + if (cachedAttribute.attribute !== geometryAttribute) return true; + if (cachedAttribute.data !== geometryAttribute.data) return true; + attributesNum++; + } + + if (currentState.attributesNum !== attributesNum) return true; + if (currentState.index !== index) return true; + return false; + } + + function saveCache(geometry, index) { + const cache = {}; + const attributes = geometry.attributes; + let attributesNum = 0; + + for (const key in attributes) { + const attribute = attributes[key]; + const data = {}; + data.attribute = attribute; + + if (attribute.data) { + data.data = attribute.data; + } + + cache[key] = data; + attributesNum++; + } + + currentState.attributes = cache; + currentState.attributesNum = attributesNum; + currentState.index = index; + } + + function initAttributes() { + const newAttributes = currentState.newAttributes; + + for (let i = 0, il = newAttributes.length; i < il; i++) { + newAttributes[i] = 0; + } + } + + function enableAttribute(attribute) { + enableAttributeAndDivisor(attribute, 0); + } + + function enableAttributeAndDivisor(attribute, meshPerAttribute) { + const newAttributes = currentState.newAttributes; + const enabledAttributes = currentState.enabledAttributes; + const attributeDivisors = currentState.attributeDivisors; + newAttributes[attribute] = 1; + + if (enabledAttributes[attribute] === 0) { + gl.enableVertexAttribArray(attribute); + enabledAttributes[attribute] = 1; + } + + if (attributeDivisors[attribute] !== meshPerAttribute) { + const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays'); + extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute); + attributeDivisors[attribute] = meshPerAttribute; + } + } + + function disableUnusedAttributes() { + const newAttributes = currentState.newAttributes; + const enabledAttributes = currentState.enabledAttributes; + + for (let i = 0, il = enabledAttributes.length; i < il; i++) { + if (enabledAttributes[i] !== newAttributes[i]) { + gl.disableVertexAttribArray(i); + enabledAttributes[i] = 0; + } + } + } + + function vertexAttribPointer(index, size, type, normalized, stride, offset) { + if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) { + gl.vertexAttribIPointer(index, size, type, stride, offset); + } else { + gl.vertexAttribPointer(index, size, type, normalized, stride, offset); + } + } + + function setupVertexAttributes(object, material, program, geometry) { + if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) { + if (extensions.get('ANGLE_instanced_arrays') === null) return; + } + + initAttributes(); + const geometryAttributes = geometry.attributes; + const programAttributes = program.getAttributes(); + const materialDefaultAttributeValues = material.defaultAttributeValues; + + for (const name in programAttributes) { + const programAttribute = programAttributes[name]; + + if (programAttribute.location >= 0) { + let geometryAttribute = geometryAttributes[name]; + + if (geometryAttribute === undefined) { + if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix; + if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor; + } + + if (geometryAttribute !== undefined) { + const normalized = geometryAttribute.normalized; + const size = geometryAttribute.itemSize; + const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore + + if (attribute === undefined) continue; + const buffer = attribute.buffer; + const type = attribute.type; + const bytesPerElement = attribute.bytesPerElement; + + if (geometryAttribute.isInterleavedBufferAttribute) { + const data = geometryAttribute.data; + const stride = data.stride; + const offset = geometryAttribute.offset; + + if (data && data.isInstancedInterleavedBuffer) { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute); + } + + if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) { + geometry._maxInstanceCount = data.meshPerAttribute * data.count; + } + } else { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttribute(programAttribute.location + i); + } + } + + gl.bindBuffer(gl.ARRAY_BUFFER, buffer); + + for (let i = 0; i < programAttribute.locationSize; i++) { + vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement); + } + } else { + if (geometryAttribute.isInstancedBufferAttribute) { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute); + } + + if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) { + geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; + } + } else { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttribute(programAttribute.location + i); + } + } + + gl.bindBuffer(gl.ARRAY_BUFFER, buffer); + + for (let i = 0; i < programAttribute.locationSize; i++) { + vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement); + } + } + } else if (materialDefaultAttributeValues !== undefined) { + const value = materialDefaultAttributeValues[name]; + + if (value !== undefined) { + switch (value.length) { + case 2: + gl.vertexAttrib2fv(programAttribute.location, value); + break; + + case 3: + gl.vertexAttrib3fv(programAttribute.location, value); + break; + + case 4: + gl.vertexAttrib4fv(programAttribute.location, value); + break; + + default: + gl.vertexAttrib1fv(programAttribute.location, value); + } + } + } + } + } + + disableUnusedAttributes(); + } + + function dispose() { + reset(); + + for (const geometryId in bindingStates) { + const programMap = bindingStates[geometryId]; + + for (const programId in programMap) { + const stateMap = programMap[programId]; + + for (const wireframe in stateMap) { + deleteVertexArrayObject(stateMap[wireframe].object); + delete stateMap[wireframe]; + } + + delete programMap[programId]; + } + + delete bindingStates[geometryId]; + } + } + + function releaseStatesOfGeometry(geometry) { + if (bindingStates[geometry.id] === undefined) return; + const programMap = bindingStates[geometry.id]; + + for (const programId in programMap) { + const stateMap = programMap[programId]; + + for (const wireframe in stateMap) { + deleteVertexArrayObject(stateMap[wireframe].object); + delete stateMap[wireframe]; + } + + delete programMap[programId]; + } + + delete bindingStates[geometry.id]; + } + + function releaseStatesOfProgram(program) { + for (const geometryId in bindingStates) { + const programMap = bindingStates[geometryId]; + if (programMap[program.id] === undefined) continue; + const stateMap = programMap[program.id]; + + for (const wireframe in stateMap) { + deleteVertexArrayObject(stateMap[wireframe].object); + delete stateMap[wireframe]; + } + + delete programMap[program.id]; + } + } + + function reset() { + resetDefaultState(); + if (currentState === defaultState) return; + currentState = defaultState; + bindVertexArrayObject(currentState.object); + } // for backward-compatilibity + + + function resetDefaultState() { + defaultState.geometry = null; + defaultState.program = null; + defaultState.wireframe = false; + } + + return { + setup: setup, + reset: reset, + resetDefaultState: resetDefaultState, + dispose: dispose, + releaseStatesOfGeometry: releaseStatesOfGeometry, + releaseStatesOfProgram: releaseStatesOfProgram, + initAttributes: initAttributes, + enableAttribute: enableAttribute, + disableUnusedAttributes: disableUnusedAttributes + }; +} + +function WebGLBufferRenderer(gl, extensions, info, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + let mode; + + function setMode(value) { + mode = value; + } + + function render(start, count) { + gl.drawArrays(mode, start, count); + info.update(count, mode, 1); + } + + function renderInstances(start, count, primcount) { + if (primcount === 0) return; + let extension, methodName; + + if (isWebGL2) { + extension = gl; + methodName = 'drawArraysInstanced'; + } else { + extension = extensions.get('ANGLE_instanced_arrays'); + methodName = 'drawArraysInstancedANGLE'; + + if (extension === null) { + console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.'); + return; + } + } + + extension[methodName](mode, start, count, primcount); + info.update(count, mode, primcount); + } // + + + this.setMode = setMode; + this.render = render; + this.renderInstances = renderInstances; +} + +function WebGLCapabilities(gl, extensions, parameters) { + let maxAnisotropy; + + function getMaxAnisotropy() { + if (maxAnisotropy !== undefined) return maxAnisotropy; + + if (extensions.has('EXT_texture_filter_anisotropic') === true) { + const extension = extensions.get('EXT_texture_filter_anisotropic'); + maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT); + } else { + maxAnisotropy = 0; + } + + return maxAnisotropy; + } + + function getMaxPrecision(precision) { + if (precision === 'highp') { + if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) { + return 'highp'; + } + + precision = 'mediump'; + } + + if (precision === 'mediump') { + if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) { + return 'mediump'; + } + } + + return 'lowp'; + } + + const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext; + let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; + const maxPrecision = getMaxPrecision(precision); + + if (maxPrecision !== precision) { + console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.'); + precision = maxPrecision; + } + + const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers'); + const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; + const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS); + const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS); + const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE); + const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE); + const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); + const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS); + const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS); + const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS); + const vertexTextures = maxVertexTextures > 0; + const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float'); + const floatVertexTextures = vertexTextures && floatFragmentTextures; + const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0; + return { + isWebGL2: isWebGL2, + drawBuffers: drawBuffers, + getMaxAnisotropy: getMaxAnisotropy, + getMaxPrecision: getMaxPrecision, + precision: precision, + logarithmicDepthBuffer: logarithmicDepthBuffer, + maxTextures: maxTextures, + maxVertexTextures: maxVertexTextures, + maxTextureSize: maxTextureSize, + maxCubemapSize: maxCubemapSize, + maxAttributes: maxAttributes, + maxVertexUniforms: maxVertexUniforms, + maxVaryings: maxVaryings, + maxFragmentUniforms: maxFragmentUniforms, + vertexTextures: vertexTextures, + floatFragmentTextures: floatFragmentTextures, + floatVertexTextures: floatVertexTextures, + maxSamples: maxSamples + }; +} + +function WebGLClipping(properties) { + const scope = this; + let globalState = null, + numGlobalPlanes = 0, + localClippingEnabled = false, + renderingShadows = false; + const plane = new Plane(), + viewNormalMatrix = new Matrix3(), + uniform = { + value: null, + needsUpdate: false + }; + this.uniform = uniform; + this.numPlanes = 0; + this.numIntersection = 0; + + this.init = function (planes, enableLocalClipping, camera) { + const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to + // run another frame in order to reset the state: + numGlobalPlanes !== 0 || localClippingEnabled; + localClippingEnabled = enableLocalClipping; + globalState = projectPlanes(planes, camera, 0); + numGlobalPlanes = planes.length; + return enabled; + }; + + this.beginShadows = function () { + renderingShadows = true; + projectPlanes(null); + }; + + this.endShadows = function () { + renderingShadows = false; + resetGlobalState(); + }; + + this.setState = function (material, camera, useCache) { + const planes = material.clippingPlanes, + clipIntersection = material.clipIntersection, + clipShadows = material.clipShadows; + const materialProperties = properties.get(material); + + if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) { + // there's no local clipping + if (renderingShadows) { + // there's no global clipping + projectPlanes(null); + } else { + resetGlobalState(); + } + } else { + const nGlobal = renderingShadows ? 0 : numGlobalPlanes, + lGlobal = nGlobal * 4; + let dstArray = materialProperties.clippingState || null; + uniform.value = dstArray; // ensure unique state + + dstArray = projectPlanes(planes, camera, lGlobal, useCache); + + for (let i = 0; i !== lGlobal; ++i) { + dstArray[i] = globalState[i]; + } + + materialProperties.clippingState = dstArray; + this.numIntersection = clipIntersection ? this.numPlanes : 0; + this.numPlanes += nGlobal; + } + }; + + function resetGlobalState() { + if (uniform.value !== globalState) { + uniform.value = globalState; + uniform.needsUpdate = numGlobalPlanes > 0; + } + + scope.numPlanes = numGlobalPlanes; + scope.numIntersection = 0; + } + + function projectPlanes(planes, camera, dstOffset, skipTransform) { + const nPlanes = planes !== null ? planes.length : 0; + let dstArray = null; + + if (nPlanes !== 0) { + dstArray = uniform.value; + + if (skipTransform !== true || dstArray === null) { + const flatSize = dstOffset + nPlanes * 4, + viewMatrix = camera.matrixWorldInverse; + viewNormalMatrix.getNormalMatrix(viewMatrix); + + if (dstArray === null || dstArray.length < flatSize) { + dstArray = new Float32Array(flatSize); + } + + for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) { + plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix); + plane.normal.toArray(dstArray, i4); + dstArray[i4 + 3] = plane.constant; + } + } + + uniform.value = dstArray; + uniform.needsUpdate = true; + } + + scope.numPlanes = nPlanes; + scope.numIntersection = 0; + return dstArray; + } +} + +function WebGLCubeMaps(renderer) { + let cubemaps = new WeakMap(); + + function mapTextureMapping(texture, mapping) { + if (mapping === EquirectangularReflectionMapping) { + texture.mapping = CubeReflectionMapping; + } else if (mapping === EquirectangularRefractionMapping) { + texture.mapping = CubeRefractionMapping; + } + + return texture; + } + + function get(texture) { + if (texture && texture.isTexture && texture.isRenderTargetTexture === false) { + const mapping = texture.mapping; + + if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) { + if (cubemaps.has(texture)) { + const cubemap = cubemaps.get(texture).texture; + return mapTextureMapping(cubemap, texture.mapping); + } else { + const image = texture.image; + + if (image && image.height > 0) { + const currentRenderTarget = renderer.getRenderTarget(); + const renderTarget = new WebGLCubeRenderTarget(image.height / 2); + renderTarget.fromEquirectangularTexture(renderer, texture); + cubemaps.set(texture, renderTarget); + renderer.setRenderTarget(currentRenderTarget); + texture.addEventListener('dispose', onTextureDispose); + return mapTextureMapping(renderTarget.texture, texture.mapping); + } else { + // image not yet ready. try the conversion next frame + return null; + } + } + } + } + + return texture; + } + + function onTextureDispose(event) { + const texture = event.target; + texture.removeEventListener('dispose', onTextureDispose); + const cubemap = cubemaps.get(texture); + + if (cubemap !== undefined) { + cubemaps.delete(texture); + cubemap.dispose(); + } + } + + function dispose() { + cubemaps = new WeakMap(); + } + + return { + get: get, + dispose: dispose + }; +} + +class OrthographicCamera extends Camera { + constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) { + super(); + this.type = 'OrthographicCamera'; + this.zoom = 1; + this.view = null; + this.left = left; + this.right = right; + this.top = top; + this.bottom = bottom; + this.near = near; + this.far = far; + this.updateProjectionMatrix(); + } + + copy(source, recursive) { + super.copy(source, recursive); + this.left = source.left; + this.right = source.right; + this.top = source.top; + this.bottom = source.bottom; + this.near = source.near; + this.far = source.far; + this.zoom = source.zoom; + this.view = source.view === null ? null : Object.assign({}, source.view); + return this; + } + + setViewOffset(fullWidth, fullHeight, x, y, width, height) { + if (this.view === null) { + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + this.updateProjectionMatrix(); + } + + clearViewOffset() { + if (this.view !== null) { + this.view.enabled = false; + } + + this.updateProjectionMatrix(); + } + + updateProjectionMatrix() { + const dx = (this.right - this.left) / (2 * this.zoom); + const dy = (this.top - this.bottom) / (2 * this.zoom); + const cx = (this.right + this.left) / 2; + const cy = (this.top + this.bottom) / 2; + let left = cx - dx; + let right = cx + dx; + let top = cy + dy; + let bottom = cy - dy; + + if (this.view !== null && this.view.enabled) { + const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom; + const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom; + left += scaleW * this.view.offsetX; + right = left + scaleW * this.view.width; + top -= scaleH * this.view.offsetY; + bottom = top - scaleH * this.view.height; + } + + this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far); + this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.zoom = this.zoom; + data.object.left = this.left; + data.object.right = this.right; + data.object.top = this.top; + data.object.bottom = this.bottom; + data.object.near = this.near; + data.object.far = this.far; + if (this.view !== null) data.object.view = Object.assign({}, this.view); + return data; + } + +} + +OrthographicCamera.prototype.isOrthographicCamera = true; + +class RawShaderMaterial extends ShaderMaterial { + constructor(parameters) { + super(parameters); + this.type = 'RawShaderMaterial'; + } + +} + +RawShaderMaterial.prototype.isRawShaderMaterial = true; + +const LOD_MIN = 4; +const LOD_MAX = 8; +const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are +// chosen to approximate a Trowbridge-Reitz distribution function times the +// geometric shadowing function. These sigma values squared must match the +// variance #defines in cube_uv_reflection_fragment.glsl.js. + +const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582]; +const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer +// samples and exit early, but not recompile the shader. + +const MAX_SAMPLES = 20; +const ENCODINGS = { + [LinearEncoding]: 0, + [sRGBEncoding]: 1 +}; + +const _flatCamera = /*@__PURE__*/new OrthographicCamera(); + +const { + _lodPlanes, + _sizeLods, + _sigmas +} = /*@__PURE__*/_createPlanes(); + +const _clearColor = /*@__PURE__*/new Color(); + +let _oldTarget = null; // Golden Ratio + +const PHI = (1 + Math.sqrt(5)) / 2; +const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the +// same axis), used as axis directions evenly spread on a sphere. + +const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)]; +/** + * This class generates a Prefiltered, Mipmapped Radiance Environment Map + * (PMREM) from a cubeMap environment texture. This allows different levels of + * blur to be quickly accessed based on material roughness. It is packed into a + * special CubeUV format that allows us to perform custom interpolation so that + * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap + * chain, it only goes down to the LOD_MIN level (above), and then creates extra + * even more filtered 'mips' at the same LOD_MIN resolution, associated with + * higher roughness levels. In this way we maintain resolution to smoothly + * interpolate diffuse lighting while limiting sampling computation. + * + * Paper: Fast, Accurate Image-Based Lighting + * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view +*/ + +class PMREMGenerator { + constructor(renderer) { + this._renderer = renderer; + this._pingPongRenderTarget = null; + this._blurMaterial = _getBlurShader(MAX_SAMPLES); + this._equirectShader = null; + this._cubemapShader = null; + + this._compileMaterial(this._blurMaterial); + } + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety (the cubeCamera + * is placed at the origin). + */ + + + fromScene(scene, sigma = 0, near = 0.1, far = 100) { + _oldTarget = this._renderer.getRenderTarget(); + + const cubeUVRenderTarget = this._allocateTargets(); + + this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget); + + if (sigma > 0) { + this._blur(cubeUVRenderTarget, 0, 0, sigma); + } + + this._applyPMREM(cubeUVRenderTarget); + + this._cleanup(cubeUVRenderTarget); + + return cubeUVRenderTarget; + } + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * or HDR. The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + */ + + + fromEquirectangular(equirectangular) { + return this._fromTexture(equirectangular); + } + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * or HDR. The ideal input cube size is 256 x 256, + * as this matches best with the 256 x 256 cubemap output. + */ + + + fromCubemap(cubemap) { + return this._fromTexture(cubemap); + } + /** + * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + + + compileCubemapShader() { + if (this._cubemapShader === null) { + this._cubemapShader = _getCubemapShader(); + + this._compileMaterial(this._cubemapShader); + } + } + /** + * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + + + compileEquirectangularShader() { + if (this._equirectShader === null) { + this._equirectShader = _getEquirectShader(); + + this._compileMaterial(this._equirectShader); + } + } + /** + * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, + * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on + * one of them will cause any others to also become unusable. + */ + + + dispose() { + this._blurMaterial.dispose(); + + if (this._cubemapShader !== null) this._cubemapShader.dispose(); + if (this._equirectShader !== null) this._equirectShader.dispose(); + + for (let i = 0; i < _lodPlanes.length; i++) { + _lodPlanes[i].dispose(); + } + } // private interface + + + _cleanup(outputTarget) { + this._pingPongRenderTarget.dispose(); + + this._renderer.setRenderTarget(_oldTarget); + + outputTarget.scissorTest = false; + + _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height); + } + + _fromTexture(texture) { + _oldTarget = this._renderer.getRenderTarget(); + + const cubeUVRenderTarget = this._allocateTargets(texture); + + this._textureToCubeUV(texture, cubeUVRenderTarget); + + this._applyPMREM(cubeUVRenderTarget); + + this._cleanup(cubeUVRenderTarget); + + return cubeUVRenderTarget; + } + + _allocateTargets(texture) { + // warning: null texture is valid + const params = { + magFilter: LinearFilter, + minFilter: LinearFilter, + generateMipmaps: false, + type: HalfFloatType, + format: RGBAFormat, + encoding: LinearEncoding, + depthBuffer: false + }; + + const cubeUVRenderTarget = _createRenderTarget(params); + + cubeUVRenderTarget.depthBuffer = texture ? false : true; + this._pingPongRenderTarget = _createRenderTarget(params); + return cubeUVRenderTarget; + } + + _compileMaterial(material) { + const tmpMesh = new Mesh(_lodPlanes[0], material); + + this._renderer.compile(tmpMesh, _flatCamera); + } + + _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) { + const fov = 90; + const aspect = 1; + const cubeCamera = new PerspectiveCamera(fov, aspect, near, far); + const upSign = [1, -1, 1, 1, 1, 1]; + const forwardSign = [1, 1, 1, -1, -1, -1]; + const renderer = this._renderer; + const originalAutoClear = renderer.autoClear; + const toneMapping = renderer.toneMapping; + renderer.getClearColor(_clearColor); + renderer.toneMapping = NoToneMapping; + renderer.autoClear = false; + const backgroundMaterial = new MeshBasicMaterial({ + name: 'PMREM.Background', + side: BackSide, + depthWrite: false, + depthTest: false + }); + const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial); + let useSolidColor = false; + const background = scene.background; + + if (background) { + if (background.isColor) { + backgroundMaterial.color.copy(background); + scene.background = null; + useSolidColor = true; + } + } else { + backgroundMaterial.color.copy(_clearColor); + useSolidColor = true; + } + + for (let i = 0; i < 6; i++) { + const col = i % 3; + + if (col == 0) { + cubeCamera.up.set(0, upSign[i], 0); + cubeCamera.lookAt(forwardSign[i], 0, 0); + } else if (col == 1) { + cubeCamera.up.set(0, 0, upSign[i]); + cubeCamera.lookAt(0, forwardSign[i], 0); + } else { + cubeCamera.up.set(0, upSign[i], 0); + cubeCamera.lookAt(0, 0, forwardSign[i]); + } + + _setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX); + + renderer.setRenderTarget(cubeUVRenderTarget); + + if (useSolidColor) { + renderer.render(backgroundBox, cubeCamera); + } + + renderer.render(scene, cubeCamera); + } + + backgroundBox.geometry.dispose(); + backgroundBox.material.dispose(); + renderer.toneMapping = toneMapping; + renderer.autoClear = originalAutoClear; + scene.background = background; + } + + _setEncoding(uniform, texture) { + if (this._renderer.capabilities.isWebGL2 === true && texture.format === RGBAFormat && texture.type === UnsignedByteType && texture.encoding === sRGBEncoding) { + uniform.value = ENCODINGS[LinearEncoding]; + } else { + uniform.value = ENCODINGS[texture.encoding]; + } + } + + _textureToCubeUV(texture, cubeUVRenderTarget) { + const renderer = this._renderer; + const isCubeTexture = texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping; + + if (isCubeTexture) { + if (this._cubemapShader == null) { + this._cubemapShader = _getCubemapShader(); + } + } else { + if (this._equirectShader == null) { + this._equirectShader = _getEquirectShader(); + } + } + + const material = isCubeTexture ? this._cubemapShader : this._equirectShader; + const mesh = new Mesh(_lodPlanes[0], material); + const uniforms = material.uniforms; + uniforms['envMap'].value = texture; + + if (!isCubeTexture) { + uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height); + } + + this._setEncoding(uniforms['inputEncoding'], texture); + + _setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX); + + renderer.setRenderTarget(cubeUVRenderTarget); + renderer.render(mesh, _flatCamera); + } + + _applyPMREM(cubeUVRenderTarget) { + const renderer = this._renderer; + const autoClear = renderer.autoClear; + renderer.autoClear = false; + + for (let i = 1; i < TOTAL_LODS; i++) { + const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]); + const poleAxis = _axisDirections[(i - 1) % _axisDirections.length]; + + this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis); + } + + renderer.autoClear = autoClear; + } + /** + * This is a two-pass Gaussian blur for a cubemap. Normally this is done + * vertically and horizontally, but this breaks down on a cube. Here we apply + * the blur latitudinally (around the poles), and then longitudinally (towards + * the poles) to approximate the orthogonally-separable blur. It is least + * accurate at the poles, but still does a decent job. + */ + + + _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) { + const pingPongRenderTarget = this._pingPongRenderTarget; + + this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis); + + this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis); + } + + _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) { + const renderer = this._renderer; + const blurMaterial = this._blurMaterial; + + if (direction !== 'latitudinal' && direction !== 'longitudinal') { + console.error('blur direction must be either latitudinal or longitudinal!'); + } // Number of standard deviations at which to cut off the discrete approximation. + + + const STANDARD_DEVIATIONS = 3; + const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial); + const blurUniforms = blurMaterial.uniforms; + const pixels = _sizeLods[lodIn] - 1; + const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1); + const sigmaPixels = sigmaRadians / radiansPerPixel; + const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES; + + if (samples > MAX_SAMPLES) { + console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`); + } + + const weights = []; + let sum = 0; + + for (let i = 0; i < MAX_SAMPLES; ++i) { + const x = i / sigmaPixels; + const weight = Math.exp(-x * x / 2); + weights.push(weight); + + if (i == 0) { + sum += weight; + } else if (i < samples) { + sum += 2 * weight; + } + } + + for (let i = 0; i < weights.length; i++) { + weights[i] = weights[i] / sum; + } + + blurUniforms['envMap'].value = targetIn.texture; + blurUniforms['samples'].value = samples; + blurUniforms['weights'].value = weights; + blurUniforms['latitudinal'].value = direction === 'latitudinal'; + + if (poleAxis) { + blurUniforms['poleAxis'].value = poleAxis; + } + + blurUniforms['dTheta'].value = radiansPerPixel; + blurUniforms['mipInt'].value = LOD_MAX - lodIn; + const outputSize = _sizeLods[lodOut]; + const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize); + const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0); + + _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize); + + renderer.setRenderTarget(targetOut); + renderer.render(blurMesh, _flatCamera); + } + +} + +function _createPlanes() { + const _lodPlanes = []; + const _sizeLods = []; + const _sigmas = []; + let lod = LOD_MAX; + + for (let i = 0; i < TOTAL_LODS; i++) { + const sizeLod = Math.pow(2, lod); + + _sizeLods.push(sizeLod); + + let sigma = 1.0 / sizeLod; + + if (i > LOD_MAX - LOD_MIN) { + sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1]; + } else if (i == 0) { + sigma = 0; + } + + _sigmas.push(sigma); + + const texelSize = 1.0 / (sizeLod - 1); + const min = -texelSize / 2; + const max = 1 + texelSize / 2; + const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max]; + const cubeFaces = 6; + const vertices = 6; + const positionSize = 3; + const uvSize = 2; + const faceIndexSize = 1; + const position = new Float32Array(positionSize * vertices * cubeFaces); + const uv = new Float32Array(uvSize * vertices * cubeFaces); + const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces); + + for (let face = 0; face < cubeFaces; face++) { + const x = face % 3 * 2 / 3 - 1; + const y = face > 2 ? 0 : -1; + const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0]; + position.set(coordinates, positionSize * vertices * face); + uv.set(uv1, uvSize * vertices * face); + const fill = [face, face, face, face, face, face]; + faceIndex.set(fill, faceIndexSize * vertices * face); + } + + const planes = new BufferGeometry(); + planes.setAttribute('position', new BufferAttribute(position, positionSize)); + planes.setAttribute('uv', new BufferAttribute(uv, uvSize)); + planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize)); + + _lodPlanes.push(planes); + + if (lod > LOD_MIN) { + lod--; + } + } + + return { + _lodPlanes, + _sizeLods, + _sigmas + }; +} + +function _createRenderTarget(params) { + const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params); + cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; + cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; + cubeUVRenderTarget.scissorTest = true; + return cubeUVRenderTarget; +} + +function _setViewport(target, x, y, width, height) { + target.viewport.set(x, y, width, height); + target.scissor.set(x, y, width, height); +} + +function _getBlurShader(maxSamples) { + const weights = new Float32Array(maxSamples); + const poleAxis = new Vector3(0, 1, 0); + const shaderMaterial = new RawShaderMaterial({ + name: 'SphericalGaussianBlur', + defines: { + 'n': maxSamples + }, + uniforms: { + 'envMap': { + value: null + }, + 'samples': { + value: 1 + }, + 'weights': { + value: weights + }, + 'latitudinal': { + value: false + }, + 'dTheta': { + value: 0 + }, + 'mipInt': { + value: 0 + }, + 'poleAxis': { + value: poleAxis + } + }, + vertexShader: _getCommonVertexShader(), + fragmentShader: + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform sampler2D envMap; + uniform int samples; + uniform float weights[ n ]; + uniform bool latitudinal; + uniform float dTheta; + uniform float mipInt; + uniform vec3 poleAxis; + + ${_getEncodings()} + + #define ENVMAP_TYPE_CUBE_UV + #include + + vec3 getSample( float theta, vec3 axis ) { + + float cosTheta = cos( theta ); + // Rodrigues' axis-angle rotation + vec3 sampleDirection = vOutputDirection * cosTheta + + cross( axis, vOutputDirection ) * sin( theta ) + + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); + + return bilinearCubeUV( envMap, sampleDirection, mipInt ); + + } + + void main() { + + vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); + + if ( all( equal( axis, vec3( 0.0 ) ) ) ) { + + axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); + + } + + axis = normalize( axis ); + + gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); + gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); + + for ( int i = 1; i < n; i++ ) { + + if ( i >= samples ) { + + break; + + } + + float theta = dTheta * float( i ); + gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); + gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); + + } + + } + `, + blending: NoBlending, + depthTest: false, + depthWrite: false + }); + return shaderMaterial; +} + +function _getEquirectShader() { + const texelSize = new Vector2(1, 1); + const shaderMaterial = new RawShaderMaterial({ + name: 'EquirectangularToCubeUV', + uniforms: { + 'envMap': { + value: null + }, + 'texelSize': { + value: texelSize + }, + 'inputEncoding': { + value: ENCODINGS[LinearEncoding] + } + }, + vertexShader: _getCommonVertexShader(), + fragmentShader: + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform sampler2D envMap; + uniform vec2 texelSize; + + ${_getEncodings()} + + #include + + void main() { + + gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); + + vec3 outputDirection = normalize( vOutputDirection ); + vec2 uv = equirectUv( outputDirection ); + + vec2 f = fract( uv / texelSize - 0.5 ); + uv -= f * texelSize; + vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + uv.x += texelSize.x; + vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + uv.y += texelSize.y; + vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + uv.x -= texelSize.x; + vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + + vec3 tm = mix( tl, tr, f.x ); + vec3 bm = mix( bl, br, f.x ); + gl_FragColor.rgb = mix( tm, bm, f.y ); + + } + `, + blending: NoBlending, + depthTest: false, + depthWrite: false + }); + return shaderMaterial; +} + +function _getCubemapShader() { + const shaderMaterial = new RawShaderMaterial({ + name: 'CubemapToCubeUV', + uniforms: { + 'envMap': { + value: null + }, + 'inputEncoding': { + value: ENCODINGS[LinearEncoding] + } + }, + vertexShader: _getCommonVertexShader(), + fragmentShader: + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform samplerCube envMap; + + ${_getEncodings()} + + void main() { + + gl_FragColor = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ); + + } + `, + blending: NoBlending, + depthTest: false, + depthWrite: false + }); + return shaderMaterial; +} + +function _getCommonVertexShader() { + return ( + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + attribute vec3 position; + attribute vec2 uv; + attribute float faceIndex; + + varying vec3 vOutputDirection; + + // RH coordinate system; PMREM face-indexing convention + vec3 getDirection( vec2 uv, float face ) { + + uv = 2.0 * uv - 1.0; + + vec3 direction = vec3( uv, 1.0 ); + + if ( face == 0.0 ) { + + direction = direction.zyx; // ( 1, v, u ) pos x + + } else if ( face == 1.0 ) { + + direction = direction.xzy; + direction.xz *= -1.0; // ( -u, 1, -v ) pos y + + } else if ( face == 2.0 ) { + + direction.x *= -1.0; // ( -u, v, 1 ) pos z + + } else if ( face == 3.0 ) { + + direction = direction.zyx; + direction.xz *= -1.0; // ( -1, v, -u ) neg x + + } else if ( face == 4.0 ) { + + direction = direction.xzy; + direction.xy *= -1.0; // ( -u, -1, v ) neg y + + } else if ( face == 5.0 ) { + + direction.z *= -1.0; // ( u, v, -1 ) neg z + + } + + return direction; + + } + + void main() { + + vOutputDirection = getDirection( uv, faceIndex ); + gl_Position = vec4( position, 1.0 ); + + } + ` + ); +} + +function _getEncodings() { + return ( + /* glsl */ + ` + + uniform int inputEncoding; + + #include + + vec4 inputTexelToLinear( vec4 value ) { + + if ( inputEncoding == 0 ) { + + return value; + + } else { + + return sRGBToLinear( value ); + + } + + } + + vec4 envMapTexelToLinear( vec4 color ) { + + return inputTexelToLinear( color ); + + } + ` + ); +} + +function WebGLCubeUVMaps(renderer) { + let cubeUVmaps = new WeakMap(); + let pmremGenerator = null; + + function get(texture) { + if (texture && texture.isTexture && texture.isRenderTargetTexture === false) { + const mapping = texture.mapping; + const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping; + const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping; + + if (isEquirectMap || isCubeMap) { + // equirect/cube map to cubeUV conversion + if (cubeUVmaps.has(texture)) { + return cubeUVmaps.get(texture).texture; + } else { + const image = texture.image; + + if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) { + const currentRenderTarget = renderer.getRenderTarget(); + if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer); + const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture); + cubeUVmaps.set(texture, renderTarget); + renderer.setRenderTarget(currentRenderTarget); + texture.addEventListener('dispose', onTextureDispose); + return renderTarget.texture; + } else { + // image not yet ready. try the conversion next frame + return null; + } + } + } + } + + return texture; + } + + function isCubeTextureComplete(image) { + let count = 0; + const length = 6; + + for (let i = 0; i < length; i++) { + if (image[i] !== undefined) count++; + } + + return count === length; + } + + function onTextureDispose(event) { + const texture = event.target; + texture.removeEventListener('dispose', onTextureDispose); + const cubemapUV = cubeUVmaps.get(texture); + + if (cubemapUV !== undefined) { + cubeUVmaps.delete(texture); + cubemapUV.dispose(); + } + } + + function dispose() { + cubeUVmaps = new WeakMap(); + + if (pmremGenerator !== null) { + pmremGenerator.dispose(); + pmremGenerator = null; + } + } + + return { + get: get, + dispose: dispose + }; +} + +function WebGLExtensions(gl) { + const extensions = {}; + + function getExtension(name) { + if (extensions[name] !== undefined) { + return extensions[name]; + } + + let extension; + + switch (name) { + case 'WEBGL_depth_texture': + extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture'); + break; + + case 'EXT_texture_filter_anisotropic': + extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic'); + break; + + case 'WEBGL_compressed_texture_s3tc': + extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc'); + break; + + case 'WEBGL_compressed_texture_pvrtc': + extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc'); + break; + + default: + extension = gl.getExtension(name); + } + + extensions[name] = extension; + return extension; + } + + return { + has: function (name) { + return getExtension(name) !== null; + }, + init: function (capabilities) { + if (capabilities.isWebGL2) { + getExtension('EXT_color_buffer_float'); + } else { + getExtension('WEBGL_depth_texture'); + getExtension('OES_texture_float'); + getExtension('OES_texture_half_float'); + getExtension('OES_texture_half_float_linear'); + getExtension('OES_standard_derivatives'); + getExtension('OES_element_index_uint'); + getExtension('OES_vertex_array_object'); + getExtension('ANGLE_instanced_arrays'); + } + + getExtension('OES_texture_float_linear'); + getExtension('EXT_color_buffer_half_float'); + getExtension('WEBGL_multisampled_render_to_texture'); + }, + get: function (name) { + const extension = getExtension(name); + + if (extension === null) { + console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.'); + } + + return extension; + } + }; +} + +function WebGLGeometries(gl, attributes, info, bindingStates) { + const geometries = {}; + const wireframeAttributes = new WeakMap(); + + function onGeometryDispose(event) { + const geometry = event.target; + + if (geometry.index !== null) { + attributes.remove(geometry.index); + } + + for (const name in geometry.attributes) { + attributes.remove(geometry.attributes[name]); + } + + geometry.removeEventListener('dispose', onGeometryDispose); + delete geometries[geometry.id]; + const attribute = wireframeAttributes.get(geometry); + + if (attribute) { + attributes.remove(attribute); + wireframeAttributes.delete(geometry); + } + + bindingStates.releaseStatesOfGeometry(geometry); + + if (geometry.isInstancedBufferGeometry === true) { + delete geometry._maxInstanceCount; + } // + + + info.memory.geometries--; + } + + function get(object, geometry) { + if (geometries[geometry.id] === true) return geometry; + geometry.addEventListener('dispose', onGeometryDispose); + geometries[geometry.id] = true; + info.memory.geometries++; + return geometry; + } + + function update(geometry) { + const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. + + for (const name in geometryAttributes) { + attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER); + } // morph targets + + + const morphAttributes = geometry.morphAttributes; + + for (const name in morphAttributes) { + const array = morphAttributes[name]; + + for (let i = 0, l = array.length; i < l; i++) { + attributes.update(array[i], gl.ARRAY_BUFFER); + } + } + } + + function updateWireframeAttribute(geometry) { + const indices = []; + const geometryIndex = geometry.index; + const geometryPosition = geometry.attributes.position; + let version = 0; + + if (geometryIndex !== null) { + const array = geometryIndex.array; + version = geometryIndex.version; + + for (let i = 0, l = array.length; i < l; i += 3) { + const a = array[i + 0]; + const b = array[i + 1]; + const c = array[i + 2]; + indices.push(a, b, b, c, c, a); + } + } else { + const array = geometryPosition.array; + version = geometryPosition.version; + + for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) { + const a = i + 0; + const b = i + 1; + const c = i + 2; + indices.push(a, b, b, c, c, a); + } + } + + const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1); + attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates + // + + const previousAttribute = wireframeAttributes.get(geometry); + if (previousAttribute) attributes.remove(previousAttribute); // + + wireframeAttributes.set(geometry, attribute); + } + + function getWireframeAttribute(geometry) { + const currentAttribute = wireframeAttributes.get(geometry); + + if (currentAttribute) { + const geometryIndex = geometry.index; + + if (geometryIndex !== null) { + // if the attribute is obsolete, create a new one + if (currentAttribute.version < geometryIndex.version) { + updateWireframeAttribute(geometry); + } + } + } else { + updateWireframeAttribute(geometry); + } + + return wireframeAttributes.get(geometry); + } + + return { + get: get, + update: update, + getWireframeAttribute: getWireframeAttribute + }; +} + +function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + let mode; + + function setMode(value) { + mode = value; + } + + let type, bytesPerElement; + + function setIndex(value) { + type = value.type; + bytesPerElement = value.bytesPerElement; + } + + function render(start, count) { + gl.drawElements(mode, count, type, start * bytesPerElement); + info.update(count, mode, 1); + } + + function renderInstances(start, count, primcount) { + if (primcount === 0) return; + let extension, methodName; + + if (isWebGL2) { + extension = gl; + methodName = 'drawElementsInstanced'; + } else { + extension = extensions.get('ANGLE_instanced_arrays'); + methodName = 'drawElementsInstancedANGLE'; + + if (extension === null) { + console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.'); + return; + } + } + + extension[methodName](mode, count, type, start * bytesPerElement, primcount); + info.update(count, mode, primcount); + } // + + + this.setMode = setMode; + this.setIndex = setIndex; + this.render = render; + this.renderInstances = renderInstances; +} + +function WebGLInfo(gl) { + const memory = { + geometries: 0, + textures: 0 + }; + const render = { + frame: 0, + calls: 0, + triangles: 0, + points: 0, + lines: 0 + }; + + function update(count, mode, instanceCount) { + render.calls++; + + switch (mode) { + case gl.TRIANGLES: + render.triangles += instanceCount * (count / 3); + break; + + case gl.LINES: + render.lines += instanceCount * (count / 2); + break; + + case gl.LINE_STRIP: + render.lines += instanceCount * (count - 1); + break; + + case gl.LINE_LOOP: + render.lines += instanceCount * count; + break; + + case gl.POINTS: + render.points += instanceCount * count; + break; + + default: + console.error('THREE.WebGLInfo: Unknown draw mode:', mode); + break; + } + } + + function reset() { + render.frame++; + render.calls = 0; + render.triangles = 0; + render.points = 0; + render.lines = 0; + } + + return { + memory: memory, + render: render, + programs: null, + autoReset: true, + reset: reset, + update: update + }; +} + +class DataTexture2DArray extends Texture { + constructor(data = null, width = 1, height = 1, depth = 1) { + super(null); + this.image = { + data, + width, + height, + depth + }; + this.magFilter = NearestFilter; + this.minFilter = NearestFilter; + this.wrapR = ClampToEdgeWrapping; + this.generateMipmaps = false; + this.flipY = false; + this.unpackAlignment = 1; + } + +} + +DataTexture2DArray.prototype.isDataTexture2DArray = true; + +function numericalSort(a, b) { + return a[0] - b[0]; +} + +function absNumericalSort(a, b) { + return Math.abs(b[1]) - Math.abs(a[1]); +} + +function denormalize(morph, attribute) { + let denominator = 1; + const array = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array; + if (array instanceof Int8Array) denominator = 127;else if (array instanceof Int16Array) denominator = 32767;else if (array instanceof Int32Array) denominator = 2147483647;else console.error('THREE.WebGLMorphtargets: Unsupported morph attribute data type: ', array); + morph.divideScalar(denominator); +} + +function WebGLMorphtargets(gl, capabilities, textures) { + const influencesList = {}; + const morphInfluences = new Float32Array(8); + const morphTextures = new WeakMap(); + const morph = new Vector3(); + const workInfluences = []; + + for (let i = 0; i < 8; i++) { + workInfluences[i] = [i, 0]; + } + + function update(object, geometry, material, program) { + const objectInfluences = object.morphTargetInfluences; + + if (capabilities.isWebGL2 === true) { + // instead of using attributes, the WebGL 2 code path encodes morph targets + // into an array of data textures. Each layer represents a single morph target. + const numberOfMorphTargets = geometry.morphAttributes.position.length; + let entry = morphTextures.get(geometry); + + if (entry === undefined || entry.count !== numberOfMorphTargets) { + if (entry !== undefined) entry.texture.dispose(); + const hasMorphNormals = geometry.morphAttributes.normal !== undefined; + const morphTargets = geometry.morphAttributes.position; + const morphNormals = geometry.morphAttributes.normal || []; + const numberOfVertices = geometry.attributes.position.count; + const numberOfVertexData = hasMorphNormals === true ? 2 : 1; // (v,n) vs. (v) + + let width = numberOfVertices * numberOfVertexData; + let height = 1; + + if (width > capabilities.maxTextureSize) { + height = Math.ceil(width / capabilities.maxTextureSize); + width = capabilities.maxTextureSize; + } + + const buffer = new Float32Array(width * height * 4 * numberOfMorphTargets); + const texture = new DataTexture2DArray(buffer, width, height, numberOfMorphTargets); + texture.format = RGBAFormat; // using RGBA since RGB might be emulated (and is thus slower) + + texture.type = FloatType; + texture.needsUpdate = true; // fill buffer + + const vertexDataStride = numberOfVertexData * 4; + + for (let i = 0; i < numberOfMorphTargets; i++) { + const morphTarget = morphTargets[i]; + const morphNormal = morphNormals[i]; + const offset = width * height * 4 * i; + + for (let j = 0; j < morphTarget.count; j++) { + morph.fromBufferAttribute(morphTarget, j); + if (morphTarget.normalized === true) denormalize(morph, morphTarget); + const stride = j * vertexDataStride; + buffer[offset + stride + 0] = morph.x; + buffer[offset + stride + 1] = morph.y; + buffer[offset + stride + 2] = morph.z; + buffer[offset + stride + 3] = 0; + + if (hasMorphNormals === true) { + morph.fromBufferAttribute(morphNormal, j); + if (morphNormal.normalized === true) denormalize(morph, morphNormal); + buffer[offset + stride + 4] = morph.x; + buffer[offset + stride + 5] = morph.y; + buffer[offset + stride + 6] = morph.z; + buffer[offset + stride + 7] = 0; + } + } + } + + entry = { + count: numberOfMorphTargets, + texture: texture, + size: new Vector2(width, height) + }; + morphTextures.set(geometry, entry); + } // + + + let morphInfluencesSum = 0; + + for (let i = 0; i < objectInfluences.length; i++) { + morphInfluencesSum += objectInfluences[i]; + } + + const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; + program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence); + program.getUniforms().setValue(gl, 'morphTargetInfluences', objectInfluences); + program.getUniforms().setValue(gl, 'morphTargetsTexture', entry.texture, textures); + program.getUniforms().setValue(gl, 'morphTargetsTextureSize', entry.size); + } else { + // When object doesn't have morph target influences defined, we treat it as a 0-length array + // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences + const length = objectInfluences === undefined ? 0 : objectInfluences.length; + let influences = influencesList[geometry.id]; + + if (influences === undefined || influences.length !== length) { + // initialise list + influences = []; + + for (let i = 0; i < length; i++) { + influences[i] = [i, 0]; + } + + influencesList[geometry.id] = influences; + } // Collect influences + + + for (let i = 0; i < length; i++) { + const influence = influences[i]; + influence[0] = i; + influence[1] = objectInfluences[i]; + } + + influences.sort(absNumericalSort); + + for (let i = 0; i < 8; i++) { + if (i < length && influences[i][1]) { + workInfluences[i][0] = influences[i][0]; + workInfluences[i][1] = influences[i][1]; + } else { + workInfluences[i][0] = Number.MAX_SAFE_INTEGER; + workInfluences[i][1] = 0; + } + } + + workInfluences.sort(numericalSort); + const morphTargets = geometry.morphAttributes.position; + const morphNormals = geometry.morphAttributes.normal; + let morphInfluencesSum = 0; + + for (let i = 0; i < 8; i++) { + const influence = workInfluences[i]; + const index = influence[0]; + const value = influence[1]; + + if (index !== Number.MAX_SAFE_INTEGER && value) { + if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) { + geometry.setAttribute('morphTarget' + i, morphTargets[index]); + } + + if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) { + geometry.setAttribute('morphNormal' + i, morphNormals[index]); + } + + morphInfluences[i] = value; + morphInfluencesSum += value; + } else { + if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) { + geometry.deleteAttribute('morphTarget' + i); + } + + if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) { + geometry.deleteAttribute('morphNormal' + i); + } + + morphInfluences[i] = 0; + } + } // GLSL shader uses formula baseinfluence * base + sum(target * influence) + // This allows us to switch between absolute morphs and relative morphs without changing shader code + // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) + + + const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; + program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence); + program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences); + } + } + + return { + update: update + }; +} + +function WebGLObjects(gl, geometries, attributes, info) { + let updateMap = new WeakMap(); + + function update(object) { + const frame = info.render.frame; + const geometry = object.geometry; + const buffergeometry = geometries.get(object, geometry); // Update once per frame + + if (updateMap.get(buffergeometry) !== frame) { + geometries.update(buffergeometry); + updateMap.set(buffergeometry, frame); + } + + if (object.isInstancedMesh) { + if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) { + object.addEventListener('dispose', onInstancedMeshDispose); + } + + attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER); + + if (object.instanceColor !== null) { + attributes.update(object.instanceColor, gl.ARRAY_BUFFER); + } + } + + return buffergeometry; + } + + function dispose() { + updateMap = new WeakMap(); + } + + function onInstancedMeshDispose(event) { + const instancedMesh = event.target; + instancedMesh.removeEventListener('dispose', onInstancedMeshDispose); + attributes.remove(instancedMesh.instanceMatrix); + if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor); + } + + return { + update: update, + dispose: dispose + }; +} + +class DataTexture3D extends Texture { + constructor(data = null, width = 1, height = 1, depth = 1) { + // We're going to add .setXXX() methods for setting properties later. + // Users can still set in DataTexture3D directly. + // + // const texture = new THREE.DataTexture3D( data, width, height, depth ); + // texture.anisotropy = 16; + // + // See #14839 + super(null); + this.image = { + data, + width, + height, + depth + }; + this.magFilter = NearestFilter; + this.minFilter = NearestFilter; + this.wrapR = ClampToEdgeWrapping; + this.generateMipmaps = false; + this.flipY = false; + this.unpackAlignment = 1; + } + +} + +DataTexture3D.prototype.isDataTexture3D = true; + +/** + * Uniforms of a program. + * Those form a tree structure with a special top-level container for the root, + * which you get by calling 'new WebGLUniforms( gl, program )'. + * + * + * Properties of inner nodes including the top-level container: + * + * .seq - array of nested uniforms + * .map - nested uniforms by name + * + * + * Methods of all nodes except the top-level container: + * + * .setValue( gl, value, [textures] ) + * + * uploads a uniform value(s) + * the 'textures' parameter is needed for sampler uniforms + * + * + * Static methods of the top-level container (textures factorizations): + * + * .upload( gl, seq, values, textures ) + * + * sets uniforms in 'seq' to 'values[id].value' + * + * .seqWithValue( seq, values ) : filteredSeq + * + * filters 'seq' entries with corresponding entry in values + * + * + * Methods of the top-level container (textures factorizations): + * + * .setValue( gl, name, value, textures ) + * + * sets uniform with name 'name' to 'value' + * + * .setOptional( gl, obj, prop ) + * + * like .set for an optional property of the object + * + */ +const emptyTexture = new Texture(); +const emptyTexture2dArray = new DataTexture2DArray(); +const emptyTexture3d = new DataTexture3D(); +const emptyCubeTexture = new CubeTexture(); // --- Utilities --- +// Array Caches (provide typed arrays for temporary by size) + +const arrayCacheF32 = []; +const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms + +const mat4array = new Float32Array(16); +const mat3array = new Float32Array(9); +const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices + +function flatten(array, nBlocks, blockSize) { + const firstElem = array[0]; + if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem ) + // see http://jacksondunstan.com/articles/983 + + const n = nBlocks * blockSize; + let r = arrayCacheF32[n]; + + if (r === undefined) { + r = new Float32Array(n); + arrayCacheF32[n] = r; + } + + if (nBlocks !== 0) { + firstElem.toArray(r, 0); + + for (let i = 1, offset = 0; i !== nBlocks; ++i) { + offset += blockSize; + array[i].toArray(r, offset); + } + } + + return r; +} + +function arraysEqual(a, b) { + if (a.length !== b.length) return false; + + for (let i = 0, l = a.length; i < l; i++) { + if (a[i] !== b[i]) return false; + } + + return true; +} + +function copyArray(a, b) { + for (let i = 0, l = b.length; i < l; i++) { + a[i] = b[i]; + } +} // Texture unit allocation + + +function allocTexUnits(textures, n) { + let r = arrayCacheI32[n]; + + if (r === undefined) { + r = new Int32Array(n); + arrayCacheI32[n] = r; + } + + for (let i = 0; i !== n; ++i) { + r[i] = textures.allocateTextureUnit(); + } + + return r; +} // --- Setters --- +// Note: Defining these methods externally, because they come in a bunch +// and this way their names minify. +// Single scalar + + +function setValueV1f(gl, v) { + const cache = this.cache; + if (cache[0] === v) return; + gl.uniform1f(this.addr, v); + cache[0] = v; +} // Single float vector (from flat array or THREE.VectorN) + + +function setValueV2f(gl, v) { + const cache = this.cache; + + if (v.x !== undefined) { + if (cache[0] !== v.x || cache[1] !== v.y) { + gl.uniform2f(this.addr, v.x, v.y); + cache[0] = v.x; + cache[1] = v.y; + } + } else { + if (arraysEqual(cache, v)) return; + gl.uniform2fv(this.addr, v); + copyArray(cache, v); + } +} + +function setValueV3f(gl, v) { + const cache = this.cache; + + if (v.x !== undefined) { + if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) { + gl.uniform3f(this.addr, v.x, v.y, v.z); + cache[0] = v.x; + cache[1] = v.y; + cache[2] = v.z; + } + } else if (v.r !== undefined) { + if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) { + gl.uniform3f(this.addr, v.r, v.g, v.b); + cache[0] = v.r; + cache[1] = v.g; + cache[2] = v.b; + } + } else { + if (arraysEqual(cache, v)) return; + gl.uniform3fv(this.addr, v); + copyArray(cache, v); + } +} + +function setValueV4f(gl, v) { + const cache = this.cache; + + if (v.x !== undefined) { + if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) { + gl.uniform4f(this.addr, v.x, v.y, v.z, v.w); + cache[0] = v.x; + cache[1] = v.y; + cache[2] = v.z; + cache[3] = v.w; + } + } else { + if (arraysEqual(cache, v)) return; + gl.uniform4fv(this.addr, v); + copyArray(cache, v); + } +} // Single matrix (from flat array or THREE.MatrixN) + + +function setValueM2(gl, v) { + const cache = this.cache; + const elements = v.elements; + + if (elements === undefined) { + if (arraysEqual(cache, v)) return; + gl.uniformMatrix2fv(this.addr, false, v); + copyArray(cache, v); + } else { + if (arraysEqual(cache, elements)) return; + mat2array.set(elements); + gl.uniformMatrix2fv(this.addr, false, mat2array); + copyArray(cache, elements); + } +} + +function setValueM3(gl, v) { + const cache = this.cache; + const elements = v.elements; + + if (elements === undefined) { + if (arraysEqual(cache, v)) return; + gl.uniformMatrix3fv(this.addr, false, v); + copyArray(cache, v); + } else { + if (arraysEqual(cache, elements)) return; + mat3array.set(elements); + gl.uniformMatrix3fv(this.addr, false, mat3array); + copyArray(cache, elements); + } +} + +function setValueM4(gl, v) { + const cache = this.cache; + const elements = v.elements; + + if (elements === undefined) { + if (arraysEqual(cache, v)) return; + gl.uniformMatrix4fv(this.addr, false, v); + copyArray(cache, v); + } else { + if (arraysEqual(cache, elements)) return; + mat4array.set(elements); + gl.uniformMatrix4fv(this.addr, false, mat4array); + copyArray(cache, elements); + } +} // Single integer / boolean + + +function setValueV1i(gl, v) { + const cache = this.cache; + if (cache[0] === v) return; + gl.uniform1i(this.addr, v); + cache[0] = v; +} // Single integer / boolean vector (from flat array) + + +function setValueV2i(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform2iv(this.addr, v); + copyArray(cache, v); +} + +function setValueV3i(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform3iv(this.addr, v); + copyArray(cache, v); +} + +function setValueV4i(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform4iv(this.addr, v); + copyArray(cache, v); +} // Single unsigned integer + + +function setValueV1ui(gl, v) { + const cache = this.cache; + if (cache[0] === v) return; + gl.uniform1ui(this.addr, v); + cache[0] = v; +} // Single unsigned integer vector (from flat array) + + +function setValueV2ui(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform2uiv(this.addr, v); + copyArray(cache, v); +} + +function setValueV3ui(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform3uiv(this.addr, v); + copyArray(cache, v); +} + +function setValueV4ui(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform4uiv(this.addr, v); + copyArray(cache, v); +} // Single texture (2D / Cube) + + +function setValueT1(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.safeSetTexture2D(v || emptyTexture, unit); +} + +function setValueT3D1(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.setTexture3D(v || emptyTexture3d, unit); +} + +function setValueT6(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.safeSetTextureCube(v || emptyCubeTexture, unit); +} + +function setValueT2DArray1(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.setTexture2DArray(v || emptyTexture2dArray, unit); +} // Helper to pick the right setter for the singular case + + +function getSingularSetter(type) { + switch (type) { + case 0x1406: + return setValueV1f; + // FLOAT + + case 0x8b50: + return setValueV2f; + // _VEC2 + + case 0x8b51: + return setValueV3f; + // _VEC3 + + case 0x8b52: + return setValueV4f; + // _VEC4 + + case 0x8b5a: + return setValueM2; + // _MAT2 + + case 0x8b5b: + return setValueM3; + // _MAT3 + + case 0x8b5c: + return setValueM4; + // _MAT4 + + case 0x1404: + case 0x8b56: + return setValueV1i; + // INT, BOOL + + case 0x8b53: + case 0x8b57: + return setValueV2i; + // _VEC2 + + case 0x8b54: + case 0x8b58: + return setValueV3i; + // _VEC3 + + case 0x8b55: + case 0x8b59: + return setValueV4i; + // _VEC4 + + case 0x1405: + return setValueV1ui; + // UINT + + case 0x8dc6: + return setValueV2ui; + // _VEC2 + + case 0x8dc7: + return setValueV3ui; + // _VEC3 + + case 0x8dc8: + return setValueV4ui; + // _VEC4 + + case 0x8b5e: // SAMPLER_2D + + case 0x8d66: // SAMPLER_EXTERNAL_OES + + case 0x8dca: // INT_SAMPLER_2D + + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + + case 0x8b62: + // SAMPLER_2D_SHADOW + return setValueT1; + + case 0x8b5f: // SAMPLER_3D + + case 0x8dcb: // INT_SAMPLER_3D + + case 0x8dd3: + // UNSIGNED_INT_SAMPLER_3D + return setValueT3D1; + + case 0x8b60: // SAMPLER_CUBE + + case 0x8dcc: // INT_SAMPLER_CUBE + + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + + case 0x8dc5: + // SAMPLER_CUBE_SHADOW + return setValueT6; + + case 0x8dc1: // SAMPLER_2D_ARRAY + + case 0x8dcf: // INT_SAMPLER_2D_ARRAY + + case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY + + case 0x8dc4: + // SAMPLER_2D_ARRAY_SHADOW + return setValueT2DArray1; + } +} // Array of scalars + + +function setValueV1fArray(gl, v) { + gl.uniform1fv(this.addr, v); +} // Array of vectors (from flat array or array of THREE.VectorN) + + +function setValueV2fArray(gl, v) { + const data = flatten(v, this.size, 2); + gl.uniform2fv(this.addr, data); +} + +function setValueV3fArray(gl, v) { + const data = flatten(v, this.size, 3); + gl.uniform3fv(this.addr, data); +} + +function setValueV4fArray(gl, v) { + const data = flatten(v, this.size, 4); + gl.uniform4fv(this.addr, data); +} // Array of matrices (from flat array or array of THREE.MatrixN) + + +function setValueM2Array(gl, v) { + const data = flatten(v, this.size, 4); + gl.uniformMatrix2fv(this.addr, false, data); +} + +function setValueM3Array(gl, v) { + const data = flatten(v, this.size, 9); + gl.uniformMatrix3fv(this.addr, false, data); +} + +function setValueM4Array(gl, v) { + const data = flatten(v, this.size, 16); + gl.uniformMatrix4fv(this.addr, false, data); +} // Array of integer / boolean + + +function setValueV1iArray(gl, v) { + gl.uniform1iv(this.addr, v); +} // Array of integer / boolean vectors (from flat array) + + +function setValueV2iArray(gl, v) { + gl.uniform2iv(this.addr, v); +} + +function setValueV3iArray(gl, v) { + gl.uniform3iv(this.addr, v); +} + +function setValueV4iArray(gl, v) { + gl.uniform4iv(this.addr, v); +} // Array of unsigned integer + + +function setValueV1uiArray(gl, v) { + gl.uniform1uiv(this.addr, v); +} // Array of unsigned integer vectors (from flat array) + + +function setValueV2uiArray(gl, v) { + gl.uniform2uiv(this.addr, v); +} + +function setValueV3uiArray(gl, v) { + gl.uniform3uiv(this.addr, v); +} + +function setValueV4uiArray(gl, v) { + gl.uniform4uiv(this.addr, v); +} // Array of textures (2D / 3D / Cube / 2DArray) + + +function setValueT1Array(gl, v, textures) { + const n = v.length; + const units = allocTexUnits(textures, n); + gl.uniform1iv(this.addr, units); + + for (let i = 0; i !== n; ++i) { + textures.safeSetTexture2D(v[i] || emptyTexture, units[i]); + } +} + +function setValueT3DArray(gl, v, textures) { + const n = v.length; + const units = allocTexUnits(textures, n); + gl.uniform1iv(this.addr, units); + + for (let i = 0; i !== n; ++i) { + textures.setTexture3D(v[i] || emptyTexture3d, units[i]); + } +} + +function setValueT6Array(gl, v, textures) { + const n = v.length; + const units = allocTexUnits(textures, n); + gl.uniform1iv(this.addr, units); + + for (let i = 0; i !== n; ++i) { + textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]); + } +} + +function setValueT2DArrayArray(gl, v, textures) { + const n = v.length; + const units = allocTexUnits(textures, n); + gl.uniform1iv(this.addr, units); + + for (let i = 0; i !== n; ++i) { + textures.setTexture2DArray(v[i] || emptyTexture2dArray, units[i]); + } +} // Helper to pick the right setter for a pure (bottom-level) array + + +function getPureArraySetter(type) { + switch (type) { + case 0x1406: + return setValueV1fArray; + // FLOAT + + case 0x8b50: + return setValueV2fArray; + // _VEC2 + + case 0x8b51: + return setValueV3fArray; + // _VEC3 + + case 0x8b52: + return setValueV4fArray; + // _VEC4 + + case 0x8b5a: + return setValueM2Array; + // _MAT2 + + case 0x8b5b: + return setValueM3Array; + // _MAT3 + + case 0x8b5c: + return setValueM4Array; + // _MAT4 + + case 0x1404: + case 0x8b56: + return setValueV1iArray; + // INT, BOOL + + case 0x8b53: + case 0x8b57: + return setValueV2iArray; + // _VEC2 + + case 0x8b54: + case 0x8b58: + return setValueV3iArray; + // _VEC3 + + case 0x8b55: + case 0x8b59: + return setValueV4iArray; + // _VEC4 + + case 0x1405: + return setValueV1uiArray; + // UINT + + case 0x8dc6: + return setValueV2uiArray; + // _VEC2 + + case 0x8dc7: + return setValueV3uiArray; + // _VEC3 + + case 0x8dc8: + return setValueV4uiArray; + // _VEC4 + + case 0x8b5e: // SAMPLER_2D + + case 0x8d66: // SAMPLER_EXTERNAL_OES + + case 0x8dca: // INT_SAMPLER_2D + + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + + case 0x8b62: + // SAMPLER_2D_SHADOW + return setValueT1Array; + + case 0x8b5f: // SAMPLER_3D + + case 0x8dcb: // INT_SAMPLER_3D + + case 0x8dd3: + // UNSIGNED_INT_SAMPLER_3D + return setValueT3DArray; + + case 0x8b60: // SAMPLER_CUBE + + case 0x8dcc: // INT_SAMPLER_CUBE + + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + + case 0x8dc5: + // SAMPLER_CUBE_SHADOW + return setValueT6Array; + + case 0x8dc1: // SAMPLER_2D_ARRAY + + case 0x8dcf: // INT_SAMPLER_2D_ARRAY + + case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY + + case 0x8dc4: + // SAMPLER_2D_ARRAY_SHADOW + return setValueT2DArrayArray; + } +} // --- Uniform Classes --- + + +function SingleUniform(id, activeInfo, addr) { + this.id = id; + this.addr = addr; + this.cache = []; + this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG +} + +function PureArrayUniform(id, activeInfo, addr) { + this.id = id; + this.addr = addr; + this.cache = []; + this.size = activeInfo.size; + this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG +} + +PureArrayUniform.prototype.updateCache = function (data) { + const cache = this.cache; + + if (data instanceof Float32Array && cache.length !== data.length) { + this.cache = new Float32Array(data.length); + } + + copyArray(cache, data); +}; + +function StructuredUniform(id) { + this.id = id; + this.seq = []; + this.map = {}; +} + +StructuredUniform.prototype.setValue = function (gl, value, textures) { + const seq = this.seq; + + for (let i = 0, n = seq.length; i !== n; ++i) { + const u = seq[i]; + u.setValue(gl, value[u.id], textures); + } +}; // --- Top-level --- +// Parser - builds up the property tree from the path strings + + +const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts +// - the identifier (member name or array index) +// - followed by an optional right bracket (found when array index) +// - followed by an optional left bracket or dot (type of subscript) +// +// Note: These portions can be read in a non-overlapping fashion and +// allow straightforward parsing of the hierarchy that WebGL encodes +// in the uniform names. + +function addUniform(container, uniformObject) { + container.seq.push(uniformObject); + container.map[uniformObject.id] = uniformObject; +} + +function parseUniform(activeInfo, addr, container) { + const path = activeInfo.name, + pathLength = path.length; // reset RegExp object, because of the early exit of a previous run + + RePathPart.lastIndex = 0; + + while (true) { + const match = RePathPart.exec(path), + matchEnd = RePathPart.lastIndex; + let id = match[1]; + const idIsIndex = match[2] === ']', + subscript = match[3]; + if (idIsIndex) id = id | 0; // convert to integer + + if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) { + // bare name or "pure" bottom-level array "[0]" suffix + addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr)); + break; + } else { + // step into inner node / create it in case it doesn't exist + const map = container.map; + let next = map[id]; + + if (next === undefined) { + next = new StructuredUniform(id); + addUniform(container, next); + } + + container = next; + } + } +} // Root Container + + +function WebGLUniforms(gl, program) { + this.seq = []; + this.map = {}; + const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS); + + for (let i = 0; i < n; ++i) { + const info = gl.getActiveUniform(program, i), + addr = gl.getUniformLocation(program, info.name); + parseUniform(info, addr, this); + } +} + +WebGLUniforms.prototype.setValue = function (gl, name, value, textures) { + const u = this.map[name]; + if (u !== undefined) u.setValue(gl, value, textures); +}; + +WebGLUniforms.prototype.setOptional = function (gl, object, name) { + const v = object[name]; + if (v !== undefined) this.setValue(gl, name, v); +}; // Static interface + + +WebGLUniforms.upload = function (gl, seq, values, textures) { + for (let i = 0, n = seq.length; i !== n; ++i) { + const u = seq[i], + v = values[u.id]; + + if (v.needsUpdate !== false) { + // note: always updating when .needsUpdate is undefined + u.setValue(gl, v.value, textures); + } + } +}; + +WebGLUniforms.seqWithValue = function (seq, values) { + const r = []; + + for (let i = 0, n = seq.length; i !== n; ++i) { + const u = seq[i]; + if (u.id in values) r.push(u); + } + + return r; +}; + +function WebGLShader(gl, type, string) { + const shader = gl.createShader(type); + gl.shaderSource(shader, string); + gl.compileShader(shader); + return shader; +} + +const COMPLETION_STATUS_KHR = 0x91B1; +let programIdCount = 0; + +function addLineNumbers(string) { + const lines = string.split('\n'); + + for (let i = 0; i < lines.length; i++) { + lines[i] = i + 1 + ': ' + lines[i]; + } + + return lines.join('\n'); +} + +function getEncodingComponents(encoding) { + switch (encoding) { + case LinearEncoding: + return ['Linear', '( value )']; + + case sRGBEncoding: + return ['sRGB', '( value )']; + + default: + console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding); + return ['Linear', '( value )']; + } +} + +function getShaderErrors(gl, shader, type) { + const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS); + const errors = gl.getShaderInfoLog(shader).trim(); + if (status && errors === '') return ''; // --enable-privileged-webgl-extension + // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); + + return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers(gl.getShaderSource(shader)); +} + +function getTexelDecodingFunction(functionName, encoding) { + const components = getEncodingComponents(encoding); + return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }'; +} + +function getTexelEncodingFunction(functionName, encoding) { + const components = getEncodingComponents(encoding); + return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }'; +} + +function getToneMappingFunction(functionName, toneMapping) { + let toneMappingName; + + switch (toneMapping) { + case LinearToneMapping: + toneMappingName = 'Linear'; + break; + + case ReinhardToneMapping: + toneMappingName = 'Reinhard'; + break; + + case CineonToneMapping: + toneMappingName = 'OptimizedCineon'; + break; + + case ACESFilmicToneMapping: + toneMappingName = 'ACESFilmic'; + break; + + case CustomToneMapping: + toneMappingName = 'Custom'; + break; + + default: + console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping); + toneMappingName = 'Linear'; + } + + return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; +} + +function generateExtensions(parameters) { + const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '']; + return chunks.filter(filterEmptyLine).join('\n'); +} + +function generateDefines(defines) { + const chunks = []; + + for (const name in defines) { + const value = defines[name]; + if (value === false) continue; + chunks.push('#define ' + name + ' ' + value); + } + + return chunks.join('\n'); +} + +function fetchAttributeLocations(gl, program) { + const attributes = {}; + const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES); + + for (let i = 0; i < n; i++) { + const info = gl.getActiveAttrib(program, i); + const name = info.name; + let locationSize = 1; + if (info.type === gl.FLOAT_MAT2) locationSize = 2; + if (info.type === gl.FLOAT_MAT3) locationSize = 3; + if (info.type === gl.FLOAT_MAT4) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); + + attributes[name] = { + type: info.type, + location: gl.getAttribLocation(program, name), + locationSize: locationSize + }; + } + + return attributes; +} + +function filterEmptyLine(string) { + return string !== ''; +} + +function replaceLightNums(string, parameters) { + return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows); +} + +function replaceClippingPlaneNums(string, parameters) { + return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection); +} // Resolve Includes + + +const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; + +function resolveIncludes(string) { + return string.replace(includePattern, includeReplacer); +} + +function includeReplacer(match, include) { + const string = ShaderChunk[include]; + + if (string === undefined) { + throw new Error('Can not resolve #include <' + include + '>'); + } + + return resolveIncludes(string); +} // Unroll Loops + + +const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; +const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; + +function unrollLoops(string) { + return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer); +} + +function deprecatedLoopReplacer(match, start, end, snippet) { + console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.'); + return loopReplacer(match, start, end, snippet); +} + +function loopReplacer(match, start, end, snippet) { + let string = ''; + + for (let i = parseInt(start); i < parseInt(end); i++) { + string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i); + } + + return string; +} // + + +function generatePrecision(parameters) { + let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;'; + + if (parameters.precision === 'highp') { + precisionstring += '\n#define HIGH_PRECISION'; + } else if (parameters.precision === 'mediump') { + precisionstring += '\n#define MEDIUM_PRECISION'; + } else if (parameters.precision === 'lowp') { + precisionstring += '\n#define LOW_PRECISION'; + } + + return precisionstring; +} + +function generateShadowMapTypeDefine(parameters) { + let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; + + if (parameters.shadowMapType === PCFShadowMap) { + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; + } else if (parameters.shadowMapType === PCFSoftShadowMap) { + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; + } else if (parameters.shadowMapType === VSMShadowMap) { + shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; + } + + return shadowMapTypeDefine; +} + +function generateEnvMapTypeDefine(parameters) { + let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + + if (parameters.envMap) { + switch (parameters.envMapMode) { + case CubeReflectionMapping: + case CubeRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + break; + + case CubeUVReflectionMapping: + case CubeUVRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; + break; + } + } + + return envMapTypeDefine; +} + +function generateEnvMapModeDefine(parameters) { + let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; + + if (parameters.envMap) { + switch (parameters.envMapMode) { + case CubeRefractionMapping: + case CubeUVRefractionMapping: + envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; + break; + } + } + + return envMapModeDefine; +} + +function generateEnvMapBlendingDefine(parameters) { + let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; + + if (parameters.envMap) { + switch (parameters.combine) { + case MultiplyOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; + break; + + case MixOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; + break; + + case AddOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; + break; + } + } + + return envMapBlendingDefine; +} + +function WebGLProgram(renderer, cacheKey, parameters, bindingStates) { + // TODO Send this event to Three.js DevTools + // console.log( 'WebGLProgram', cacheKey ); + const gl = renderer.getContext(); + const defines = parameters.defines; + let vertexShader = parameters.vertexShader; + let fragmentShader = parameters.fragmentShader; + const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters); + const envMapTypeDefine = generateEnvMapTypeDefine(parameters); + const envMapModeDefine = generateEnvMapModeDefine(parameters); + const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters); + const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters); + const customDefines = generateDefines(defines); + const program = gl.createProgram(); + let prefixVertex, prefixFragment; + let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; + + if (parameters.isRawShaderMaterial) { + prefixVertex = [customDefines].filter(filterEmptyLine).join('\n'); + + if (prefixVertex.length > 0) { + prefixVertex += '\n'; + } + + prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n'); + + if (prefixFragment.length > 0) { + prefixFragment += '\n'; + } + } else { + prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_TEXTURE' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n'); + prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below + parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below + parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.specularColorMap ? getTexelDecodingFunction('specularColorMapTexelToLinear', parameters.specularColorMapEncoding) : '', parameters.sheenColorMap ? getTexelDecodingFunction('sheenColorMapTexelToLinear', parameters.sheenColorMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n'); + } + + vertexShader = resolveIncludes(vertexShader); + vertexShader = replaceLightNums(vertexShader, parameters); + vertexShader = replaceClippingPlaneNums(vertexShader, parameters); + fragmentShader = resolveIncludes(fragmentShader); + fragmentShader = replaceLightNums(fragmentShader, parameters); + fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters); + vertexShader = unrollLoops(vertexShader); + fragmentShader = unrollLoops(fragmentShader); + + if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) { + // GLSL 3.0 conversion for built-in materials and ShaderMaterial + versionString = '#version 300 es\n'; + prefixVertex = ['precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex; + prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'layout(location = 0) out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment; + } + + const vertexGlsl = versionString + prefixVertex + vertexShader; + const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); + // console.log( '*FRAGMENT*', fragmentGlsl ); + + const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl); + const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl); + gl.attachShader(program, glVertexShader); + gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0. + + if (parameters.index0AttributeName !== undefined) { + gl.bindAttribLocation(program, 0, parameters.index0AttributeName); + } else if (parameters.morphTargets === true) { + // programs with morphTargets displace position out of attribute 0 + gl.bindAttribLocation(program, 0, 'position'); + } + + gl.linkProgram(program); + + function onFirstUse() { + // check for link errors + if (renderer.debug.checkShaderErrors) { + const programLog = gl.getProgramInfoLog(program).trim(); + const vertexLog = gl.getShaderInfoLog(glVertexShader).trim(); + const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim(); + let runnable = true; + let haveDiagnostics = true; + + if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) { + runnable = false; + const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex'); + const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment'); + console.error('THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors); + } else if (programLog !== '') { + console.warn('THREE.WebGLProgram: Program Info Log:', programLog); + } else if (vertexLog === '' || fragmentLog === '') { + haveDiagnostics = false; + } + + if (haveDiagnostics) { + this.diagnostics = { + runnable: runnable, + programLog: programLog, + vertexShader: { + log: vertexLog, + prefix: prefixVertex + }, + fragmentShader: { + log: fragmentLog, + prefix: prefixFragment + } + }; + } + } // Clean up + // Crashes in iOS9 and iOS10. #18402 + // gl.detachShader( program, glVertexShader ); + // gl.detachShader( program, glFragmentShader ); + + + gl.deleteShader(glVertexShader); + gl.deleteShader(glFragmentShader); + cachedUniforms = new WebGLUniforms(gl, program); + cachedAttributes = fetchAttributeLocations(gl, program); + } // set up caching for uniform locations + + + let cachedUniforms; + + this.getUniforms = function () { + if (cachedUniforms === undefined) { + // Populates cachedUniforms and cachedAttributes + onFirstUse.call(this); + } + + return cachedUniforms; + }; // set up caching for attribute locations + + + let cachedAttributes; + + this.getAttributes = function () { + if (cachedAttributes === undefined) { + // Populates cachedAttributes and cachedUniforms + onFirstUse.call(this); + } + + return cachedAttributes; + }; // indicate when the program is ready to be used + // if the KHR_parallel_shader_compile extension isn't supported, flag the + // program as ready immediately. It may cause a stall when it's first used. + + + let programReady = !parameters.rendererExtensionParallelShaderCompile; + + this.isReady = function () { + if (!programReady) { + programReady = gl.getProgramParameter(program, COMPLETION_STATUS_KHR); + } + + return programReady; + }; // free resource + + + this.destroy = function () { + bindingStates.releaseStatesOfProgram(this); + gl.deleteProgram(program); + this.program = undefined; + }; // + + + this.name = parameters.shaderName; + this.id = programIdCount++; + this.cacheKey = cacheKey; + this.usedTimes = 1; + this.program = program; + this.vertexShader = glVertexShader; + this.fragmentShader = glFragmentShader; + return this; +} + +let _id = 0; + +class WebGLShaderCache { + constructor() { + this.shaderCache = new Map(); + this.materialCache = new Map(); + } + + update(material) { + const vertexShader = material.vertexShader; + const fragmentShader = material.fragmentShader; + + const vertexShaderStage = this._getShaderStage(vertexShader); + + const fragmentShaderStage = this._getShaderStage(fragmentShader); + + const materialShaders = this._getShaderCacheForMaterial(material); + + if (materialShaders.has(vertexShaderStage) === false) { + materialShaders.add(vertexShaderStage); + vertexShaderStage.usedTimes++; + } + + if (materialShaders.has(fragmentShaderStage) === false) { + materialShaders.add(fragmentShaderStage); + fragmentShaderStage.usedTimes++; + } + + return this; + } + + remove(material) { + const materialShaders = this.materialCache.get(material); + + for (const shaderStage of materialShaders) { + shaderStage.usedTimes--; + if (shaderStage.usedTimes === 0) this.shaderCache.delete(shaderStage); + } + + this.materialCache.delete(material); + return this; + } + + getVertexShaderID(material) { + return this._getShaderStage(material.vertexShader).id; + } + + getFragmentShaderID(material) { + return this._getShaderStage(material.fragmentShader).id; + } + + dispose() { + this.shaderCache.clear(); + this.materialCache.clear(); + } + + _getShaderCacheForMaterial(material) { + const cache = this.materialCache; + + if (cache.has(material) === false) { + cache.set(material, new Set()); + } + + return cache.get(material); + } + + _getShaderStage(code) { + const cache = this.shaderCache; + + if (cache.has(code) === false) { + const stage = new WebGLShaderStage(); + cache.set(code, stage); + } + + return cache.get(code); + } + +} + +class WebGLShaderStage { + constructor() { + this.id = _id++; + this.usedTimes = 0; + } + +} + +function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) { + const _programLayers = new Layers(); + + const _customShaders = new WebGLShaderCache(); + + const programs = []; + const isWebGL2 = capabilities.isWebGL2; + const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; + const floatVertexTextures = capabilities.floatVertexTextures; + const maxVertexUniforms = capabilities.maxVertexUniforms; + const vertexTextures = capabilities.vertexTextures; + let precision = capabilities.precision; + const shaderIDs = { + MeshDepthMaterial: 'depth', + MeshDistanceMaterial: 'distanceRGBA', + MeshNormalMaterial: 'normal', + MeshBasicMaterial: 'basic', + MeshLambertMaterial: 'lambert', + MeshPhongMaterial: 'phong', + MeshToonMaterial: 'toon', + MeshStandardMaterial: 'physical', + MeshPhysicalMaterial: 'physical', + MeshMatcapMaterial: 'matcap', + LineBasicMaterial: 'basic', + LineDashedMaterial: 'dashed', + PointsMaterial: 'points', + ShadowMaterial: 'shadow', + SpriteMaterial: 'sprite' + }; + + function getMaxBones(object) { + const skeleton = object.skeleton; + const bones = skeleton.bones; + + if (floatVertexTextures) { + return 1024; + } else { + // default for when object is not specified + // ( for example when prebuilding shader to be used with multiple objects ) + // + // - leave some extra space for other uniforms + // - limit here is ANGLE's 254 max uniform vectors + // (up to 54 should be safe) + const nVertexUniforms = maxVertexUniforms; + const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4); + const maxBones = Math.min(nVertexMatrices, bones.length); + + if (maxBones < bones.length) { + console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.'); + return 0; + } + + return maxBones; + } + } + + function getTextureEncodingFromMap(map) { + let encoding; + + if (map && map.isTexture) { + encoding = map.encoding; + } else if (map && map.isWebGLRenderTarget) { + console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.'); + encoding = map.texture.encoding; + } else { + encoding = LinearEncoding; + } + + if (isWebGL2 && map && map.isTexture && map.format === RGBAFormat && map.type === UnsignedByteType && map.encoding === sRGBEncoding) { + encoding = LinearEncoding; // disable inline decode for sRGB textures in WebGL 2 + } + + return encoding; + } + + function getParameters(material, lights, shadows, scene, object) { + const fog = scene.fog; + const environment = material.isMeshStandardMaterial ? scene.environment : null; + const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment); + const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene + // (not to blow over maxLights budget) + + const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0; + + if (material.precision !== null) { + precision = capabilities.getMaxPrecision(material.precision); + + if (precision !== material.precision) { + console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.'); + } + } + + let vertexShader, fragmentShader; + let customVertexShaderID, customFragmentShaderID; + + if (shaderID) { + const shader = ShaderLib[shaderID]; + vertexShader = shader.vertexShader; + fragmentShader = shader.fragmentShader; + } else { + vertexShader = material.vertexShader; + fragmentShader = material.fragmentShader; + + _customShaders.update(material); + + customVertexShaderID = _customShaders.getVertexShaderID(material); + customFragmentShaderID = _customShaders.getFragmentShaderID(material); + } + + const currentRenderTarget = renderer.getRenderTarget(); + const useAlphaTest = material.alphaTest > 0; + const useClearcoat = material.clearcoat > 0; + const parameters = { + isWebGL2: isWebGL2, + shaderID: shaderID, + shaderName: material.type, + vertexShader: vertexShader, + fragmentShader: fragmentShader, + defines: material.defines, + customVertexShaderID: customVertexShaderID, + customFragmentShaderID: customFragmentShaderID, + isRawShaderMaterial: material.isRawShaderMaterial === true, + glslVersion: material.glslVersion, + precision: precision, + instancing: object.isInstancedMesh === true, + instancingColor: object.isInstancedMesh === true && object.instanceColor !== null, + supportsVertexTextures: vertexTextures, + outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding, + map: !!material.map, + mapEncoding: getTextureEncodingFromMap(material.map), + matcap: !!material.matcap, + matcapEncoding: getTextureEncodingFromMap(material.matcap), + envMap: !!envMap, + envMapMode: envMap && envMap.mapping, + envMapEncoding: getTextureEncodingFromMap(envMap), + envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping), + lightMap: !!material.lightMap, + lightMapEncoding: getTextureEncodingFromMap(material.lightMap), + aoMap: !!material.aoMap, + emissiveMap: !!material.emissiveMap, + emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap), + bumpMap: !!material.bumpMap, + normalMap: !!material.normalMap, + objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, + tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, + clearcoat: useClearcoat, + clearcoatMap: useClearcoat && !!material.clearcoatMap, + clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap, + clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap, + displacementMap: !!material.displacementMap, + roughnessMap: !!material.roughnessMap, + metalnessMap: !!material.metalnessMap, + specularMap: !!material.specularMap, + specularIntensityMap: !!material.specularIntensityMap, + specularColorMap: !!material.specularColorMap, + specularColorMapEncoding: getTextureEncodingFromMap(material.specularColorMap), + alphaMap: !!material.alphaMap, + alphaTest: useAlphaTest, + gradientMap: !!material.gradientMap, + sheen: material.sheen > 0, + sheenColorMap: !!material.sheenColorMap, + sheenColorMapEncoding: getTextureEncodingFromMap(material.sheenColorMap), + sheenRoughnessMap: !!material.sheenRoughnessMap, + transmission: material.transmission > 0, + transmissionMap: !!material.transmissionMap, + thicknessMap: !!material.thicknessMap, + combine: material.combine, + vertexTangents: !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent, + vertexColors: material.vertexColors, + vertexAlphas: material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4, + vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularColorMap || !!material.sheenColorMap || !!material.sheenRoughnessMap, + uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularColorMap || material.sheen > 0 || !!material.sheenColorMap || !!material.sheenRoughnessMap) && !!material.displacementMap, + fog: !!fog, + useFog: material.fog, + fogExp2: fog && fog.isFogExp2, + flatShading: !!material.flatShading, + sizeAttenuation: material.sizeAttenuation, + logarithmicDepthBuffer: logarithmicDepthBuffer, + skinning: object.isSkinnedMesh === true && maxBones > 0, + maxBones: maxBones, + useVertexTexture: floatVertexTextures, + morphTargets: !!object.geometry && !!object.geometry.morphAttributes.position, + morphNormals: !!object.geometry && !!object.geometry.morphAttributes.normal, + morphTargetsCount: !!object.geometry && !!object.geometry.morphAttributes.position ? object.geometry.morphAttributes.position.length : 0, + numDirLights: lights.directional.length, + numPointLights: lights.point.length, + numSpotLights: lights.spot.length, + numRectAreaLights: lights.rectArea.length, + numHemiLights: lights.hemi.length, + numDirLightShadows: lights.directionalShadowMap.length, + numPointLightShadows: lights.pointShadowMap.length, + numSpotLightShadows: lights.spotShadowMap.length, + numClippingPlanes: clipping.numPlanes, + numClipIntersection: clipping.numIntersection, + format: material.format, + dithering: material.dithering, + shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, + shadowMapType: renderer.shadowMap.type, + toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, + physicallyCorrectLights: renderer.physicallyCorrectLights, + premultipliedAlpha: material.premultipliedAlpha, + doubleSided: material.side === DoubleSide, + flipSided: material.side === BackSide, + depthPacking: material.depthPacking !== undefined ? material.depthPacking : false, + index0AttributeName: material.index0AttributeName, + extensionDerivatives: material.extensions && material.extensions.derivatives, + extensionFragDepth: material.extensions && material.extensions.fragDepth, + extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, + extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, + rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'), + rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'), + rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'), + rendererExtensionParallelShaderCompile: extensions.has('KHR_parallel_shader_compile'), + customProgramCacheKey: material.customProgramCacheKey() + }; + return parameters; + } + + function getProgramCacheKey(parameters) { + const array = []; + + if (parameters.shaderID) { + array.push(parameters.shaderID); + } else { + array.push(parameters.customVertexShaderID); + array.push(parameters.customFragmentShaderID); + } + + if (parameters.defines !== undefined) { + for (const name in parameters.defines) { + array.push(name); + array.push(parameters.defines[name]); + } + } + + if (parameters.isRawShaderMaterial === false) { + getProgramCacheKeyParameters(array, parameters); + getProgramCacheKeyBooleans(array, parameters); + array.push(renderer.outputEncoding); + } + + array.push(parameters.customProgramCacheKey); + return array.join(); + } + + function getProgramCacheKeyParameters(array, parameters) { + array.push(parameters.precision); + array.push(parameters.outputEncoding); + array.push(parameters.mapEncoding); + array.push(parameters.matcapEncoding); + array.push(parameters.envMapMode); + array.push(parameters.envMapEncoding); + array.push(parameters.lightMapEncoding); + array.push(parameters.emissiveMapEncoding); + array.push(parameters.combine); + array.push(parameters.vertexUvs); + array.push(parameters.fogExp2); + array.push(parameters.sizeAttenuation); + array.push(parameters.maxBones); + array.push(parameters.morphTargetsCount); + array.push(parameters.numDirLights); + array.push(parameters.numPointLights); + array.push(parameters.numSpotLights); + array.push(parameters.numHemiLights); + array.push(parameters.numRectAreaLights); + array.push(parameters.numDirLightShadows); + array.push(parameters.numPointLightShadows); + array.push(parameters.numSpotLightShadows); + array.push(parameters.shadowMapType); + array.push(parameters.toneMapping); + array.push(parameters.numClippingPlanes); + array.push(parameters.numClipIntersection); + array.push(parameters.format); + array.push(parameters.specularColorMapEncoding); + array.push(parameters.sheenColorMapEncoding); + } + + function getProgramCacheKeyBooleans(array, parameters) { + _programLayers.disableAll(); + + if (parameters.isWebGL2) _programLayers.enable(0); + if (parameters.supportsVertexTextures) _programLayers.enable(1); + if (parameters.instancing) _programLayers.enable(2); + if (parameters.instancingColor) _programLayers.enable(3); + if (parameters.map) _programLayers.enable(4); + if (parameters.matcap) _programLayers.enable(5); + if (parameters.envMap) _programLayers.enable(6); + if (parameters.envMapCubeUV) _programLayers.enable(7); + if (parameters.lightMap) _programLayers.enable(8); + if (parameters.aoMap) _programLayers.enable(9); + if (parameters.emissiveMap) _programLayers.enable(10); + if (parameters.bumpMap) _programLayers.enable(11); + if (parameters.normalMap) _programLayers.enable(12); + if (parameters.objectSpaceNormalMap) _programLayers.enable(13); + if (parameters.tangentSpaceNormalMap) _programLayers.enable(14); + if (parameters.clearcoat) _programLayers.enable(15); + if (parameters.clearcoatMap) _programLayers.enable(16); + if (parameters.clearcoatRoughnessMap) _programLayers.enable(17); + if (parameters.clearcoatNormalMap) _programLayers.enable(18); + if (parameters.displacementMap) _programLayers.enable(19); + if (parameters.specularMap) _programLayers.enable(20); + if (parameters.roughnessMap) _programLayers.enable(21); + if (parameters.metalnessMap) _programLayers.enable(22); + if (parameters.gradientMap) _programLayers.enable(23); + if (parameters.alphaMap) _programLayers.enable(24); + if (parameters.alphaTest) _programLayers.enable(25); + if (parameters.vertexColors) _programLayers.enable(26); + if (parameters.vertexAlphas) _programLayers.enable(27); + if (parameters.vertexUvs) _programLayers.enable(28); + if (parameters.vertexTangents) _programLayers.enable(29); + if (parameters.uvsVertexOnly) _programLayers.enable(30); + if (parameters.fog) _programLayers.enable(31); + array.push(_programLayers.mask); + + _programLayers.disableAll(); + + if (parameters.useFog) _programLayers.enable(0); + if (parameters.flatShading) _programLayers.enable(1); + if (parameters.logarithmicDepthBuffer) _programLayers.enable(2); + if (parameters.skinning) _programLayers.enable(3); + if (parameters.useVertexTexture) _programLayers.enable(4); + if (parameters.morphTargets) _programLayers.enable(5); + if (parameters.morphNormals) _programLayers.enable(6); + if (parameters.premultipliedAlpha) _programLayers.enable(7); + if (parameters.shadowMapEnabled) _programLayers.enable(8); + if (parameters.physicallyCorrectLights) _programLayers.enable(9); + if (parameters.doubleSided) _programLayers.enable(10); + if (parameters.flipSided) _programLayers.enable(11); + if (parameters.depthPacking) _programLayers.enable(12); + if (parameters.dithering) _programLayers.enable(13); + if (parameters.specularIntensityMap) _programLayers.enable(14); + if (parameters.specularColorMap) _programLayers.enable(15); + if (parameters.transmission) _programLayers.enable(16); + if (parameters.transmissionMap) _programLayers.enable(17); + if (parameters.thicknessMap) _programLayers.enable(18); + if (parameters.sheen) _programLayers.enable(19); + if (parameters.sheenColorMap) _programLayers.enable(20); + if (parameters.sheenRoughnessMap) _programLayers.enable(21); + array.push(_programLayers.mask); + } + + function getUniforms(material) { + const shaderID = shaderIDs[material.type]; + let uniforms; + + if (shaderID) { + const shader = ShaderLib[shaderID]; + uniforms = UniformsUtils.clone(shader.uniforms); + } else { + uniforms = material.uniforms; + } + + return uniforms; + } + + function acquireProgram(parameters, cacheKey) { + let program; // Check if code has been already compiled + + for (let p = 0, pl = programs.length; p < pl; p++) { + const preexistingProgram = programs[p]; + + if (preexistingProgram.cacheKey === cacheKey) { + program = preexistingProgram; + ++program.usedTimes; + break; + } + } + + if (program === undefined) { + program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates); + programs.push(program); + } + + return program; + } + + function releaseProgram(program) { + if (--program.usedTimes === 0) { + // Remove from unordered set + const i = programs.indexOf(program); + programs[i] = programs[programs.length - 1]; + programs.pop(); // Free WebGL resources + + program.destroy(); + } + } + + function releaseShaderCache(material) { + _customShaders.remove(material); + } + + function dispose() { + _customShaders.dispose(); + } + + return { + getParameters: getParameters, + getProgramCacheKey: getProgramCacheKey, + getUniforms: getUniforms, + acquireProgram: acquireProgram, + releaseProgram: releaseProgram, + releaseShaderCache: releaseShaderCache, + // Exposed for resource monitoring & error feedback via renderer.info: + programs: programs, + dispose: dispose + }; +} + +function WebGLProperties() { + let properties = new WeakMap(); + + function get(object) { + let map = properties.get(object); + + if (map === undefined) { + map = {}; + properties.set(object, map); + } + + return map; + } + + function remove(object) { + properties.delete(object); + } + + function update(object, key, value) { + properties.get(object)[key] = value; + } + + function dispose() { + properties = new WeakMap(); + } + + return { + get: get, + remove: remove, + update: update, + dispose: dispose + }; +} + +function painterSortStable(a, b) { + if (a.groupOrder !== b.groupOrder) { + return a.groupOrder - b.groupOrder; + } else if (a.renderOrder !== b.renderOrder) { + return a.renderOrder - b.renderOrder; + } else if (a.material.id !== b.material.id) { + return a.material.id - b.material.id; + } else if (a.z !== b.z) { + return a.z - b.z; + } else { + return a.id - b.id; + } +} + +function reversePainterSortStable(a, b) { + if (a.groupOrder !== b.groupOrder) { + return a.groupOrder - b.groupOrder; + } else if (a.renderOrder !== b.renderOrder) { + return a.renderOrder - b.renderOrder; + } else if (a.z !== b.z) { + return b.z - a.z; + } else { + return a.id - b.id; + } +} + +function WebGLRenderList() { + const renderItems = []; + let renderItemsIndex = 0; + const opaque = []; + const transmissive = []; + const transparent = []; + + function init() { + renderItemsIndex = 0; + opaque.length = 0; + transmissive.length = 0; + transparent.length = 0; + } + + function getNextRenderItem(object, geometry, material, groupOrder, z, group) { + let renderItem = renderItems[renderItemsIndex]; + + if (renderItem === undefined) { + renderItem = { + id: object.id, + object: object, + geometry: geometry, + material: material, + groupOrder: groupOrder, + renderOrder: object.renderOrder, + z: z, + group: group + }; + renderItems[renderItemsIndex] = renderItem; + } else { + renderItem.id = object.id; + renderItem.object = object; + renderItem.geometry = geometry; + renderItem.material = material; + renderItem.groupOrder = groupOrder; + renderItem.renderOrder = object.renderOrder; + renderItem.z = z; + renderItem.group = group; + } + + renderItemsIndex++; + return renderItem; + } + + function push(object, geometry, material, groupOrder, z, group) { + const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); + + if (material.transmission > 0.0) { + transmissive.push(renderItem); + } else if (material.transparent === true) { + transparent.push(renderItem); + } else { + opaque.push(renderItem); + } + } + + function unshift(object, geometry, material, groupOrder, z, group) { + const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); + + if (material.transmission > 0.0) { + transmissive.unshift(renderItem); + } else if (material.transparent === true) { + transparent.unshift(renderItem); + } else { + opaque.unshift(renderItem); + } + } + + function sort(customOpaqueSort, customTransparentSort) { + if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable); + if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable); + if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable); + } + + function finish() { + // Clear references from inactive renderItems in the list + for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) { + const renderItem = renderItems[i]; + if (renderItem.id === null) break; + renderItem.id = null; + renderItem.object = null; + renderItem.geometry = null; + renderItem.material = null; + renderItem.group = null; + } + } + + return { + opaque: opaque, + transmissive: transmissive, + transparent: transparent, + init: init, + push: push, + unshift: unshift, + finish: finish, + sort: sort + }; +} + +function WebGLRenderLists() { + let lists = new WeakMap(); + + function get(scene, renderCallDepth) { + let list; + + if (lists.has(scene) === false) { + list = new WebGLRenderList(); + lists.set(scene, [list]); + } else { + if (renderCallDepth >= lists.get(scene).length) { + list = new WebGLRenderList(); + lists.get(scene).push(list); + } else { + list = lists.get(scene)[renderCallDepth]; + } + } + + return list; + } + + function dispose() { + lists = new WeakMap(); + } + + return { + get: get, + dispose: dispose + }; +} + +function UniformsCache() { + const lights = {}; + return { + get: function (light) { + if (lights[light.id] !== undefined) { + return lights[light.id]; + } + + let uniforms; + + switch (light.type) { + case 'DirectionalLight': + uniforms = { + direction: new Vector3(), + color: new Color() + }; + break; + + case 'SpotLight': + uniforms = { + position: new Vector3(), + direction: new Vector3(), + color: new Color(), + distance: 0, + coneCos: 0, + penumbraCos: 0, + decay: 0 + }; + break; + + case 'PointLight': + uniforms = { + position: new Vector3(), + color: new Color(), + distance: 0, + decay: 0 + }; + break; + + case 'HemisphereLight': + uniforms = { + direction: new Vector3(), + skyColor: new Color(), + groundColor: new Color() + }; + break; + + case 'RectAreaLight': + uniforms = { + color: new Color(), + position: new Vector3(), + halfWidth: new Vector3(), + halfHeight: new Vector3() + }; + break; + } + + lights[light.id] = uniforms; + return uniforms; + } + }; +} + +function ShadowUniformsCache() { + const lights = {}; + return { + get: function (light) { + if (lights[light.id] !== undefined) { + return lights[light.id]; + } + + let uniforms; + + switch (light.type) { + case 'DirectionalLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'SpotLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'PointLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2(), + shadowCameraNear: 1, + shadowCameraFar: 1000 + }; + break; + // TODO (abelnation): set RectAreaLight shadow uniforms + } + + lights[light.id] = uniforms; + return uniforms; + } + }; +} + +let nextVersion = 0; + +function shadowCastingLightsFirst(lightA, lightB) { + return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0); +} + +function WebGLLights(extensions, capabilities) { + const cache = new UniformsCache(); + const shadowCache = ShadowUniformsCache(); + const state = { + version: 0, + hash: { + directionalLength: -1, + pointLength: -1, + spotLength: -1, + rectAreaLength: -1, + hemiLength: -1, + numDirectionalShadows: -1, + numPointShadows: -1, + numSpotShadows: -1 + }, + ambient: [0, 0, 0], + probe: [], + directional: [], + directionalShadow: [], + directionalShadowMap: [], + directionalShadowMatrix: [], + spot: [], + spotShadow: [], + spotShadowMap: [], + spotShadowMatrix: [], + rectArea: [], + rectAreaLTC1: null, + rectAreaLTC2: null, + point: [], + pointShadow: [], + pointShadowMap: [], + pointShadowMatrix: [], + hemi: [] + }; + + for (let i = 0; i < 9; i++) state.probe.push(new Vector3()); + + const vector3 = new Vector3(); + const matrix4 = new Matrix4(); + const matrix42 = new Matrix4(); + + function setup(lights, physicallyCorrectLights) { + let r = 0, + g = 0, + b = 0; + + for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0); + + let directionalLength = 0; + let pointLength = 0; + let spotLength = 0; + let rectAreaLength = 0; + let hemiLength = 0; + let numDirectionalShadows = 0; + let numPointShadows = 0; + let numSpotShadows = 0; + lights.sort(shadowCastingLightsFirst); // artist-friendly light intensity scaling factor + + const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1; + + for (let i = 0, l = lights.length; i < l; i++) { + const light = lights[i]; + const color = light.color; + const intensity = light.intensity; + const distance = light.distance; + const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null; + + if (light.isAmbientLight) { + r += color.r * intensity * scaleFactor; + g += color.g * intensity * scaleFactor; + b += color.b * intensity * scaleFactor; + } else if (light.isLightProbe) { + for (let j = 0; j < 9; j++) { + state.probe[j].addScaledVector(light.sh.coefficients[j], intensity); + } + } else if (light.isDirectionalLight) { + const uniforms = cache.get(light); + uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor); + + if (light.castShadow) { + const shadow = light.shadow; + const shadowUniforms = shadowCache.get(light); + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + state.directionalShadow[directionalLength] = shadowUniforms; + state.directionalShadowMap[directionalLength] = shadowMap; + state.directionalShadowMatrix[directionalLength] = light.shadow.matrix; + numDirectionalShadows++; + } + + state.directional[directionalLength] = uniforms; + directionalLength++; + } else if (light.isSpotLight) { + const uniforms = cache.get(light); + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor); + uniforms.distance = distance; + uniforms.coneCos = Math.cos(light.angle); + uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra)); + uniforms.decay = light.decay; + + if (light.castShadow) { + const shadow = light.shadow; + const shadowUniforms = shadowCache.get(light); + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + state.spotShadow[spotLength] = shadowUniforms; + state.spotShadowMap[spotLength] = shadowMap; + state.spotShadowMatrix[spotLength] = light.shadow.matrix; + numSpotShadows++; + } + + state.spot[spotLength] = uniforms; + spotLength++; + } else if (light.isRectAreaLight) { + const uniforms = cache.get(light); // (a) intensity is the total visible light emitted + //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); + // (b) intensity is the brightness of the light + + uniforms.color.copy(color).multiplyScalar(intensity); + uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0); + uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0); + state.rectArea[rectAreaLength] = uniforms; + rectAreaLength++; + } else if (light.isPointLight) { + const uniforms = cache.get(light); + uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor); + uniforms.distance = light.distance; + uniforms.decay = light.decay; + + if (light.castShadow) { + const shadow = light.shadow; + const shadowUniforms = shadowCache.get(light); + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + shadowUniforms.shadowCameraNear = shadow.camera.near; + shadowUniforms.shadowCameraFar = shadow.camera.far; + state.pointShadow[pointLength] = shadowUniforms; + state.pointShadowMap[pointLength] = shadowMap; + state.pointShadowMatrix[pointLength] = light.shadow.matrix; + numPointShadows++; + } + + state.point[pointLength] = uniforms; + pointLength++; + } else if (light.isHemisphereLight) { + const uniforms = cache.get(light); + uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor); + uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor); + state.hemi[hemiLength] = uniforms; + hemiLength++; + } + } + + if (rectAreaLength > 0) { + if (capabilities.isWebGL2) { + // WebGL 2 + state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; + state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; + } else { + // WebGL 1 + if (extensions.has('OES_texture_float_linear') === true) { + state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; + state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; + } else if (extensions.has('OES_texture_half_float_linear') === true) { + state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; + state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; + } else { + console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.'); + } + } + } + + state.ambient[0] = r; + state.ambient[1] = g; + state.ambient[2] = b; + const hash = state.hash; + + if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) { + state.directional.length = directionalLength; + state.spot.length = spotLength; + state.rectArea.length = rectAreaLength; + state.point.length = pointLength; + state.hemi.length = hemiLength; + state.directionalShadow.length = numDirectionalShadows; + state.directionalShadowMap.length = numDirectionalShadows; + state.pointShadow.length = numPointShadows; + state.pointShadowMap.length = numPointShadows; + state.spotShadow.length = numSpotShadows; + state.spotShadowMap.length = numSpotShadows; + state.directionalShadowMatrix.length = numDirectionalShadows; + state.pointShadowMatrix.length = numPointShadows; + state.spotShadowMatrix.length = numSpotShadows; + hash.directionalLength = directionalLength; + hash.pointLength = pointLength; + hash.spotLength = spotLength; + hash.rectAreaLength = rectAreaLength; + hash.hemiLength = hemiLength; + hash.numDirectionalShadows = numDirectionalShadows; + hash.numPointShadows = numPointShadows; + hash.numSpotShadows = numSpotShadows; + state.version = nextVersion++; + } + } + + function setupView(lights, camera) { + let directionalLength = 0; + let pointLength = 0; + let spotLength = 0; + let rectAreaLength = 0; + let hemiLength = 0; + const viewMatrix = camera.matrixWorldInverse; + + for (let i = 0, l = lights.length; i < l; i++) { + const light = lights[i]; + + if (light.isDirectionalLight) { + const uniforms = state.directional[directionalLength]; + uniforms.direction.setFromMatrixPosition(light.matrixWorld); + vector3.setFromMatrixPosition(light.target.matrixWorld); + uniforms.direction.sub(vector3); + uniforms.direction.transformDirection(viewMatrix); + directionalLength++; + } else if (light.isSpotLight) { + const uniforms = state.spot[spotLength]; + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.position.applyMatrix4(viewMatrix); + uniforms.direction.setFromMatrixPosition(light.matrixWorld); + vector3.setFromMatrixPosition(light.target.matrixWorld); + uniforms.direction.sub(vector3); + uniforms.direction.transformDirection(viewMatrix); + spotLength++; + } else if (light.isRectAreaLight) { + const uniforms = state.rectArea[rectAreaLength]; + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors + + matrix42.identity(); + matrix4.copy(light.matrixWorld); + matrix4.premultiply(viewMatrix); + matrix42.extractRotation(matrix4); + uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0); + uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0); + uniforms.halfWidth.applyMatrix4(matrix42); + uniforms.halfHeight.applyMatrix4(matrix42); + rectAreaLength++; + } else if (light.isPointLight) { + const uniforms = state.point[pointLength]; + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.position.applyMatrix4(viewMatrix); + pointLength++; + } else if (light.isHemisphereLight) { + const uniforms = state.hemi[hemiLength]; + uniforms.direction.setFromMatrixPosition(light.matrixWorld); + uniforms.direction.transformDirection(viewMatrix); + uniforms.direction.normalize(); + hemiLength++; + } + } + } + + return { + setup: setup, + setupView: setupView, + state: state + }; +} + +function WebGLRenderState(extensions, capabilities) { + const lights = new WebGLLights(extensions, capabilities); + const lightsArray = []; + const shadowsArray = []; + + function init() { + lightsArray.length = 0; + shadowsArray.length = 0; + } + + function pushLight(light) { + lightsArray.push(light); + } + + function pushShadow(shadowLight) { + shadowsArray.push(shadowLight); + } + + function setupLights(physicallyCorrectLights) { + lights.setup(lightsArray, physicallyCorrectLights); + } + + function setupLightsView(camera) { + lights.setupView(lightsArray, camera); + } + + const state = { + lightsArray: lightsArray, + shadowsArray: shadowsArray, + lights: lights + }; + return { + init: init, + state: state, + setupLights: setupLights, + setupLightsView: setupLightsView, + pushLight: pushLight, + pushShadow: pushShadow + }; +} + +function WebGLRenderStates(extensions, capabilities) { + let renderStates = new WeakMap(); + + function get(scene, renderCallDepth = 0) { + let renderState; + + if (renderStates.has(scene) === false) { + renderState = new WebGLRenderState(extensions, capabilities); + renderStates.set(scene, [renderState]); + } else { + if (renderCallDepth >= renderStates.get(scene).length) { + renderState = new WebGLRenderState(extensions, capabilities); + renderStates.get(scene).push(renderState); + } else { + renderState = renderStates.get(scene)[renderCallDepth]; + } + } + + return renderState; + } + + function dispose() { + renderStates = new WeakMap(); + } + + return { + get: get, + dispose: dispose + }; +} + +/** + * parameters = { + * + * opacity: , + * + * map: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * wireframe: , + * wireframeLinewidth: + * } + */ + +class MeshDepthMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshDepthMaterial'; + this.depthPacking = BasicDepthPacking; + this.map = null; + this.alphaMap = null; + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.fog = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.depthPacking = source.depthPacking; + this.map = source.map; + this.alphaMap = source.alphaMap; + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + return this; + } + +} + +MeshDepthMaterial.prototype.isMeshDepthMaterial = true; + +/** + * parameters = { + * + * referencePosition: , + * nearDistance: , + * farDistance: , + * + * map: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: + * + * } + */ + +class MeshDistanceMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshDistanceMaterial'; + this.referencePosition = new Vector3(); + this.nearDistance = 1; + this.farDistance = 1000; + this.map = null; + this.alphaMap = null; + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.fog = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.referencePosition.copy(source.referencePosition); + this.nearDistance = source.nearDistance; + this.farDistance = source.farDistance; + this.map = source.map; + this.alphaMap = source.alphaMap; + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + return this; + } + +} + +MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true; + +const vertex = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; +const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; + +function WebGLShadowMap(_renderer, _objects, _capabilities) { + let _frustum = new Frustum(); + + const _shadowMapSize = new Vector2(), + _viewportSize = new Vector2(), + _viewport = new Vector4(), + _depthMaterial = new MeshDepthMaterial({ + depthPacking: RGBADepthPacking + }), + _distanceMaterial = new MeshDistanceMaterial(), + _materialCache = {}, + _maxTextureSize = _capabilities.maxTextureSize; + + const shadowSide = { + 0: BackSide, + 1: FrontSide, + 2: DoubleSide + }; + const shadowMaterialVertical = new ShaderMaterial({ + defines: { + VSM_SAMPLES: 8 + }, + uniforms: { + shadow_pass: { + value: null + }, + resolution: { + value: new Vector2() + }, + radius: { + value: 4.0 + } + }, + vertexShader: vertex, + fragmentShader: fragment + }); + const shadowMaterialHorizontal = shadowMaterialVertical.clone(); + shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; + const fullScreenTri = new BufferGeometry(); + fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3)); + const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical); + const scope = this; + this.enabled = false; + this.autoUpdate = true; + this.needsUpdate = false; + this.type = PCFShadowMap; + + this.render = function (lights, scene, camera) { + if (scope.enabled === false) return; + if (scope.autoUpdate === false && scope.needsUpdate === false) return; + if (lights.length === 0) return; + + const currentRenderTarget = _renderer.getRenderTarget(); + + const activeCubeFace = _renderer.getActiveCubeFace(); + + const activeMipmapLevel = _renderer.getActiveMipmapLevel(); + + const _state = _renderer.state; // Set GL state for depth map. + + _state.setBlending(NoBlending); + + _state.buffers.color.setClear(1, 1, 1, 1); + + _state.buffers.depth.setTest(true); + + _state.setScissorTest(false); // render depth map + + + for (let i = 0, il = lights.length; i < il; i++) { + const light = lights[i]; + const shadow = light.shadow; + + if (shadow === undefined) { + console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.'); + continue; + } + + if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue; + + _shadowMapSize.copy(shadow.mapSize); + + const shadowFrameExtents = shadow.getFrameExtents(); + + _shadowMapSize.multiply(shadowFrameExtents); + + _viewportSize.copy(shadow.mapSize); + + if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) { + if (_shadowMapSize.x > _maxTextureSize) { + _viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x); + _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; + shadow.mapSize.x = _viewportSize.x; + } + + if (_shadowMapSize.y > _maxTextureSize) { + _viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y); + _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; + shadow.mapSize.y = _viewportSize.y; + } + } + + if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) { + const pars = { + minFilter: LinearFilter, + magFilter: LinearFilter, + format: RGBAFormat + }; + shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); + shadow.map.texture.name = light.name + '.shadowMap'; + shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); + shadow.camera.updateProjectionMatrix(); + } + + if (shadow.map === null) { + const pars = { + minFilter: NearestFilter, + magFilter: NearestFilter, + format: RGBAFormat + }; + shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); + shadow.map.texture.name = light.name + '.shadowMap'; + shadow.camera.updateProjectionMatrix(); + } + + _renderer.setRenderTarget(shadow.map); + + _renderer.clear(); + + const viewportCount = shadow.getViewportCount(); + + for (let vp = 0; vp < viewportCount; vp++) { + const viewport = shadow.getViewport(vp); + + _viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w); + + _state.viewport(_viewport); + + shadow.updateMatrices(light, vp); + _frustum = shadow.getFrustum(); + renderObject(scene, camera, shadow.camera, light, this.type); + } // do blur pass for VSM + + + if (!shadow.isPointLightShadow && this.type === VSMShadowMap) { + VSMPass(shadow, camera); + } + + shadow.needsUpdate = false; + } + + scope.needsUpdate = false; + + _renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel); + }; + + function VSMPass(shadow, camera) { + const geometry = _objects.update(fullScreenMesh); + + if (shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples) { + shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples; + shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples; + shadowMaterialVertical.needsUpdate = true; + shadowMaterialHorizontal.needsUpdate = true; + } // vertical pass + + + shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; + shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; + shadowMaterialVertical.uniforms.radius.value = shadow.radius; + + _renderer.setRenderTarget(shadow.mapPass); + + _renderer.clear(); + + _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass + + + shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; + shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; + shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; + + _renderer.setRenderTarget(shadow.map); + + _renderer.clear(); + + _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null); + } + + function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) { + let result = null; + const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial; + + if (customMaterial !== undefined) { + result = customMaterial; + } else { + result = light.isPointLight === true ? _distanceMaterial : _depthMaterial; + } + + if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0) { + // in this case we need a unique material instance reflecting the + // appropriate state + const keyA = result.uuid, + keyB = material.uuid; + let materialsForVariant = _materialCache[keyA]; + + if (materialsForVariant === undefined) { + materialsForVariant = {}; + _materialCache[keyA] = materialsForVariant; + } + + let cachedMaterial = materialsForVariant[keyB]; + + if (cachedMaterial === undefined) { + cachedMaterial = result.clone(); + materialsForVariant[keyB] = cachedMaterial; + } + + result = cachedMaterial; + } + + result.visible = material.visible; + result.wireframe = material.wireframe; + + if (type === VSMShadowMap) { + result.side = material.shadowSide !== null ? material.shadowSide : material.side; + } else { + result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side]; + } + + result.alphaMap = material.alphaMap; + result.alphaTest = material.alphaTest; + result.clipShadows = material.clipShadows; + result.clippingPlanes = material.clippingPlanes; + result.clipIntersection = material.clipIntersection; + result.displacementMap = material.displacementMap; + result.displacementScale = material.displacementScale; + result.displacementBias = material.displacementBias; + result.wireframeLinewidth = material.wireframeLinewidth; + result.linewidth = material.linewidth; + + if (light.isPointLight === true && result.isMeshDistanceMaterial === true) { + result.referencePosition.setFromMatrixPosition(light.matrixWorld); + result.nearDistance = shadowCameraNear; + result.farDistance = shadowCameraFar; + } + + return result; + } + + function renderObject(object, camera, shadowCamera, light, type) { + if (object.visible === false) return; + const visible = object.layers.test(camera.layers); + + if (visible && (object.isMesh || object.isLine || object.isPoints)) { + if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) { + object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld); + + const geometry = _objects.update(object); + + const material = object.material; + + if (Array.isArray(material)) { + const groups = geometry.groups; + + for (let k = 0, kl = groups.length; k < kl; k++) { + const group = groups[k]; + const groupMaterial = material[group.materialIndex]; + + if (groupMaterial && groupMaterial.visible) { + const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type); + + _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group); + } + } + } else if (material.visible) { + const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type); + + _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null); + } + } + } + + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + renderObject(children[i], camera, shadowCamera, light, type); + } + } +} + +function WebGLState(gl, extensions, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + + function ColorBuffer() { + let locked = false; + const color = new Vector4(); + let currentColorMask = null; + const currentColorClear = new Vector4(0, 0, 0, 0); + return { + setMask: function (colorMask) { + if (currentColorMask !== colorMask && !locked) { + gl.colorMask(colorMask, colorMask, colorMask, colorMask); + currentColorMask = colorMask; + } + }, + setLocked: function (lock) { + locked = lock; + }, + setClear: function (r, g, b, a, premultipliedAlpha) { + if (premultipliedAlpha === true) { + r *= a; + g *= a; + b *= a; + } + + color.set(r, g, b, a); + + if (currentColorClear.equals(color) === false) { + gl.clearColor(r, g, b, a); + currentColorClear.copy(color); + } + }, + reset: function () { + locked = false; + currentColorMask = null; + currentColorClear.set(-1, 0, 0, 0); // set to invalid state + } + }; + } + + function DepthBuffer() { + let locked = false; + let currentDepthMask = null; + let currentDepthFunc = null; + let currentDepthClear = null; + return { + setTest: function (depthTest) { + if (depthTest) { + enable(gl.DEPTH_TEST); + } else { + disable(gl.DEPTH_TEST); + } + }, + setMask: function (depthMask) { + if (currentDepthMask !== depthMask && !locked) { + gl.depthMask(depthMask); + currentDepthMask = depthMask; + } + }, + setFunc: function (depthFunc) { + if (currentDepthFunc !== depthFunc) { + if (depthFunc) { + switch (depthFunc) { + case NeverDepth: + gl.depthFunc(gl.NEVER); + break; + + case AlwaysDepth: + gl.depthFunc(gl.ALWAYS); + break; + + case LessDepth: + gl.depthFunc(gl.LESS); + break; + + case LessEqualDepth: + gl.depthFunc(gl.LEQUAL); + break; + + case EqualDepth: + gl.depthFunc(gl.EQUAL); + break; + + case GreaterEqualDepth: + gl.depthFunc(gl.GEQUAL); + break; + + case GreaterDepth: + gl.depthFunc(gl.GREATER); + break; + + case NotEqualDepth: + gl.depthFunc(gl.NOTEQUAL); + break; + + default: + gl.depthFunc(gl.LEQUAL); + } + } else { + gl.depthFunc(gl.LEQUAL); + } + + currentDepthFunc = depthFunc; + } + }, + setLocked: function (lock) { + locked = lock; + }, + setClear: function (depth) { + if (currentDepthClear !== depth) { + gl.clearDepth(depth); + currentDepthClear = depth; + } + }, + reset: function () { + locked = false; + currentDepthMask = null; + currentDepthFunc = null; + currentDepthClear = null; + } + }; + } + + function StencilBuffer() { + let locked = false; + let currentStencilMask = null; + let currentStencilFunc = null; + let currentStencilRef = null; + let currentStencilFuncMask = null; + let currentStencilFail = null; + let currentStencilZFail = null; + let currentStencilZPass = null; + let currentStencilClear = null; + return { + setTest: function (stencilTest) { + if (!locked) { + if (stencilTest) { + enable(gl.STENCIL_TEST); + } else { + disable(gl.STENCIL_TEST); + } + } + }, + setMask: function (stencilMask) { + if (currentStencilMask !== stencilMask && !locked) { + gl.stencilMask(stencilMask); + currentStencilMask = stencilMask; + } + }, + setFunc: function (stencilFunc, stencilRef, stencilMask) { + if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) { + gl.stencilFunc(stencilFunc, stencilRef, stencilMask); + currentStencilFunc = stencilFunc; + currentStencilRef = stencilRef; + currentStencilFuncMask = stencilMask; + } + }, + setOp: function (stencilFail, stencilZFail, stencilZPass) { + if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) { + gl.stencilOp(stencilFail, stencilZFail, stencilZPass); + currentStencilFail = stencilFail; + currentStencilZFail = stencilZFail; + currentStencilZPass = stencilZPass; + } + }, + setLocked: function (lock) { + locked = lock; + }, + setClear: function (stencil) { + if (currentStencilClear !== stencil) { + gl.clearStencil(stencil); + currentStencilClear = stencil; + } + }, + reset: function () { + locked = false; + currentStencilMask = null; + currentStencilFunc = null; + currentStencilRef = null; + currentStencilFuncMask = null; + currentStencilFail = null; + currentStencilZFail = null; + currentStencilZPass = null; + currentStencilClear = null; + } + }; + } // + + + const colorBuffer = new ColorBuffer(); + const depthBuffer = new DepthBuffer(); + const stencilBuffer = new StencilBuffer(); + let enabledCapabilities = {}; + let currentBoundFramebuffers = {}; + let currentProgram = null; + let currentBlendingEnabled = false; + let currentBlending = null; + let currentBlendEquation = null; + let currentBlendSrc = null; + let currentBlendDst = null; + let currentBlendEquationAlpha = null; + let currentBlendSrcAlpha = null; + let currentBlendDstAlpha = null; + let currentPremultipledAlpha = false; + let currentFlipSided = null; + let currentCullFace = null; + let currentLineWidth = null; + let currentPolygonOffsetFactor = null; + let currentPolygonOffsetUnits = null; + const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS); + let lineWidthAvailable = false; + let version = 0; + const glVersion = gl.getParameter(gl.VERSION); + + if (glVersion.indexOf('WebGL') !== -1) { + version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]); + lineWidthAvailable = version >= 1.0; + } else if (glVersion.indexOf('OpenGL ES') !== -1) { + version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]); + lineWidthAvailable = version >= 2.0; + } + + let currentTextureSlot = null; + let currentBoundTextures = {}; + const scissorParam = gl.getParameter(gl.SCISSOR_BOX); + const viewportParam = gl.getParameter(gl.VIEWPORT); + const currentScissor = new Vector4().fromArray(scissorParam); + const currentViewport = new Vector4().fromArray(viewportParam); + + function createTexture(type, target, count) { + const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4. + + const texture = gl.createTexture(); + gl.bindTexture(type, texture); + gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST); + gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST); + + for (let i = 0; i < count; i++) { + gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data); + } + + return texture; + } + + const emptyTextures = {}; + emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1); + emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init + + colorBuffer.setClear(0, 0, 0, 1); + depthBuffer.setClear(1); + stencilBuffer.setClear(0); + enable(gl.DEPTH_TEST); + depthBuffer.setFunc(LessEqualDepth); + setFlipSided(false); + setCullFace(CullFaceBack); + enable(gl.CULL_FACE); + setBlending(NoBlending); // + + function enable(id) { + if (enabledCapabilities[id] !== true) { + gl.enable(id); + enabledCapabilities[id] = true; + } + } + + function disable(id) { + if (enabledCapabilities[id] !== false) { + gl.disable(id); + enabledCapabilities[id] = false; + } + } + + function bindFramebuffer(target, framebuffer) { + if (currentBoundFramebuffers[target] !== framebuffer) { + gl.bindFramebuffer(target, framebuffer); + currentBoundFramebuffers[target] = framebuffer; + + if (isWebGL2) { + // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER + if (target === gl.DRAW_FRAMEBUFFER) { + currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer; + } + + if (target === gl.FRAMEBUFFER) { + currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer; + } + } + + return true; + } + + return false; + } + + function useProgram(program) { + if (currentProgram !== program) { + gl.useProgram(program); + currentProgram = program; + return true; + } + + return false; + } + + const equationToGL = { + [AddEquation]: gl.FUNC_ADD, + [SubtractEquation]: gl.FUNC_SUBTRACT, + [ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT + }; + + if (isWebGL2) { + equationToGL[MinEquation] = gl.MIN; + equationToGL[MaxEquation] = gl.MAX; + } else { + const extension = extensions.get('EXT_blend_minmax'); + + if (extension !== null) { + equationToGL[MinEquation] = extension.MIN_EXT; + equationToGL[MaxEquation] = extension.MAX_EXT; + } + } + + const factorToGL = { + [ZeroFactor]: gl.ZERO, + [OneFactor]: gl.ONE, + [SrcColorFactor]: gl.SRC_COLOR, + [SrcAlphaFactor]: gl.SRC_ALPHA, + [SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE, + [DstColorFactor]: gl.DST_COLOR, + [DstAlphaFactor]: gl.DST_ALPHA, + [OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR, + [OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA, + [OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR, + [OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA + }; + + function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) { + if (blending === NoBlending) { + if (currentBlendingEnabled === true) { + disable(gl.BLEND); + currentBlendingEnabled = false; + } + + return; + } + + if (currentBlendingEnabled === false) { + enable(gl.BLEND); + currentBlendingEnabled = true; + } + + if (blending !== CustomBlending) { + if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) { + if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) { + gl.blendEquation(gl.FUNC_ADD); + currentBlendEquation = AddEquation; + currentBlendEquationAlpha = AddEquation; + } + + if (premultipliedAlpha) { + switch (blending) { + case NormalBlending: + gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); + break; + + case AdditiveBlending: + gl.blendFunc(gl.ONE, gl.ONE); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA); + break; + + case MultiplyBlending: + gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA); + break; + + default: + console.error('THREE.WebGLState: Invalid blending: ', blending); + break; + } + } else { + switch (blending) { + case NormalBlending: + gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); + break; + + case AdditiveBlending: + gl.blendFunc(gl.SRC_ALPHA, gl.ONE); + break; + + case SubtractiveBlending: + gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR); + break; + + case MultiplyBlending: + gl.blendFunc(gl.ZERO, gl.SRC_COLOR); + break; + + default: + console.error('THREE.WebGLState: Invalid blending: ', blending); + break; + } + } + + currentBlendSrc = null; + currentBlendDst = null; + currentBlendSrcAlpha = null; + currentBlendDstAlpha = null; + currentBlending = blending; + currentPremultipledAlpha = premultipliedAlpha; + } + + return; + } // custom blending + + + blendEquationAlpha = blendEquationAlpha || blendEquation; + blendSrcAlpha = blendSrcAlpha || blendSrc; + blendDstAlpha = blendDstAlpha || blendDst; + + if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) { + gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]); + currentBlendEquation = blendEquation; + currentBlendEquationAlpha = blendEquationAlpha; + } + + if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) { + gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]); + currentBlendSrc = blendSrc; + currentBlendDst = blendDst; + currentBlendSrcAlpha = blendSrcAlpha; + currentBlendDstAlpha = blendDstAlpha; + } + + currentBlending = blending; + currentPremultipledAlpha = null; + } + + function setMaterial(material, frontFaceCW) { + material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE); + let flipSided = material.side === BackSide; + if (frontFaceCW) flipSided = !flipSided; + setFlipSided(flipSided); + material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha); + depthBuffer.setFunc(material.depthFunc); + depthBuffer.setTest(material.depthTest); + depthBuffer.setMask(material.depthWrite); + colorBuffer.setMask(material.colorWrite); + const stencilWrite = material.stencilWrite; + stencilBuffer.setTest(stencilWrite); + + if (stencilWrite) { + stencilBuffer.setMask(material.stencilWriteMask); + stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask); + stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass); + } + + setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits); + material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE); + } // + + + function setFlipSided(flipSided) { + if (currentFlipSided !== flipSided) { + if (flipSided) { + gl.frontFace(gl.CW); + } else { + gl.frontFace(gl.CCW); + } + + currentFlipSided = flipSided; + } + } + + function setCullFace(cullFace) { + if (cullFace !== CullFaceNone) { + enable(gl.CULL_FACE); + + if (cullFace !== currentCullFace) { + if (cullFace === CullFaceBack) { + gl.cullFace(gl.BACK); + } else if (cullFace === CullFaceFront) { + gl.cullFace(gl.FRONT); + } else { + gl.cullFace(gl.FRONT_AND_BACK); + } + } + } else { + disable(gl.CULL_FACE); + } + + currentCullFace = cullFace; + } + + function setLineWidth(width) { + if (width !== currentLineWidth) { + if (lineWidthAvailable) gl.lineWidth(width); + currentLineWidth = width; + } + } + + function setPolygonOffset(polygonOffset, factor, units) { + if (polygonOffset) { + enable(gl.POLYGON_OFFSET_FILL); + + if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) { + gl.polygonOffset(factor, units); + currentPolygonOffsetFactor = factor; + currentPolygonOffsetUnits = units; + } + } else { + disable(gl.POLYGON_OFFSET_FILL); + } + } + + function setScissorTest(scissorTest) { + if (scissorTest) { + enable(gl.SCISSOR_TEST); + } else { + disable(gl.SCISSOR_TEST); + } + } // texture + + + function activeTexture(webglSlot) { + if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1; + + if (currentTextureSlot !== webglSlot) { + gl.activeTexture(webglSlot); + currentTextureSlot = webglSlot; + } + } + + function bindTexture(webglType, webglTexture) { + if (currentTextureSlot === null) { + activeTexture(); + } + + let boundTexture = currentBoundTextures[currentTextureSlot]; + + if (boundTexture === undefined) { + boundTexture = { + type: undefined, + texture: undefined + }; + currentBoundTextures[currentTextureSlot] = boundTexture; + } + + if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) { + gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]); + boundTexture.type = webglType; + boundTexture.texture = webglTexture; + } + } + + function unbindTexture() { + const boundTexture = currentBoundTextures[currentTextureSlot]; + + if (boundTexture !== undefined && boundTexture.type !== undefined) { + gl.bindTexture(boundTexture.type, null); + boundTexture.type = undefined; + boundTexture.texture = undefined; + } + } + + function compressedTexImage2D() { + try { + gl.compressedTexImage2D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texSubImage2D() { + try { + gl.texSubImage2D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texSubImage3D() { + try { + gl.texSubImage3D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function compressedTexSubImage2D() { + try { + gl.compressedTexSubImage2D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texStorage2D() { + try { + gl.texStorage2D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texStorage3D() { + try { + gl.texStorage3D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texImage2D() { + try { + gl.texImage2D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texImage3D() { + try { + gl.texImage3D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } // + + + function scissor(scissor) { + if (currentScissor.equals(scissor) === false) { + gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w); + currentScissor.copy(scissor); + } + } + + function viewport(viewport) { + if (currentViewport.equals(viewport) === false) { + gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w); + currentViewport.copy(viewport); + } + } // + + + function reset() { + // reset state + gl.disable(gl.BLEND); + gl.disable(gl.CULL_FACE); + gl.disable(gl.DEPTH_TEST); + gl.disable(gl.POLYGON_OFFSET_FILL); + gl.disable(gl.SCISSOR_TEST); + gl.disable(gl.STENCIL_TEST); + gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE); + gl.blendEquation(gl.FUNC_ADD); + gl.blendFunc(gl.ONE, gl.ZERO); + gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO); + gl.colorMask(true, true, true, true); + gl.clearColor(0, 0, 0, 0); + gl.depthMask(true); + gl.depthFunc(gl.LESS); + gl.clearDepth(1); + gl.stencilMask(0xffffffff); + gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff); + gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP); + gl.clearStencil(0); + gl.cullFace(gl.BACK); + gl.frontFace(gl.CCW); + gl.polygonOffset(0, 0); + gl.activeTexture(gl.TEXTURE0); + gl.bindFramebuffer(gl.FRAMEBUFFER, null); + + if (isWebGL2 === true) { + gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null); + gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null); + } + + gl.useProgram(null); + gl.lineWidth(1); + gl.scissor(0, 0, gl.canvas.width, gl.canvas.height); + gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals + + enabledCapabilities = {}; + currentTextureSlot = null; + currentBoundTextures = {}; + currentBoundFramebuffers = {}; + currentProgram = null; + currentBlendingEnabled = false; + currentBlending = null; + currentBlendEquation = null; + currentBlendSrc = null; + currentBlendDst = null; + currentBlendEquationAlpha = null; + currentBlendSrcAlpha = null; + currentBlendDstAlpha = null; + currentPremultipledAlpha = false; + currentFlipSided = null; + currentCullFace = null; + currentLineWidth = null; + currentPolygonOffsetFactor = null; + currentPolygonOffsetUnits = null; + currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height); + currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height); + colorBuffer.reset(); + depthBuffer.reset(); + stencilBuffer.reset(); + } + + return { + buffers: { + color: colorBuffer, + depth: depthBuffer, + stencil: stencilBuffer + }, + enable: enable, + disable: disable, + bindFramebuffer: bindFramebuffer, + useProgram: useProgram, + setBlending: setBlending, + setMaterial: setMaterial, + setFlipSided: setFlipSided, + setCullFace: setCullFace, + setLineWidth: setLineWidth, + setPolygonOffset: setPolygonOffset, + setScissorTest: setScissorTest, + activeTexture: activeTexture, + bindTexture: bindTexture, + unbindTexture: unbindTexture, + compressedTexImage2D: compressedTexImage2D, + texImage2D: texImage2D, + texImage3D: texImage3D, + texStorage2D: texStorage2D, + texStorage3D: texStorage3D, + texSubImage2D: texSubImage2D, + texSubImage3D: texSubImage3D, + compressedTexSubImage2D: compressedTexSubImage2D, + scissor: scissor, + viewport: viewport, + reset: reset + }; +} + +function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) { + const isWebGL2 = capabilities.isWebGL2; + const maxTextures = capabilities.maxTextures; + const maxCubemapSize = capabilities.maxCubemapSize; + const maxTextureSize = capabilities.maxTextureSize; + const maxSamples = capabilities.maxSamples; + const hasMultisampledRenderToTexture = extensions.has('WEBGL_multisampled_render_to_texture'); + const MultisampledRenderToTextureExtension = hasMultisampledRenderToTexture ? extensions.get('WEBGL_multisampled_render_to_texture') : undefined; + + const _videoTextures = new WeakMap(); + + let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, + // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! + // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). + + + let useOffscreenCanvas = false; + + try { + useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null; + } catch (err) {// Ignore any errors + } + + function createCanvas(width, height) { + // Use OffscreenCanvas when available. Specially needed in web workers + return useOffscreenCanvas ? new OffscreenCanvas(width, height) : createElementNS('canvas'); + } + + function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) { + let scale = 1; // handle case if texture exceeds max size + + if (image.width > maxSize || image.height > maxSize) { + scale = maxSize / Math.max(image.width, image.height); + } // only perform resize if necessary + + + if (scale < 1 || needsPowerOfTwo === true) { + // only perform resize for certain image types + if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) { + const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor; + const width = floor(scale * image.width); + const height = floor(scale * image.height); + if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas + + const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas; + canvas.width = width; + canvas.height = height; + const context = canvas.getContext('2d'); + context.drawImage(image, 0, 0, width, height); + console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').'); + return canvas; + } else { + if ('data' in image) { + console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').'); + } + + return image; + } + } + + return image; + } + + function isPowerOfTwo$1(image) { + return isPowerOfTwo(image.width) && isPowerOfTwo(image.height); + } + + function textureNeedsPowerOfTwo(texture) { + if (isWebGL2) return false; + return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; + } + + function textureNeedsGenerateMipmaps(texture, supportsMips) { + return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; + } + + function generateMipmap(target) { + _gl.generateMipmap(target); + } + + function getInternalFormat(internalFormatName, glFormat, glType, encoding) { + if (isWebGL2 === false) return glFormat; + + if (internalFormatName !== null) { + if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName]; + console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\''); + } + + let internalFormat = glFormat; + + if (glFormat === _gl.RED) { + if (glType === _gl.FLOAT) internalFormat = _gl.R32F; + if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F; + if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8; + } + + if (glFormat === _gl.RGB) { + if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F; + if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F; + if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8; + } + + if (glFormat === _gl.RGBA) { + if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F; + if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F; + if (glType === _gl.UNSIGNED_BYTE) internalFormat = encoding === sRGBEncoding ? _gl.SRGB8_ALPHA8 : _gl.RGBA8; + } + + if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) { + extensions.get('EXT_color_buffer_float'); + } + + return internalFormat; + } + + function getMipLevels(texture, image, supportsMips) { + if (textureNeedsGenerateMipmaps(texture, supportsMips) === true || texture.isFramebufferTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) { + return Math.log2(Math.max(image.width, image.height)) + 1; + } else if (texture.mipmaps !== undefined && texture.mipmaps.length > 0) { + // user-defined mipmaps + return texture.mipmaps.length; + } else if (texture.isCompressedTexture && Array.isArray(texture.image)) { + return image.mipmaps.length; + } else { + // texture without mipmaps (only base level) + return 1; + } + } // Fallback filters for non-power-of-2 textures + + + function filterFallback(f) { + if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) { + return _gl.NEAREST; + } + + return _gl.LINEAR; + } // + + + function onTextureDispose(event) { + const texture = event.target; + texture.removeEventListener('dispose', onTextureDispose); + deallocateTexture(texture); + + if (texture.isVideoTexture) { + _videoTextures.delete(texture); + } + + info.memory.textures--; + } + + function onRenderTargetDispose(event) { + const renderTarget = event.target; + renderTarget.removeEventListener('dispose', onRenderTargetDispose); + deallocateRenderTarget(renderTarget); + } // + + + function deallocateTexture(texture) { + const textureProperties = properties.get(texture); + if (textureProperties.__webglInit === undefined) return; + + _gl.deleteTexture(textureProperties.__webglTexture); + + properties.remove(texture); + } + + function deallocateRenderTarget(renderTarget) { + const texture = renderTarget.texture; + const renderTargetProperties = properties.get(renderTarget); + const textureProperties = properties.get(texture); + if (!renderTarget) return; + + if (textureProperties.__webglTexture !== undefined) { + _gl.deleteTexture(textureProperties.__webglTexture); + + info.memory.textures--; + } + + if (renderTarget.depthTexture) { + renderTarget.depthTexture.dispose(); + } + + if (renderTarget.isWebGLCubeRenderTarget) { + for (let i = 0; i < 6; i++) { + _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]); + + if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]); + } + } else { + _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer); + + if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer); + if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer); + if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer); + if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer); + } + + if (renderTarget.isWebGLMultipleRenderTargets) { + for (let i = 0, il = texture.length; i < il; i++) { + const attachmentProperties = properties.get(texture[i]); + + if (attachmentProperties.__webglTexture) { + _gl.deleteTexture(attachmentProperties.__webglTexture); + + info.memory.textures--; + } + + properties.remove(texture[i]); + } + } + + properties.remove(texture); + properties.remove(renderTarget); + } // + + + let textureUnits = 0; + + function resetTextureUnits() { + textureUnits = 0; + } + + function allocateTextureUnit() { + const textureUnit = textureUnits; + + if (textureUnit >= maxTextures) { + console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures); + } + + textureUnits += 1; + return textureUnit; + } // + + + function setTexture2D(texture, slot) { + const textureProperties = properties.get(texture); + if (texture.isVideoTexture) updateVideoTexture(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + const image = texture.image; + + if (image === undefined) { + console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined'); + } else if (image.complete === false) { + console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete'); + } else { + uploadTexture(textureProperties, texture, slot); + return; + } + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture); + } + + function setTexture2DArray(texture, slot) { + const textureProperties = properties.get(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + uploadTexture(textureProperties, texture, slot); + return; + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture); + } + + function setTexture3D(texture, slot) { + const textureProperties = properties.get(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + uploadTexture(textureProperties, texture, slot); + return; + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture); + } + + function setTextureCube(texture, slot) { + const textureProperties = properties.get(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + uploadCubeTexture(textureProperties, texture, slot); + return; + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); + } + + const wrappingToGL = { + [RepeatWrapping]: _gl.REPEAT, + [ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE, + [MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT + }; + const filterToGL = { + [NearestFilter]: _gl.NEAREST, + [NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST, + [NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR, + [LinearFilter]: _gl.LINEAR, + [LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST, + [LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR + }; + + function setTextureParameters(textureType, texture, supportsMips) { + if (supportsMips) { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]); + + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]); + + if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]); + } + + _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]); + + _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]); + } else { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE); + + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE); + + if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE); + } + + if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) { + console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.'); + } + + _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter)); + + _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter)); + + if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) { + console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.'); + } + } + + if (extensions.has('EXT_texture_filter_anisotropic') === true) { + const extension = extensions.get('EXT_texture_filter_anisotropic'); + if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2 + + if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only + + if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) { + _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy())); + + properties.get(texture).__currentAnisotropy = texture.anisotropy; + } + } + } + + function initTexture(textureProperties, texture) { + if (textureProperties.__webglInit === undefined) { + textureProperties.__webglInit = true; + texture.addEventListener('dispose', onTextureDispose); + textureProperties.__webglTexture = _gl.createTexture(); + info.memory.textures++; + } + } + + function uploadTexture(textureProperties, texture, slot) { + let textureType = _gl.TEXTURE_2D; + if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY; + if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D; + initTexture(textureProperties, texture); + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(textureType, textureProperties.__webglTexture); + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); + + _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE); + + const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false; + const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize); + const supportsMips = isPowerOfTwo$1(image) || isWebGL2, + glFormat = utils.convert(texture.format); + let glType = utils.convert(texture.type), + glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + setTextureParameters(textureType, texture, supportsMips); + let mipmap; + const mipmaps = texture.mipmaps; + const useTexStorage = isWebGL2 && texture.isVideoTexture !== true; + const allocateMemory = textureProperties.__version === undefined; + const levels = getMipLevels(texture, image, supportsMips); + + if (texture.isDepthTexture) { + // populate depth texture with dummy data + glInternalFormat = _gl.DEPTH_COMPONENT; + + if (isWebGL2) { + if (texture.type === FloatType) { + glInternalFormat = _gl.DEPTH_COMPONENT32F; + } else if (texture.type === UnsignedIntType) { + glInternalFormat = _gl.DEPTH_COMPONENT24; + } else if (texture.type === UnsignedInt248Type) { + glInternalFormat = _gl.DEPTH24_STENCIL8; + } else { + glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D + } + } else { + if (texture.type === FloatType) { + console.error('WebGLRenderer: Floating point depth texture requires WebGL2.'); + } + } // validation checks for WebGL 1 + + + if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) { + // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are + // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) { + console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.'); + texture.type = UnsignedShortType; + glType = utils.convert(texture.type); + } + } + + if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) { + // Depth stencil textures need the DEPTH_STENCIL internal format + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are + // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + + if (texture.type !== UnsignedInt248Type) { + console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.'); + texture.type = UnsignedInt248Type; + glType = utils.convert(texture.type); + } + } // + + + if (useTexStorage && allocateMemory) { + state.texStorage2D(_gl.TEXTURE_2D, 1, glInternalFormat, image.width, image.height); + } else { + state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null); + } + } else if (texture.isDataTexture) { + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + if (mipmaps.length > 0 && supportsMips) { + if (useTexStorage && allocateMemory) { + state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height); + } + + for (let i = 0, il = mipmaps.length; i < il; i++) { + mipmap = mipmaps[i]; + + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_2D, 0, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data); + } else { + state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); + } + } + + texture.generateMipmaps = false; + } else { + if (useTexStorage) { + if (allocateMemory) { + state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height); + } + + state.texSubImage2D(_gl.TEXTURE_2D, 0, 0, 0, image.width, image.height, glFormat, glType, image.data); + } else { + state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data); + } + } + } else if (texture.isCompressedTexture) { + if (useTexStorage && allocateMemory) { + state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height); + } + + for (let i = 0, il = mipmaps.length; i < il; i++) { + mipmap = mipmaps[i]; + + if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { + if (glFormat !== null) { + if (useTexStorage) { + state.compressedTexSubImage2D(_gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data); + } else { + state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); + } + } else { + console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()'); + } + } else { + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data); + } else { + state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); + } + } + } + } else if (texture.isDataTexture2DArray) { + if (useTexStorage) { + if (allocateMemory) { + state.texStorage3D(_gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, image.width, image.height, image.depth); + } + + state.texSubImage3D(_gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data); + } else { + state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); + } + } else if (texture.isDataTexture3D) { + if (useTexStorage) { + if (allocateMemory) { + state.texStorage3D(_gl.TEXTURE_3D, levels, glInternalFormat, image.width, image.height, image.depth); + } + + state.texSubImage3D(_gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data); + } else { + state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); + } + } else if (texture.isFramebufferTexture) { + if (useTexStorage && allocateMemory) { + state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height); + } else { + state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null); + } + } else { + // regular Texture (image, video, canvas) + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + if (mipmaps.length > 0 && supportsMips) { + if (useTexStorage && allocateMemory) { + state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height); + } + + for (let i = 0, il = mipmaps.length; i < il; i++) { + mipmap = mipmaps[i]; + + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_2D, i, 0, 0, glFormat, glType, mipmap); + } else { + state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap); + } + } + + texture.generateMipmaps = false; + } else { + if (useTexStorage) { + if (allocateMemory) { + state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height); + } + + state.texSubImage2D(_gl.TEXTURE_2D, 0, 0, 0, glFormat, glType, image); + } else { + state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image); + } + } + } + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + generateMipmap(textureType); + } + + textureProperties.__version = texture.version; + if (texture.onUpdate) texture.onUpdate(texture); + } + + function uploadCubeTexture(textureProperties, texture, slot) { + if (texture.image.length !== 6) return; + initTexture(textureProperties, texture); + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); + + _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE); + + const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture); + const isDataTexture = texture.image[0] && texture.image[0].isDataTexture; + const cubeImage = []; + + for (let i = 0; i < 6; i++) { + if (!isCompressed && !isDataTexture) { + cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize); + } else { + cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i]; + } + } + + const image = cubeImage[0], + supportsMips = isPowerOfTwo$1(image) || isWebGL2, + glFormat = utils.convert(texture.format), + glType = utils.convert(texture.type), + glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + const useTexStorage = isWebGL2 && texture.isVideoTexture !== true; + const allocateMemory = textureProperties.__version === undefined; + let levels = getMipLevels(texture, image, supportsMips); + setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips); + let mipmaps; + + if (isCompressed) { + if (useTexStorage && allocateMemory) { + state.texStorage2D(_gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, image.width, image.height); + } + + for (let i = 0; i < 6; i++) { + mipmaps = cubeImage[i].mipmaps; + + for (let j = 0; j < mipmaps.length; j++) { + const mipmap = mipmaps[j]; + + if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { + if (glFormat !== null) { + if (useTexStorage) { + state.compressedTexSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data); + } else { + state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); + } + } else { + console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()'); + } + } else { + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data); + } else { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); + } + } + } + } + } else { + mipmaps = texture.mipmaps; + + if (useTexStorage && allocateMemory) { + // TODO: Uniformly handle mipmap definitions + // Normal textures and compressed cube textures define base level + mips with their mipmap array + // Uncompressed cube textures use their mipmap array only for mips (no base level) + if (mipmaps.length > 0) levels++; + state.texStorage2D(_gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, cubeImage[0].width, cubeImage[0].height); + } + + for (let i = 0; i < 6; i++) { + if (isDataTexture) { + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, cubeImage[i].width, cubeImage[i].height, glFormat, glType, cubeImage[i].data); + } else { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data); + } + + for (let j = 0; j < mipmaps.length; j++) { + const mipmap = mipmaps[j]; + const mipmapImage = mipmap.image[i].image; + + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, mipmapImage.width, mipmapImage.height, glFormat, glType, mipmapImage.data); + } else { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data); + } + } + } else { + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, glFormat, glType, cubeImage[i]); + } else { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]); + } + + for (let j = 0; j < mipmaps.length; j++) { + const mipmap = mipmaps[j]; + + if (useTexStorage) { + state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, glFormat, glType, mipmap.image[i]); + } else { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]); + } + } + } + } + } + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + // We assume images for cube map have the same size. + generateMipmap(_gl.TEXTURE_CUBE_MAP); + } + + textureProperties.__version = texture.version; + if (texture.onUpdate) texture.onUpdate(texture); + } // Render targets + // Setup storage for target texture and bind it to correct framebuffer + + + function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) { + const glFormat = utils.convert(texture.format); + const glType = utils.convert(texture.type); + const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + const renderTargetProperties = properties.get(renderTarget); + + if (!renderTargetProperties.__hasExternalTextures) { + if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) { + state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null); + } else { + state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null); + } + } + + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + if (renderTarget.useRenderToTexture) { + MultisampledRenderToTextureExtension.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0, getRenderTargetSamples(renderTarget)); + } else { + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0); + } + + state.bindFramebuffer(_gl.FRAMEBUFFER, null); + } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer + + + function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) { + _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer); + + if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) { + let glInternalFormat = _gl.DEPTH_COMPONENT16; + + if (isMultisample || renderTarget.useRenderToTexture) { + const depthTexture = renderTarget.depthTexture; + + if (depthTexture && depthTexture.isDepthTexture) { + if (depthTexture.type === FloatType) { + glInternalFormat = _gl.DEPTH_COMPONENT32F; + } else if (depthTexture.type === UnsignedIntType) { + glInternalFormat = _gl.DEPTH_COMPONENT24; + } + } + + const samples = getRenderTargetSamples(renderTarget); + + if (renderTarget.useRenderToTexture) { + MultisampledRenderToTextureExtension.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + } else { + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + } + } else { + _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); + } + + _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer); + } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) { + const samples = getRenderTargetSamples(renderTarget); + + if (isMultisample && renderTarget.useRenderbuffer) { + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height); + } else if (renderTarget.useRenderToTexture) { + MultisampledRenderToTextureExtension.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height); + } else { + _gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height); + } + + _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer); + } else { + // Use the first texture for MRT so far + const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture; + const glFormat = utils.convert(texture.format); + const glType = utils.convert(texture.type); + const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + const samples = getRenderTargetSamples(renderTarget); + + if (isMultisample && renderTarget.useRenderbuffer) { + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + } else if (renderTarget.useRenderToTexture) { + MultisampledRenderToTextureExtension.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + } else { + _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); + } + } + + _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); + } // Setup resources for a Depth Texture for a FBO (needs an extension) + + + function setupDepthTexture(framebuffer, renderTarget) { + const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget; + if (isCube) throw new Error('Depth Texture with cube render targets is not supported'); + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) { + throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture'); + } // upload an empty depth texture with framebuffer size + + + if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) { + renderTarget.depthTexture.image.width = renderTarget.width; + renderTarget.depthTexture.image.height = renderTarget.height; + renderTarget.depthTexture.needsUpdate = true; + } + + setTexture2D(renderTarget.depthTexture, 0); + + const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture; + + const samples = getRenderTargetSamples(renderTarget); + + if (renderTarget.depthTexture.format === DepthFormat) { + if (renderTarget.useRenderToTexture) { + MultisampledRenderToTextureExtension.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples); + } else { + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); + } + } else if (renderTarget.depthTexture.format === DepthStencilFormat) { + if (renderTarget.useRenderToTexture) { + MultisampledRenderToTextureExtension.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples); + } else { + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); + } + } else { + throw new Error('Unknown depthTexture format'); + } + } // Setup GL resources for a non-texture depth buffer + + + function setupDepthRenderbuffer(renderTarget) { + const renderTargetProperties = properties.get(renderTarget); + const isCube = renderTarget.isWebGLCubeRenderTarget === true; + + if (renderTarget.depthTexture && !renderTargetProperties.__autoAllocateDepthBuffer) { + if (isCube) throw new Error('target.depthTexture not supported in Cube render targets'); + setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget); + } else { + if (isCube) { + renderTargetProperties.__webglDepthbuffer = []; + + for (let i = 0; i < 6; i++) { + state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]); + renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer(); + setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false); + } + } else { + state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); + renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false); + } + } + + state.bindFramebuffer(_gl.FRAMEBUFFER, null); + } // rebind framebuffer with external textures + + + function rebindTextures(renderTarget, colorTexture, depthTexture) { + const renderTargetProperties = properties.get(renderTarget); + + if (colorTexture !== undefined) { + setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D); + } + + if (depthTexture !== undefined) { + setupDepthRenderbuffer(renderTarget); + } + } // Set up GL resources for the render target + + + function setupRenderTarget(renderTarget) { + const texture = renderTarget.texture; + const renderTargetProperties = properties.get(renderTarget); + const textureProperties = properties.get(texture); + renderTarget.addEventListener('dispose', onRenderTargetDispose); + + if (renderTarget.isWebGLMultipleRenderTargets !== true) { + if (textureProperties.__webglTexture === undefined) { + textureProperties.__webglTexture = _gl.createTexture(); + } + + textureProperties.__version = texture.version; + info.memory.textures++; + } + + const isCube = renderTarget.isWebGLCubeRenderTarget === true; + const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true; + const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray; + const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858 + + if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) { + texture.format = RGBAFormat; + console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.'); + } // Setup framebuffer + + + if (isCube) { + renderTargetProperties.__webglFramebuffer = []; + + for (let i = 0; i < 6; i++) { + renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer(); + } + } else { + renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); + + if (isMultipleRenderTargets) { + if (capabilities.drawBuffers) { + const textures = renderTarget.texture; + + for (let i = 0, il = textures.length; i < il; i++) { + const attachmentProperties = properties.get(textures[i]); + + if (attachmentProperties.__webglTexture === undefined) { + attachmentProperties.__webglTexture = _gl.createTexture(); + info.memory.textures++; + } + } + } else { + console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.'); + } + } else if (renderTarget.useRenderbuffer) { + if (isWebGL2) { + renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); + renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer(); + + _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer); + + const glFormat = utils.convert(texture.format); + const glType = utils.convert(texture.type); + const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + const samples = getRenderTargetSamples(renderTarget); + + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + + state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); + + _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer); + + _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); + + if (renderTarget.depthBuffer) { + renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true); + } + + state.bindFramebuffer(_gl.FRAMEBUFFER, null); + } else { + console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.'); + } + } + } // Setup color buffer + + + if (isCube) { + state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); + setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips); + + for (let i = 0; i < 6; i++) { + setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i); + } + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + generateMipmap(_gl.TEXTURE_CUBE_MAP); + } + + state.unbindTexture(); + } else if (isMultipleRenderTargets) { + const textures = renderTarget.texture; + + for (let i = 0, il = textures.length; i < il; i++) { + const attachment = textures[i]; + const attachmentProperties = properties.get(attachment); + state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture); + setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips); + setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D); + + if (textureNeedsGenerateMipmaps(attachment, supportsMips)) { + generateMipmap(_gl.TEXTURE_2D); + } + } + + state.unbindTexture(); + } else { + let glTextureType = _gl.TEXTURE_2D; + + if (isRenderTarget3D) { + // Render targets containing layers, i.e: Texture 3D and 2d arrays + if (isWebGL2) { + const isTexture3D = texture.isDataTexture3D; + glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY; + } else { + console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.'); + } + } + + state.bindTexture(glTextureType, textureProperties.__webglTexture); + setTextureParameters(glTextureType, texture, supportsMips); + setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType); + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + generateMipmap(glTextureType); + } + + state.unbindTexture(); + } // Setup depth and stencil buffers + + + if (renderTarget.depthBuffer) { + setupDepthRenderbuffer(renderTarget); + } + } + + function updateRenderTargetMipmap(renderTarget) { + const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; + const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture]; + + for (let i = 0, il = textures.length; i < il; i++) { + const texture = textures[i]; + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; + + const webglTexture = properties.get(texture).__webglTexture; + + state.bindTexture(target, webglTexture); + generateMipmap(target); + state.unbindTexture(); + } + } + } + + function updateMultisampleRenderTarget(renderTarget) { + if (renderTarget.useRenderbuffer) { + if (isWebGL2) { + const width = renderTarget.width; + const height = renderTarget.height; + let mask = _gl.COLOR_BUFFER_BIT; + const invalidationArray = [_gl.COLOR_ATTACHMENT0]; + const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; + + if (renderTarget.depthBuffer) { + invalidationArray.push(depthStyle); + } + + if (!renderTarget.ignoreDepthForMultisampleCopy) { + if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT; + if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT; + } + + const renderTargetProperties = properties.get(renderTarget); + state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); + state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); + + if (renderTarget.ignoreDepthForMultisampleCopy) { + _gl.invalidateFramebuffer(_gl.READ_FRAMEBUFFER, [depthStyle]); + + _gl.invalidateFramebuffer(_gl.DRAW_FRAMEBUFFER, [depthStyle]); + } + + _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST); + + _gl.invalidateFramebuffer(_gl.READ_FRAMEBUFFER, invalidationArray); + + state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null); + state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); + } else { + console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.'); + } + } + } + + function getRenderTargetSamples(renderTarget) { + return isWebGL2 && (renderTarget.useRenderbuffer || renderTarget.useRenderToTexture) ? Math.min(maxSamples, renderTarget.samples) : 0; + } + + function updateVideoTexture(texture) { + const frame = info.render.frame; // Check the last frame we updated the VideoTexture + + if (_videoTextures.get(texture) !== frame) { + _videoTextures.set(texture, frame); + + texture.update(); + } + } // backwards compatibility + + + let warnedTexture2D = false; + let warnedTextureCube = false; + + function safeSetTexture2D(texture, slot) { + if (texture && texture.isWebGLRenderTarget) { + if (warnedTexture2D === false) { + console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.'); + warnedTexture2D = true; + } + + texture = texture.texture; + } + + setTexture2D(texture, slot); + } + + function safeSetTextureCube(texture, slot) { + if (texture && texture.isWebGLCubeRenderTarget) { + if (warnedTextureCube === false) { + console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.'); + warnedTextureCube = true; + } + + texture = texture.texture; + } + + setTextureCube(texture, slot); + } // + + + this.allocateTextureUnit = allocateTextureUnit; + this.resetTextureUnits = resetTextureUnits; + this.setTexture2D = setTexture2D; + this.setTexture2DArray = setTexture2DArray; + this.setTexture3D = setTexture3D; + this.setTextureCube = setTextureCube; + this.rebindTextures = rebindTextures; + this.setupRenderTarget = setupRenderTarget; + this.updateRenderTargetMipmap = updateRenderTargetMipmap; + this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; + this.setupDepthRenderbuffer = setupDepthRenderbuffer; + this.setupFrameBufferTexture = setupFrameBufferTexture; + this.safeSetTexture2D = safeSetTexture2D; + this.safeSetTextureCube = safeSetTextureCube; +} + +function WebGLUtils(gl, extensions, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + + function convert(p) { + let extension; + if (p === UnsignedByteType) return gl.UNSIGNED_BYTE; + if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4; + if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1; + if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5; + if (p === ByteType) return gl.BYTE; + if (p === ShortType) return gl.SHORT; + if (p === UnsignedShortType) return gl.UNSIGNED_SHORT; + if (p === IntType) return gl.INT; + if (p === UnsignedIntType) return gl.UNSIGNED_INT; + if (p === FloatType) return gl.FLOAT; + + if (p === HalfFloatType) { + if (isWebGL2) return gl.HALF_FLOAT; + extension = extensions.get('OES_texture_half_float'); + + if (extension !== null) { + return extension.HALF_FLOAT_OES; + } else { + return null; + } + } + + if (p === AlphaFormat) return gl.ALPHA; + if (p === RGBFormat) return gl.RGB; + if (p === RGBAFormat) return gl.RGBA; + if (p === LuminanceFormat) return gl.LUMINANCE; + if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA; + if (p === DepthFormat) return gl.DEPTH_COMPONENT; + if (p === DepthStencilFormat) return gl.DEPTH_STENCIL; + if (p === RedFormat) return gl.RED; // WebGL2 formats. + + if (p === RedIntegerFormat) return gl.RED_INTEGER; + if (p === RGFormat) return gl.RG; + if (p === RGIntegerFormat) return gl.RG_INTEGER; + if (p === RGBIntegerFormat) return gl.RGB_INTEGER; + if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER; + + if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) { + extension = extensions.get('WEBGL_compressed_texture_s3tc'); + + if (extension !== null) { + if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; + if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; + if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; + if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; + } else { + return null; + } + } + + if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) { + extension = extensions.get('WEBGL_compressed_texture_pvrtc'); + + if (extension !== null) { + if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; + if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; + if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; + if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; + } else { + return null; + } + } + + if (p === RGB_ETC1_Format) { + extension = extensions.get('WEBGL_compressed_texture_etc1'); + + if (extension !== null) { + return extension.COMPRESSED_RGB_ETC1_WEBGL; + } else { + return null; + } + } + + if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) { + extension = extensions.get('WEBGL_compressed_texture_etc'); + + if (extension !== null) { + if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2; + if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC; + } + } + + if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) { + extension = extensions.get('WEBGL_compressed_texture_astc'); + + if (extension !== null) { + // TODO Complete? + return p; + } else { + return null; + } + } + + if (p === RGBA_BPTC_Format) { + extension = extensions.get('EXT_texture_compression_bptc'); + + if (extension !== null) { + // TODO Complete? + return p; + } else { + return null; + } + } + + if (p === UnsignedInt248Type) { + if (isWebGL2) return gl.UNSIGNED_INT_24_8; + extension = extensions.get('WEBGL_depth_texture'); + + if (extension !== null) { + return extension.UNSIGNED_INT_24_8_WEBGL; + } else { + return null; + } + } + } + + return { + convert: convert + }; +} + +class ArrayCamera extends PerspectiveCamera { + constructor(array = []) { + super(); + this.cameras = array; + } + +} + +ArrayCamera.prototype.isArrayCamera = true; + +class Group extends Object3D { + constructor() { + super(); + this.type = 'Group'; + } + +} + +Group.prototype.isGroup = true; + +const _moveEvent = { + type: 'move' +}; + +class WebXRController { + constructor() { + this._targetRay = null; + this._grip = null; + this._hand = null; + } + + getHandSpace() { + if (this._hand === null) { + this._hand = new Group(); + this._hand.matrixAutoUpdate = false; + this._hand.visible = false; + this._hand.joints = {}; + this._hand.inputState = { + pinching: false + }; + } + + return this._hand; + } + + getTargetRaySpace() { + if (this._targetRay === null) { + this._targetRay = new Group(); + this._targetRay.matrixAutoUpdate = false; + this._targetRay.visible = false; + this._targetRay.hasLinearVelocity = false; + this._targetRay.linearVelocity = new Vector3(); + this._targetRay.hasAngularVelocity = false; + this._targetRay.angularVelocity = new Vector3(); + } + + return this._targetRay; + } + + getGripSpace() { + if (this._grip === null) { + this._grip = new Group(); + this._grip.matrixAutoUpdate = false; + this._grip.visible = false; + this._grip.hasLinearVelocity = false; + this._grip.linearVelocity = new Vector3(); + this._grip.hasAngularVelocity = false; + this._grip.angularVelocity = new Vector3(); + } + + return this._grip; + } + + dispatchEvent(event) { + if (this._targetRay !== null) { + this._targetRay.dispatchEvent(event); + } + + if (this._grip !== null) { + this._grip.dispatchEvent(event); + } + + if (this._hand !== null) { + this._hand.dispatchEvent(event); + } + + return this; + } + + disconnect(inputSource) { + this.dispatchEvent({ + type: 'disconnected', + data: inputSource + }); + + if (this._targetRay !== null) { + this._targetRay.visible = false; + } + + if (this._grip !== null) { + this._grip.visible = false; + } + + if (this._hand !== null) { + this._hand.visible = false; + } + + return this; + } + + update(inputSource, frame, referenceSpace) { + let inputPose = null; + let gripPose = null; + let handPose = null; + const targetRay = this._targetRay; + const grip = this._grip; + const hand = this._hand; + + if (inputSource && frame.session.visibilityState !== 'visible-blurred') { + if (targetRay !== null) { + inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace); + + if (inputPose !== null) { + targetRay.matrix.fromArray(inputPose.transform.matrix); + targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale); + + if (inputPose.linearVelocity) { + targetRay.hasLinearVelocity = true; + targetRay.linearVelocity.copy(inputPose.linearVelocity); + } else { + targetRay.hasLinearVelocity = false; + } + + if (inputPose.angularVelocity) { + targetRay.hasAngularVelocity = true; + targetRay.angularVelocity.copy(inputPose.angularVelocity); + } else { + targetRay.hasAngularVelocity = false; + } + + this.dispatchEvent(_moveEvent); + } + } + + if (hand && inputSource.hand) { + handPose = true; + + for (const inputjoint of inputSource.hand.values()) { + // Update the joints groups with the XRJoint poses + const jointPose = frame.getJointPose(inputjoint, referenceSpace); + + if (hand.joints[inputjoint.jointName] === undefined) { + // The transform of this joint will be updated with the joint pose on each frame + const joint = new Group(); + joint.matrixAutoUpdate = false; + joint.visible = false; + hand.joints[inputjoint.jointName] = joint; // ?? + + hand.add(joint); + } + + const joint = hand.joints[inputjoint.jointName]; + + if (jointPose !== null) { + joint.matrix.fromArray(jointPose.transform.matrix); + joint.matrix.decompose(joint.position, joint.rotation, joint.scale); + joint.jointRadius = jointPose.radius; + } + + joint.visible = jointPose !== null; + } // Custom events + // Check pinchz + + + const indexTip = hand.joints['index-finger-tip']; + const thumbTip = hand.joints['thumb-tip']; + const distance = indexTip.position.distanceTo(thumbTip.position); + const distanceToPinch = 0.02; + const threshold = 0.005; + + if (hand.inputState.pinching && distance > distanceToPinch + threshold) { + hand.inputState.pinching = false; + this.dispatchEvent({ + type: 'pinchend', + handedness: inputSource.handedness, + target: this + }); + } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) { + hand.inputState.pinching = true; + this.dispatchEvent({ + type: 'pinchstart', + handedness: inputSource.handedness, + target: this + }); + } + } else { + if (grip !== null && inputSource.gripSpace) { + gripPose = frame.getPose(inputSource.gripSpace, referenceSpace); + + if (gripPose !== null) { + grip.matrix.fromArray(gripPose.transform.matrix); + grip.matrix.decompose(grip.position, grip.rotation, grip.scale); + + if (gripPose.linearVelocity) { + grip.hasLinearVelocity = true; + grip.linearVelocity.copy(gripPose.linearVelocity); + } else { + grip.hasLinearVelocity = false; + } + + if (gripPose.angularVelocity) { + grip.hasAngularVelocity = true; + grip.angularVelocity.copy(gripPose.angularVelocity); + } else { + grip.hasAngularVelocity = false; + } + } + } + } + } + + if (targetRay !== null) { + targetRay.visible = inputPose !== null; + } + + if (grip !== null) { + grip.visible = gripPose !== null; + } + + if (hand !== null) { + hand.visible = handPose !== null; + } + + return this; + } + +} + +class DepthTexture extends Texture { + constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) { + format = format !== undefined ? format : DepthFormat; + + if (format !== DepthFormat && format !== DepthStencilFormat) { + throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat'); + } + + if (type === undefined && format === DepthFormat) type = UnsignedShortType; + if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type; + super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); + this.image = { + width: width, + height: height + }; + this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; + this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; + this.flipY = false; + this.generateMipmaps = false; + } + +} + +DepthTexture.prototype.isDepthTexture = true; + +class WebXRManager extends EventDispatcher { + constructor(renderer, gl) { + super(); + const scope = this; + let session = null; + let framebufferScaleFactor = 1.0; + let referenceSpace = null; + let referenceSpaceType = 'local-floor'; + const hasMultisampledRenderToTexture = renderer.extensions.has('WEBGL_multisampled_render_to_texture'); + let pose = null; + let glBinding = null; + let glProjLayer = null; + let glBaseLayer = null; + let isMultisample = false; + let xrFrame = null; + const attributes = gl.getContextAttributes(); + let initialRenderTarget = null; + let newRenderTarget = null; + const controllers = []; + const inputSourcesMap = new Map(); // + + const cameraL = new PerspectiveCamera(); + cameraL.layers.enable(1); + cameraL.viewport = new Vector4(); + const cameraR = new PerspectiveCamera(); + cameraR.layers.enable(2); + cameraR.viewport = new Vector4(); + const cameras = [cameraL, cameraR]; + const cameraVR = new ArrayCamera(); + cameraVR.layers.enable(1); + cameraVR.layers.enable(2); + let _currentDepthNear = null; + let _currentDepthFar = null; // + + this.cameraAutoUpdate = true; + this.enabled = false; + this.isPresenting = false; + + this.getController = function (index) { + let controller = controllers[index]; + + if (controller === undefined) { + controller = new WebXRController(); + controllers[index] = controller; + } + + return controller.getTargetRaySpace(); + }; + + this.getControllerGrip = function (index) { + let controller = controllers[index]; + + if (controller === undefined) { + controller = new WebXRController(); + controllers[index] = controller; + } + + return controller.getGripSpace(); + }; + + this.getHand = function (index) { + let controller = controllers[index]; + + if (controller === undefined) { + controller = new WebXRController(); + controllers[index] = controller; + } + + return controller.getHandSpace(); + }; // + + + function onSessionEvent(event) { + const controller = inputSourcesMap.get(event.inputSource); + + if (controller) { + controller.dispatchEvent({ + type: event.type, + data: event.inputSource + }); + } + } + + function onSessionEnd() { + inputSourcesMap.forEach(function (controller, inputSource) { + controller.disconnect(inputSource); + }); + inputSourcesMap.clear(); + _currentDepthNear = null; + _currentDepthFar = null; // restore framebuffer/rendering state + + renderer.setRenderTarget(initialRenderTarget); + glBaseLayer = null; + glProjLayer = null; + glBinding = null; + session = null; + newRenderTarget = null; // + + animation.stop(); + scope.isPresenting = false; + scope.dispatchEvent({ + type: 'sessionend' + }); + } + + this.setFramebufferScaleFactor = function (value) { + framebufferScaleFactor = value; + + if (scope.isPresenting === true) { + console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.'); + } + }; + + this.setReferenceSpaceType = function (value) { + referenceSpaceType = value; + + if (scope.isPresenting === true) { + console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.'); + } + }; + + this.getReferenceSpace = function () { + return referenceSpace; + }; + + this.getBaseLayer = function () { + return glProjLayer !== null ? glProjLayer : glBaseLayer; + }; + + this.getBinding = function () { + return glBinding; + }; + + this.getFrame = function () { + return xrFrame; + }; + + this.getSession = function () { + return session; + }; + + this.setSession = async function (value) { + session = value; + + if (session !== null) { + initialRenderTarget = renderer.getRenderTarget(); + session.addEventListener('select', onSessionEvent); + session.addEventListener('selectstart', onSessionEvent); + session.addEventListener('selectend', onSessionEvent); + session.addEventListener('squeeze', onSessionEvent); + session.addEventListener('squeezestart', onSessionEvent); + session.addEventListener('squeezeend', onSessionEvent); + session.addEventListener('end', onSessionEnd); + session.addEventListener('inputsourceschange', onInputSourcesChange); + + if (attributes.xrCompatible !== true) { + await gl.makeXRCompatible(); + } + + if (session.renderState.layers === undefined || renderer.capabilities.isWebGL2 === false) { + const layerInit = { + antialias: session.renderState.layers === undefined ? attributes.antialias : true, + alpha: attributes.alpha, + depth: attributes.depth, + stencil: attributes.stencil, + framebufferScaleFactor: framebufferScaleFactor + }; + glBaseLayer = new XRWebGLLayer(session, gl, layerInit); + session.updateRenderState({ + baseLayer: glBaseLayer + }); + newRenderTarget = new WebGLRenderTarget(glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, { + format: RGBAFormat, + type: UnsignedByteType, + encoding: renderer.outputEncoding + }); + } else { + isMultisample = attributes.antialias; + let depthFormat = null; + let depthType = null; + let glDepthFormat = null; + + if (attributes.depth) { + glDepthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; + depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat; + depthType = attributes.stencil ? UnsignedInt248Type : UnsignedShortType; + } + + const projectionlayerInit = { + colorFormat: attributes.alpha || isMultisample ? gl.RGBA8 : gl.RGB8, + depthFormat: glDepthFormat, + scaleFactor: framebufferScaleFactor + }; + glBinding = new XRWebGLBinding(session, gl); + glProjLayer = glBinding.createProjectionLayer(projectionlayerInit); + session.updateRenderState({ + layers: [glProjLayer] + }); + + if (isMultisample) { + newRenderTarget = new WebGLMultisampleRenderTarget(glProjLayer.textureWidth, glProjLayer.textureHeight, { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture(glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat), + stencilBuffer: attributes.stencil, + ignoreDepth: glProjLayer.ignoreDepthValues, + useRenderToTexture: hasMultisampledRenderToTexture, + encoding: renderer.outputEncoding + }); + } else { + newRenderTarget = new WebGLRenderTarget(glProjLayer.textureWidth, glProjLayer.textureHeight, { + format: attributes.alpha ? RGBAFormat : RGBFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture(glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat), + stencilBuffer: attributes.stencil, + ignoreDepth: glProjLayer.ignoreDepthValues, + encoding: renderer.outputEncoding + }); + } + } // Set foveation to maximum. + + + this.setFoveation(1.0); + referenceSpace = await session.requestReferenceSpace(referenceSpaceType); + animation.setContext(session); + animation.start(); + scope.isPresenting = true; + scope.dispatchEvent({ + type: 'sessionstart' + }); + } + }; + + function onInputSourcesChange(event) { + const inputSources = session.inputSources; // Assign inputSources to available controllers + + for (let i = 0; i < controllers.length; i++) { + inputSourcesMap.set(inputSources[i], controllers[i]); + } // Notify disconnected + + + for (let i = 0; i < event.removed.length; i++) { + const inputSource = event.removed[i]; + const controller = inputSourcesMap.get(inputSource); + + if (controller) { + controller.dispatchEvent({ + type: 'disconnected', + data: inputSource + }); + inputSourcesMap.delete(inputSource); + } + } // Notify connected + + + for (let i = 0; i < event.added.length; i++) { + const inputSource = event.added[i]; + const controller = inputSourcesMap.get(inputSource); + + if (controller) { + controller.dispatchEvent({ + type: 'connected', + data: inputSource + }); + } + } + } // + + + const cameraLPos = new Vector3(); + const cameraRPos = new Vector3(); + /** + * Assumes 2 cameras that are parallel and share an X-axis, and that + * the cameras' projection and world matrices have already been set. + * And that near and far planes are identical for both cameras. + * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 + */ + + function setProjectionFromUnion(camera, cameraL, cameraR) { + cameraLPos.setFromMatrixPosition(cameraL.matrixWorld); + cameraRPos.setFromMatrixPosition(cameraR.matrixWorld); + const ipd = cameraLPos.distanceTo(cameraRPos); + const projL = cameraL.projectionMatrix.elements; + const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and + // most likely identical top and bottom frustum extents. + // Use the left camera for these values. + + const near = projL[14] / (projL[10] - 1); + const far = projL[14] / (projL[10] + 1); + const topFov = (projL[9] + 1) / projL[5]; + const bottomFov = (projL[9] - 1) / projL[5]; + const leftFov = (projL[8] - 1) / projL[0]; + const rightFov = (projR[8] + 1) / projR[0]; + const left = near * leftFov; + const right = near * rightFov; // Calculate the new camera's position offset from the + // left camera. xOffset should be roughly half `ipd`. + + const zOffset = ipd / (-leftFov + rightFov); + const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset? + + cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale); + camera.translateX(xOffset); + camera.translateZ(zOffset); + camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale); + camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale + // the values so that the near plane's position does not change in world space, + // although must now be relative to the new union camera. + + const near2 = near + zOffset; + const far2 = far + zOffset; + const left2 = left - xOffset; + const right2 = right + (ipd - xOffset); + const top2 = topFov * far / far2 * near2; + const bottom2 = bottomFov * far / far2 * near2; + camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2); + } + + function updateCamera(camera, parent) { + if (parent === null) { + camera.matrixWorld.copy(camera.matrix); + } else { + camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix); + } + + camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); + } + + this.updateCamera = function (camera) { + if (session === null) return; + cameraVR.near = cameraR.near = cameraL.near = camera.near; + cameraVR.far = cameraR.far = cameraL.far = camera.far; + + if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) { + // Note that the new renderState won't apply until the next frame. See #18320 + session.updateRenderState({ + depthNear: cameraVR.near, + depthFar: cameraVR.far + }); + _currentDepthNear = cameraVR.near; + _currentDepthFar = cameraVR.far; + } + + const parent = camera.parent; + const cameras = cameraVR.cameras; + updateCamera(cameraVR, parent); + + for (let i = 0; i < cameras.length; i++) { + updateCamera(cameras[i], parent); + } + + cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children + + camera.position.copy(cameraVR.position); + camera.quaternion.copy(cameraVR.quaternion); + camera.scale.copy(cameraVR.scale); + camera.matrix.copy(cameraVR.matrix); + camera.matrixWorld.copy(cameraVR.matrixWorld); + const children = camera.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].updateMatrixWorld(true); + } // update projection matrix for proper view frustum culling + + + if (cameras.length === 2) { + setProjectionFromUnion(cameraVR, cameraL, cameraR); + } else { + // assume single camera setup (AR) + cameraVR.projectionMatrix.copy(cameraL.projectionMatrix); + } + }; + + this.getCamera = function () { + return cameraVR; + }; + + this.getFoveation = function () { + if (glProjLayer !== null) { + return glProjLayer.fixedFoveation; + } + + if (glBaseLayer !== null) { + return glBaseLayer.fixedFoveation; + } + + return undefined; + }; + + this.setFoveation = function (foveation) { + // 0 = no foveation = full resolution + // 1 = maximum foveation = the edges render at lower resolution + if (glProjLayer !== null) { + glProjLayer.fixedFoveation = foveation; + } + + if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) { + glBaseLayer.fixedFoveation = foveation; + } + }; // Animation Loop + + + let onAnimationFrameCallback = null; + + function onAnimationFrame(time, frame) { + pose = frame.getViewerPose(referenceSpace); + xrFrame = frame; + + if (pose !== null) { + const views = pose.views; + + if (glBaseLayer !== null) { + renderer.setRenderTargetFramebuffer(newRenderTarget, glBaseLayer.framebuffer); + renderer.setRenderTarget(newRenderTarget); + } + + let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list + + if (views.length !== cameraVR.cameras.length) { + cameraVR.cameras.length = 0; + cameraVRNeedsUpdate = true; + } + + for (let i = 0; i < views.length; i++) { + const view = views[i]; + let viewport = null; + + if (glBaseLayer !== null) { + viewport = glBaseLayer.getViewport(view); + } else { + const glSubImage = glBinding.getViewSubImage(glProjLayer, view); + viewport = glSubImage.viewport; // For side-by-side projection, we only produce a single texture for both eyes. + + if (i === 0) { + renderer.setRenderTargetTextures(newRenderTarget, glSubImage.colorTexture, glProjLayer.ignoreDepthValues ? undefined : glSubImage.depthStencilTexture); + renderer.setRenderTarget(newRenderTarget); + } + } + + const camera = cameras[i]; + camera.matrix.fromArray(view.transform.matrix); + camera.projectionMatrix.fromArray(view.projectionMatrix); + camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height); + + if (i === 0) { + cameraVR.matrix.copy(camera.matrix); + } + + if (cameraVRNeedsUpdate === true) { + cameraVR.cameras.push(camera); + } + } + } // + + + const inputSources = session.inputSources; + + for (let i = 0; i < controllers.length; i++) { + const controller = controllers[i]; + const inputSource = inputSources[i]; + controller.update(inputSource, frame, referenceSpace); + } + + if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame); + xrFrame = null; + } + + const animation = new WebGLAnimation(); + animation.setAnimationLoop(onAnimationFrame); + + this.setAnimationLoop = function (callback) { + onAnimationFrameCallback = callback; + }; + + this.dispose = function () {}; + } + +} + +function WebGLMaterials(properties) { + function refreshFogUniforms(uniforms, fog) { + uniforms.fogColor.value.copy(fog.color); + + if (fog.isFog) { + uniforms.fogNear.value = fog.near; + uniforms.fogFar.value = fog.far; + } else if (fog.isFogExp2) { + uniforms.fogDensity.value = fog.density; + } + } + + function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) { + if (material.isMeshBasicMaterial) { + refreshUniformsCommon(uniforms, material); + } else if (material.isMeshLambertMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsLambert(uniforms, material); + } else if (material.isMeshToonMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsToon(uniforms, material); + } else if (material.isMeshPhongMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsPhong(uniforms, material); + } else if (material.isMeshStandardMaterial) { + refreshUniformsCommon(uniforms, material); + + if (material.isMeshPhysicalMaterial) { + refreshUniformsPhysical(uniforms, material, transmissionRenderTarget); + } else { + refreshUniformsStandard(uniforms, material); + } + } else if (material.isMeshMatcapMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsMatcap(uniforms, material); + } else if (material.isMeshDepthMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsDepth(uniforms, material); + } else if (material.isMeshDistanceMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsDistance(uniforms, material); + } else if (material.isMeshNormalMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsNormal(uniforms, material); + } else if (material.isLineBasicMaterial) { + refreshUniformsLine(uniforms, material); + + if (material.isLineDashedMaterial) { + refreshUniformsDash(uniforms, material); + } + } else if (material.isPointsMaterial) { + refreshUniformsPoints(uniforms, material, pixelRatio, height); + } else if (material.isSpriteMaterial) { + refreshUniformsSprites(uniforms, material); + } else if (material.isShadowMaterial) { + uniforms.color.value.copy(material.color); + uniforms.opacity.value = material.opacity; + } else if (material.isShaderMaterial) { + material.uniformsNeedUpdate = false; // #15581 + } + } + + function refreshUniformsCommon(uniforms, material) { + uniforms.opacity.value = material.opacity; + + if (material.color) { + uniforms.diffuse.value.copy(material.color); + } + + if (material.emissive) { + uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity); + } + + if (material.map) { + uniforms.map.value = material.map; + } + + if (material.alphaMap) { + uniforms.alphaMap.value = material.alphaMap; + } + + if (material.specularMap) { + uniforms.specularMap.value = material.specularMap; + } + + if (material.alphaTest > 0) { + uniforms.alphaTest.value = material.alphaTest; + } + + const envMap = properties.get(material).envMap; + + if (envMap) { + uniforms.envMap.value = envMap; + uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1; + uniforms.reflectivity.value = material.reflectivity; + uniforms.ior.value = material.ior; + uniforms.refractionRatio.value = material.refractionRatio; + } + + if (material.lightMap) { + uniforms.lightMap.value = material.lightMap; + uniforms.lightMapIntensity.value = material.lightMapIntensity; + } + + if (material.aoMap) { + uniforms.aoMap.value = material.aoMap; + uniforms.aoMapIntensity.value = material.aoMapIntensity; + } // uv repeat and offset setting priorities + // 1. color map + // 2. specular map + // 3. displacementMap map + // 4. normal map + // 5. bump map + // 6. roughnessMap map + // 7. metalnessMap map + // 8. alphaMap map + // 9. emissiveMap map + // 10. clearcoat map + // 11. clearcoat normal map + // 12. clearcoat roughnessMap map + // 13. specular intensity map + // 14. specular tint map + // 15. transmission map + // 16. thickness map + + + let uvScaleMap; + + if (material.map) { + uvScaleMap = material.map; + } else if (material.specularMap) { + uvScaleMap = material.specularMap; + } else if (material.displacementMap) { + uvScaleMap = material.displacementMap; + } else if (material.normalMap) { + uvScaleMap = material.normalMap; + } else if (material.bumpMap) { + uvScaleMap = material.bumpMap; + } else if (material.roughnessMap) { + uvScaleMap = material.roughnessMap; + } else if (material.metalnessMap) { + uvScaleMap = material.metalnessMap; + } else if (material.alphaMap) { + uvScaleMap = material.alphaMap; + } else if (material.emissiveMap) { + uvScaleMap = material.emissiveMap; + } else if (material.clearcoatMap) { + uvScaleMap = material.clearcoatMap; + } else if (material.clearcoatNormalMap) { + uvScaleMap = material.clearcoatNormalMap; + } else if (material.clearcoatRoughnessMap) { + uvScaleMap = material.clearcoatRoughnessMap; + } else if (material.specularIntensityMap) { + uvScaleMap = material.specularIntensityMap; + } else if (material.specularColorMap) { + uvScaleMap = material.specularColorMap; + } else if (material.transmissionMap) { + uvScaleMap = material.transmissionMap; + } else if (material.thicknessMap) { + uvScaleMap = material.thicknessMap; + } else if (material.sheenColorMap) { + uvScaleMap = material.sheenColorMap; + } else if (material.sheenRoughnessMap) { + uvScaleMap = material.sheenRoughnessMap; + } + + if (uvScaleMap !== undefined) { + // backwards compatibility + if (uvScaleMap.isWebGLRenderTarget) { + uvScaleMap = uvScaleMap.texture; + } + + if (uvScaleMap.matrixAutoUpdate === true) { + uvScaleMap.updateMatrix(); + } + + uniforms.uvTransform.value.copy(uvScaleMap.matrix); + } // uv repeat and offset setting priorities for uv2 + // 1. ao map + // 2. light map + + + let uv2ScaleMap; + + if (material.aoMap) { + uv2ScaleMap = material.aoMap; + } else if (material.lightMap) { + uv2ScaleMap = material.lightMap; + } + + if (uv2ScaleMap !== undefined) { + // backwards compatibility + if (uv2ScaleMap.isWebGLRenderTarget) { + uv2ScaleMap = uv2ScaleMap.texture; + } + + if (uv2ScaleMap.matrixAutoUpdate === true) { + uv2ScaleMap.updateMatrix(); + } + + uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix); + } + } + + function refreshUniformsLine(uniforms, material) { + uniforms.diffuse.value.copy(material.color); + uniforms.opacity.value = material.opacity; + } + + function refreshUniformsDash(uniforms, material) { + uniforms.dashSize.value = material.dashSize; + uniforms.totalSize.value = material.dashSize + material.gapSize; + uniforms.scale.value = material.scale; + } + + function refreshUniformsPoints(uniforms, material, pixelRatio, height) { + uniforms.diffuse.value.copy(material.color); + uniforms.opacity.value = material.opacity; + uniforms.size.value = material.size * pixelRatio; + uniforms.scale.value = height * 0.5; + + if (material.map) { + uniforms.map.value = material.map; + } + + if (material.alphaMap) { + uniforms.alphaMap.value = material.alphaMap; + } + + if (material.alphaTest > 0) { + uniforms.alphaTest.value = material.alphaTest; + } // uv repeat and offset setting priorities + // 1. color map + // 2. alpha map + + + let uvScaleMap; + + if (material.map) { + uvScaleMap = material.map; + } else if (material.alphaMap) { + uvScaleMap = material.alphaMap; + } + + if (uvScaleMap !== undefined) { + if (uvScaleMap.matrixAutoUpdate === true) { + uvScaleMap.updateMatrix(); + } + + uniforms.uvTransform.value.copy(uvScaleMap.matrix); + } + } + + function refreshUniformsSprites(uniforms, material) { + uniforms.diffuse.value.copy(material.color); + uniforms.opacity.value = material.opacity; + uniforms.rotation.value = material.rotation; + + if (material.map) { + uniforms.map.value = material.map; + } + + if (material.alphaMap) { + uniforms.alphaMap.value = material.alphaMap; + } + + if (material.alphaTest > 0) { + uniforms.alphaTest.value = material.alphaTest; + } // uv repeat and offset setting priorities + // 1. color map + // 2. alpha map + + + let uvScaleMap; + + if (material.map) { + uvScaleMap = material.map; + } else if (material.alphaMap) { + uvScaleMap = material.alphaMap; + } + + if (uvScaleMap !== undefined) { + if (uvScaleMap.matrixAutoUpdate === true) { + uvScaleMap.updateMatrix(); + } + + uniforms.uvTransform.value.copy(uvScaleMap.matrix); + } + } + + function refreshUniformsLambert(uniforms, material) { + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + } + + function refreshUniformsPhong(uniforms, material) { + uniforms.specular.value.copy(material.specular); + uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 ) + + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsToon(uniforms, material) { + if (material.gradientMap) { + uniforms.gradientMap.value = material.gradientMap; + } + + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsStandard(uniforms, material) { + uniforms.roughness.value = material.roughness; + uniforms.metalness.value = material.metalness; + + if (material.roughnessMap) { + uniforms.roughnessMap.value = material.roughnessMap; + } + + if (material.metalnessMap) { + uniforms.metalnessMap.value = material.metalnessMap; + } + + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + + const envMap = properties.get(material).envMap; + + if (envMap) { + //uniforms.envMap.value = material.envMap; // part of uniforms common + uniforms.envMapIntensity.value = material.envMapIntensity; + } + } + + function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) { + refreshUniformsStandard(uniforms, material); + uniforms.ior.value = material.ior; // also part of uniforms common + + if (material.sheen > 0) { + uniforms.sheenColor.value.copy(material.sheenColor).multiplyScalar(material.sheen); + uniforms.sheenRoughness.value = material.sheenRoughness; + + if (material.sheenColorMap) { + uniforms.sheenColorMap.value = material.sheenColorMap; + } + + if (material.sheenRoughnessMap) { + uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap; + } + } + + if (material.clearcoat > 0) { + uniforms.clearcoat.value = material.clearcoat; + uniforms.clearcoatRoughness.value = material.clearcoatRoughness; + + if (material.clearcoatMap) { + uniforms.clearcoatMap.value = material.clearcoatMap; + } + + if (material.clearcoatRoughnessMap) { + uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; + } + + if (material.clearcoatNormalMap) { + uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale); + uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; + + if (material.side === BackSide) { + uniforms.clearcoatNormalScale.value.negate(); + } + } + } + + if (material.transmission > 0) { + uniforms.transmission.value = material.transmission; + uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; + uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height); + + if (material.transmissionMap) { + uniforms.transmissionMap.value = material.transmissionMap; + } + + uniforms.thickness.value = material.thickness; + + if (material.thicknessMap) { + uniforms.thicknessMap.value = material.thicknessMap; + } + + uniforms.attenuationDistance.value = material.attenuationDistance; + uniforms.attenuationColor.value.copy(material.attenuationColor); + } + + uniforms.specularIntensity.value = material.specularIntensity; + uniforms.specularColor.value.copy(material.specularColor); + + if (material.specularIntensityMap) { + uniforms.specularIntensityMap.value = material.specularIntensityMap; + } + + if (material.specularColorMap) { + uniforms.specularColorMap.value = material.specularColorMap; + } + } + + function refreshUniformsMatcap(uniforms, material) { + if (material.matcap) { + uniforms.matcap.value = material.matcap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsDepth(uniforms, material) { + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsDistance(uniforms, material) { + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + + uniforms.referencePosition.value.copy(material.referencePosition); + uniforms.nearDistance.value = material.nearDistance; + uniforms.farDistance.value = material.farDistance; + } + + function refreshUniformsNormal(uniforms, material) { + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + return { + refreshFogUniforms: refreshFogUniforms, + refreshMaterialUniforms: refreshMaterialUniforms + }; +} + +function createCanvasElement() { + const canvas = createElementNS('canvas'); + canvas.style.display = 'block'; + return canvas; +} + +function WebGLRenderer(parameters = {}) { + const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(), + _context = parameters.context !== undefined ? parameters.context : null, + _alpha = parameters.alpha !== undefined ? parameters.alpha : false, + _depth = parameters.depth !== undefined ? parameters.depth : true, + _stencil = parameters.stencil !== undefined ? parameters.stencil : true, + _antialias = parameters.antialias !== undefined ? parameters.antialias : false, + _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, + _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, + _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', + _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false; + + let currentRenderList = null; + let currentRenderState = null; // render() can be called from within a callback triggered by another render. + // We track this so that the nested render call gets its list and state isolated from the parent render call. + + const renderListStack = []; + const renderStateStack = []; // public properties + + this.domElement = _canvas; // Debug configuration container + + this.debug = { + /** + * Enables error checking and reporting when shader programs are being compiled + * @type {boolean} + */ + checkShaderErrors: true + }; // clearing + + this.autoClear = true; + this.autoClearColor = true; + this.autoClearDepth = true; + this.autoClearStencil = true; // scene graph + + this.sortObjects = true; // user-defined clipping + + this.clippingPlanes = []; + this.localClippingEnabled = false; // physically based shading + + this.outputEncoding = LinearEncoding; // physical lights + + this.physicallyCorrectLights = false; // tone mapping + + this.toneMapping = NoToneMapping; + this.toneMappingExposure = 1.0; // internal properties + + const _this = this; + + let _isContextLost = false; // internal state cache + + let _currentActiveCubeFace = 0; + let _currentActiveMipmapLevel = 0; + let _currentRenderTarget = null; + + let _currentMaterialId = -1; + + let _currentCamera = null; + + const _currentViewport = new Vector4(); + + const _currentScissor = new Vector4(); + + let _currentScissorTest = null; // + + let _width = _canvas.width; + let _height = _canvas.height; + let _pixelRatio = 1; + let _opaqueSort = null; + let _transparentSort = null; + + const _viewport = new Vector4(0, 0, _width, _height); + + const _scissor = new Vector4(0, 0, _width, _height); + + let _scissorTest = false; // + + const _currentDrawBuffers = []; // frustum + + const _frustum = new Frustum(); // clipping + + + let _clippingEnabled = false; + let _localClippingEnabled = false; // transmission + + let _transmissionRenderTarget = null; // camera matrices cache + + const _projScreenMatrix = new Matrix4(); + + const _vector3 = new Vector3(); + + const _emptyScene = { + background: null, + fog: null, + environment: null, + overrideMaterial: null, + isScene: true + }; + + function getTargetPixelRatio() { + return _currentRenderTarget === null ? _pixelRatio : 1; + } // initialize + + + let _gl = _context; + + function getContext(contextNames, contextAttributes) { + for (let i = 0; i < contextNames.length; i++) { + const contextName = contextNames[i]; + + const context = _canvas.getContext(contextName, contextAttributes); + + if (context !== null) return context; + } + + return null; + } + + try { + const contextAttributes = { + alpha: _alpha, + depth: _depth, + stencil: _stencil, + antialias: _antialias, + premultipliedAlpha: _premultipliedAlpha, + preserveDrawingBuffer: _preserveDrawingBuffer, + powerPreference: _powerPreference, + failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat + }; // OffscreenCanvas does not have setAttribute, see #22811 + + if ('setAttribute' in _canvas) _canvas.setAttribute('data-engine', `three.js r${REVISION}`); // event listeners must be registered before WebGL context is created, see #12753 + + _canvas.addEventListener('webglcontextlost', onContextLost, false); + + _canvas.addEventListener('webglcontextrestored', onContextRestore, false); + + if (_gl === null) { + const contextNames = ['webgl2', 'webgl', 'experimental-webgl']; + + if (_this.isWebGL1Renderer === true) { + contextNames.shift(); + } + + _gl = getContext(contextNames, contextAttributes); + + if (_gl === null) { + if (getContext(contextNames)) { + throw new Error('Error creating WebGL context with your selected attributes.'); + } else { + throw new Error('Error creating WebGL context.'); + } + } + } // Some experimental-webgl implementations do not have getShaderPrecisionFormat + + + if (_gl.getShaderPrecisionFormat === undefined) { + _gl.getShaderPrecisionFormat = function () { + return { + 'rangeMin': 1, + 'rangeMax': 1, + 'precision': 1 + }; + }; + } + } catch (error) { + console.error('THREE.WebGLRenderer: ' + error.message); + throw error; + } + + let extensions, capabilities, state, info; + let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; + let programCache, materials, renderLists, renderStates, clipping, shadowMap; + let background, morphtargets, bufferRenderer, indexedBufferRenderer; + let utils, bindingStates; + + function initGLContext() { + extensions = new WebGLExtensions(_gl); + capabilities = new WebGLCapabilities(_gl, extensions, parameters); + extensions.init(capabilities); + utils = new WebGLUtils(_gl, extensions, capabilities); + state = new WebGLState(_gl, extensions, capabilities); + _currentDrawBuffers[0] = _gl.BACK; + info = new WebGLInfo(_gl); + properties = new WebGLProperties(); + textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info); + cubemaps = new WebGLCubeMaps(_this); + cubeuvmaps = new WebGLCubeUVMaps(_this); + attributes = new WebGLAttributes(_gl, capabilities); + bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities); + geometries = new WebGLGeometries(_gl, attributes, info, bindingStates); + objects = new WebGLObjects(_gl, geometries, attributes, info); + morphtargets = new WebGLMorphtargets(_gl, capabilities, textures); + clipping = new WebGLClipping(properties); + programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping); + materials = new WebGLMaterials(properties); + renderLists = new WebGLRenderLists(); + renderStates = new WebGLRenderStates(extensions, capabilities); + background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha); + shadowMap = new WebGLShadowMap(_this, objects, capabilities); + bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities); + indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities); + info.programs = programCache.programs; + _this.capabilities = capabilities; + _this.extensions = extensions; + _this.properties = properties; + _this.renderLists = renderLists; + _this.shadowMap = shadowMap; + _this.state = state; + _this.info = info; + } + + initGLContext(); // xr + + const xr = new WebXRManager(_this, _gl); + this.xr = xr; // API + + this.getContext = function () { + return _gl; + }; + + this.getContextAttributes = function () { + return _gl.getContextAttributes(); + }; + + this.forceContextLoss = function () { + const extension = extensions.get('WEBGL_lose_context'); + if (extension) extension.loseContext(); + }; + + this.forceContextRestore = function () { + const extension = extensions.get('WEBGL_lose_context'); + if (extension) extension.restoreContext(); + }; + + this.getPixelRatio = function () { + return _pixelRatio; + }; + + this.setPixelRatio = function (value) { + if (value === undefined) return; + _pixelRatio = value; + this.setSize(_width, _height, false); + }; + + this.getSize = function (target) { + return target.set(_width, _height); + }; + + this.setSize = function (width, height, updateStyle) { + if (xr.isPresenting) { + console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.'); + return; + } + + _width = width; + _height = height; + _canvas.width = Math.floor(width * _pixelRatio); + _canvas.height = Math.floor(height * _pixelRatio); + + if (updateStyle !== false) { + _canvas.style.width = width + 'px'; + _canvas.style.height = height + 'px'; + } + + this.setViewport(0, 0, width, height); + }; + + this.getDrawingBufferSize = function (target) { + return target.set(_width * _pixelRatio, _height * _pixelRatio).floor(); + }; + + this.setDrawingBufferSize = function (width, height, pixelRatio) { + _width = width; + _height = height; + _pixelRatio = pixelRatio; + _canvas.width = Math.floor(width * pixelRatio); + _canvas.height = Math.floor(height * pixelRatio); + this.setViewport(0, 0, width, height); + }; + + this.getCurrentViewport = function (target) { + return target.copy(_currentViewport); + }; + + this.getViewport = function (target) { + return target.copy(_viewport); + }; + + this.setViewport = function (x, y, width, height) { + if (x.isVector4) { + _viewport.set(x.x, x.y, x.z, x.w); + } else { + _viewport.set(x, y, width, height); + } + + state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor()); + }; + + this.getScissor = function (target) { + return target.copy(_scissor); + }; + + this.setScissor = function (x, y, width, height) { + if (x.isVector4) { + _scissor.set(x.x, x.y, x.z, x.w); + } else { + _scissor.set(x, y, width, height); + } + + state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor()); + }; + + this.getScissorTest = function () { + return _scissorTest; + }; + + this.setScissorTest = function (boolean) { + state.setScissorTest(_scissorTest = boolean); + }; + + this.setOpaqueSort = function (method) { + _opaqueSort = method; + }; + + this.setTransparentSort = function (method) { + _transparentSort = method; + }; // Clearing + + + this.getClearColor = function (target) { + return target.copy(background.getClearColor()); + }; + + this.setClearColor = function () { + background.setClearColor.apply(background, arguments); + }; + + this.getClearAlpha = function () { + return background.getClearAlpha(); + }; + + this.setClearAlpha = function () { + background.setClearAlpha.apply(background, arguments); + }; + + this.clear = function (color, depth, stencil) { + let bits = 0; + if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT; + if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT; + if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT; + + _gl.clear(bits); + }; + + this.clearColor = function () { + this.clear(true, false, false); + }; + + this.clearDepth = function () { + this.clear(false, true, false); + }; + + this.clearStencil = function () { + this.clear(false, false, true); + }; // + + + this.dispose = function () { + _canvas.removeEventListener('webglcontextlost', onContextLost, false); + + _canvas.removeEventListener('webglcontextrestored', onContextRestore, false); + + renderLists.dispose(); + renderStates.dispose(); + properties.dispose(); + cubemaps.dispose(); + cubeuvmaps.dispose(); + objects.dispose(); + bindingStates.dispose(); + programCache.dispose(); + xr.dispose(); + xr.removeEventListener('sessionstart', onXRSessionStart); + xr.removeEventListener('sessionend', onXRSessionEnd); + + if (_transmissionRenderTarget) { + _transmissionRenderTarget.dispose(); + + _transmissionRenderTarget = null; + } + + animation.stop(); + }; // Events + + + function onContextLost(event) { + event.preventDefault(); + console.log('THREE.WebGLRenderer: Context Lost.'); + _isContextLost = true; + } + + function + /* event */ + onContextRestore() { + console.log('THREE.WebGLRenderer: Context Restored.'); + _isContextLost = false; + const infoAutoReset = info.autoReset; + const shadowMapEnabled = shadowMap.enabled; + const shadowMapAutoUpdate = shadowMap.autoUpdate; + const shadowMapNeedsUpdate = shadowMap.needsUpdate; + const shadowMapType = shadowMap.type; + initGLContext(); + info.autoReset = infoAutoReset; + shadowMap.enabled = shadowMapEnabled; + shadowMap.autoUpdate = shadowMapAutoUpdate; + shadowMap.needsUpdate = shadowMapNeedsUpdate; + shadowMap.type = shadowMapType; + } + + function onMaterialDispose(event) { + const material = event.target; + material.removeEventListener('dispose', onMaterialDispose); + deallocateMaterial(material); + } // Buffer deallocation + + + function deallocateMaterial(material) { + releaseMaterialProgramReferences(material); + properties.remove(material); + } + + function releaseMaterialProgramReferences(material) { + const programs = properties.get(material).programs; + + if (programs !== undefined) { + programs.forEach(function (program) { + programCache.releaseProgram(program); + }); + + if (material.isShaderMaterial) { + programCache.releaseShaderCache(material); + } + } + } // Buffer rendering + + + this.renderBufferDirect = function (camera, scene, geometry, material, object, group) { + if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) + + const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0; + const program = setProgram(camera, scene, geometry, material, object); + state.setMaterial(material, frontFaceCW); // + + let index = geometry.index; + const position = geometry.attributes.position; // + + if (index === null) { + if (position === undefined || position.count === 0) return; + } else if (index.count === 0) { + return; + } // + + + let rangeFactor = 1; + + if (material.wireframe === true) { + index = geometries.getWireframeAttribute(geometry); + rangeFactor = 2; + } + + bindingStates.setup(object, material, program, geometry, index); + let attribute; + let renderer = bufferRenderer; + + if (index !== null) { + attribute = attributes.get(index); + renderer = indexedBufferRenderer; + renderer.setIndex(attribute); + } // + + + const dataCount = index !== null ? index.count : position.count; + const rangeStart = geometry.drawRange.start * rangeFactor; + const rangeCount = geometry.drawRange.count * rangeFactor; + const groupStart = group !== null ? group.start * rangeFactor : 0; + const groupCount = group !== null ? group.count * rangeFactor : Infinity; + const drawStart = Math.max(rangeStart, groupStart); + const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1; + const drawCount = Math.max(0, drawEnd - drawStart + 1); + if (drawCount === 0) return; // + + if (object.isMesh) { + if (material.wireframe === true) { + state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio()); + renderer.setMode(_gl.LINES); + } else { + renderer.setMode(_gl.TRIANGLES); + } + } else if (object.isLine) { + let lineWidth = material.linewidth; + if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material + + state.setLineWidth(lineWidth * getTargetPixelRatio()); + + if (object.isLineSegments) { + renderer.setMode(_gl.LINES); + } else if (object.isLineLoop) { + renderer.setMode(_gl.LINE_LOOP); + } else { + renderer.setMode(_gl.LINE_STRIP); + } + } else if (object.isPoints) { + renderer.setMode(_gl.POINTS); + } else if (object.isSprite) { + renderer.setMode(_gl.TRIANGLES); + } + + if (object.isInstancedMesh) { + renderer.renderInstances(drawStart, drawCount, object.count); + } else if (geometry.isInstancedBufferGeometry) { + const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount); + renderer.renderInstances(drawStart, drawCount, instanceCount); + } else { + renderer.render(drawStart, drawCount); + } + }; // Compile + + + this.compile = function (scene, camera) { + currentRenderState = renderStates.get(scene); + currentRenderState.init(); + renderStateStack.push(currentRenderState); + scene.traverseVisible(function (object) { + if (object.isLight && object.layers.test(camera.layers)) { + currentRenderState.pushLight(object); + + if (object.castShadow) { + currentRenderState.pushShadow(object); + } + } + }); + currentRenderState.setupLights(_this.physicallyCorrectLights); + scene.traverse(function (object) { + const material = object.material; + + if (material) { + if (Array.isArray(material)) { + for (let i = 0; i < material.length; i++) { + const material2 = material[i]; + getProgram(material2, scene, object); + } + } else { + getProgram(material, scene, object); + } + } + }); + renderStateStack.pop(); + currentRenderState = null; + }; // compileAsync + + + this.compileAsync = function (scene, targetScene = null) { + // If no explicit targetScene was given use the scene instead + if (!targetScene) { + targetScene = scene; + } + + currentRenderState = renderStates.get(targetScene); + currentRenderState.init(); + renderStateStack.push(currentRenderState); + let foundScene = scene === targetScene; // Gather lights from both the scene and the new object that will be added + // to the scene. + + targetScene.traverseVisible(function (object) { + if (object === scene) { + foundScene = true; + } + + if (object.isLight) { + currentRenderState.pushLight(object); + + if (object.castShadow) { + currentRenderState.pushShadow(object); + } + } + }); // If the scene wasn't already part of the targetScene, add any lights it + // contains as well. + + if (!foundScene) { + scene.traverseVisible(function (object) { + if (object.isLight) { + currentRenderState.pushLight(object); + + if (object.castShadow) { + currentRenderState.pushShadow(object); + } + } + }); + } + + currentRenderState.setupLights(_this.physicallyCorrectLights); + const compiling = new Set(); // Only initialize materials in the new scene, not the targetScene. + + function getProgramSide(material, scene, object) { + if (material.transparent === true && material.side === DoubleSide) { + material.side = BackSide; // material.needsUpdate = true; + + getProgram(material, scene, object); + material.side = FrontSide; // material.needsUpdate = true; + + getProgram(material, scene, object); + material.side = DoubleSide; + } else { + getProgram(material, scene, object); + } + } + + function _compileMaterial(material, object) { + if (Array.isArray(material)) { + for (let i = 0; i < material.length; i++) { + const material2 = material[i]; + getProgramSide(material2, targetScene, object); + compiling.add(material2); + } + } else { + getProgramSide(material, targetScene, object); + compiling.add(material); + } + } + + if (scene.overrideMaterial) { + scene.traverse(function (object) { + const material = object.material; + + if (material) { + _compileMaterial(scene.overrideMaterial, object); + } + }); + } else { + scene.traverse(function (object) { + const material = object.material; + + if (material) { + _compileMaterial(material, object); + } + }); + } + + currentRenderState = null; // Wait for all the materials in the new object to indicate that they're + // ready to be used before resolving the promise. + + return new Promise(resolve => { + function checkMaterialsReady() { + compiling.forEach(function (material) { + const materialProperties = properties.get(material); + const program = materialProperties.currentProgram; + + if (program.isReady()) { + // remove any programs that report they're ready to use from the list + compiling.delete(material); + } + }); // once the list of compiling materials is empty, call the callback + + if (compiling.size === 0) { + resolve(scene); + return; + } // if some materials are still not ready, wait a bit and check again + + + setTimeout(checkMaterialsReady, 10); + } + + if (extensions.get('KHR_parallel_shader_compile') !== null) { + // If we can check the compilation status of the materials without + // blocking then do so right away. + checkMaterialsReady(); + } else { + // Otherwise start by waiting a bit to give the materials we just + // initialized a chance to finish. + setTimeout(checkMaterialsReady, 10); + } + }); + }; // Animation Loop + + + let onAnimationFrameCallback = null; + + function onAnimationFrame(time) { + if (onAnimationFrameCallback) onAnimationFrameCallback(time); + } + + function onXRSessionStart() { + animation.stop(); + } + + function onXRSessionEnd() { + animation.start(); + } + + const animation = new WebGLAnimation(); + animation.setAnimationLoop(onAnimationFrame); + if (typeof window !== 'undefined') animation.setContext(window); + + this.setAnimationLoop = function (callback) { + onAnimationFrameCallback = callback; + xr.setAnimationLoop(callback); + callback === null ? animation.stop() : animation.start(); + }; + + xr.addEventListener('sessionstart', onXRSessionStart); + xr.addEventListener('sessionend', onXRSessionEnd); // Rendering + + this.render = function (scene, camera) { + if (camera !== undefined && camera.isCamera !== true) { + console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.'); + return; + } + + if (_isContextLost === true) return; // update scene graph + + if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum + + if (camera.parent === null) camera.updateMatrixWorld(); + + if (xr.enabled === true && xr.isPresenting === true) { + if (xr.cameraAutoUpdate === true) xr.updateCamera(camera); + camera = xr.getCamera(); // use XR camera for rendering + } // + + + if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget); + currentRenderState = renderStates.get(scene, renderStateStack.length); + currentRenderState.init(); + renderStateStack.push(currentRenderState); + + _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); + + _frustum.setFromProjectionMatrix(_projScreenMatrix); + + _localClippingEnabled = this.localClippingEnabled; + _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera); + currentRenderList = renderLists.get(scene, renderListStack.length); + currentRenderList.init(); + renderListStack.push(currentRenderList); + projectObject(scene, camera, 0, _this.sortObjects); + currentRenderList.finish(); + + if (_this.sortObjects === true) { + currentRenderList.sort(_opaqueSort, _transparentSort); + } // + + + if (_clippingEnabled === true) clipping.beginShadows(); + const shadowsArray = currentRenderState.state.shadowsArray; + shadowMap.render(shadowsArray, scene, camera); + if (_clippingEnabled === true) clipping.endShadows(); // + + if (this.info.autoReset === true) this.info.reset(); // + + background.render(currentRenderList, scene); // render scene + + currentRenderState.setupLights(_this.physicallyCorrectLights); + + if (camera.isArrayCamera) { + const cameras = camera.cameras; + + for (let i = 0, l = cameras.length; i < l; i++) { + const camera2 = cameras[i]; + renderScene(currentRenderList, scene, camera2, camera2.viewport); + } + } else { + renderScene(currentRenderList, scene, camera); + } // + + + if (_currentRenderTarget !== null) { + // resolve multisample renderbuffers to a single-sample texture if necessary + textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering + + textures.updateRenderTargetMipmap(_currentRenderTarget); + } // + + + if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render + + state.buffers.depth.setTest(true); + state.buffers.depth.setMask(true); + state.buffers.color.setMask(true); + state.setPolygonOffset(false); // _gl.finish(); + + bindingStates.resetDefaultState(); + _currentMaterialId = -1; + _currentCamera = null; + renderStateStack.pop(); + + if (renderStateStack.length > 0) { + currentRenderState = renderStateStack[renderStateStack.length - 1]; + } else { + currentRenderState = null; + } + + renderListStack.pop(); + + if (renderListStack.length > 0) { + currentRenderList = renderListStack[renderListStack.length - 1]; + } else { + currentRenderList = null; + } + }; + + function projectObject(object, camera, groupOrder, sortObjects) { + if (object.visible === false) return; + const visible = object.layers.test(camera.layers); + + if (visible) { + if (object.isGroup) { + groupOrder = object.renderOrder; + } else if (object.isLOD) { + if (object.autoUpdate === true) object.update(camera); + } else if (object.isLight) { + currentRenderState.pushLight(object); + + if (object.castShadow) { + currentRenderState.pushShadow(object); + } + } else if (object.isSprite) { + if (!object.frustumCulled || _frustum.intersectsSprite(object)) { + if (sortObjects) { + _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); + } + + const geometry = objects.update(object); + const material = object.material; + + if (material.visible) { + currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null); + } + } + } else if (object.isMesh || object.isLine || object.isPoints) { + if (object.isSkinnedMesh) { + // update skeleton only once in a frame + if (object.skeleton.frame !== info.render.frame) { + object.skeleton.update(); + object.skeleton.frame = info.render.frame; + } + } + + if (!object.frustumCulled || _frustum.intersectsObject(object)) { + if (sortObjects) { + _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); + } + + const geometry = objects.update(object); + const material = object.material; + + if (Array.isArray(material)) { + const groups = geometry.groups; + + for (let i = 0, l = groups.length; i < l; i++) { + const group = groups[i]; + const groupMaterial = material[group.materialIndex]; + + if (groupMaterial && groupMaterial.visible) { + currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group); + } + } + } else if (material.visible) { + currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null); + } + } + } + } + + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + projectObject(children[i], camera, groupOrder, sortObjects); + } + } + + function renderScene(currentRenderList, scene, camera, viewport) { + const opaqueObjects = currentRenderList.opaque; + const transmissiveObjects = currentRenderList.transmissive; + const transparentObjects = currentRenderList.transparent; + currentRenderState.setupLightsView(camera); + if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera); + if (viewport) state.viewport(_currentViewport.copy(viewport)); + if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera); + if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera); + if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera); + } + + function renderTransmissionPass(opaqueObjects, scene, camera) { + if (_transmissionRenderTarget === null) { + const needsAntialias = _antialias === true && capabilities.isWebGL2 === true; + const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget; + _transmissionRenderTarget = new renderTargetType(1024, 1024, { + generateMipmaps: true, + type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType, + minFilter: LinearMipmapLinearFilter, + magFilter: NearestFilter, + wrapS: ClampToEdgeWrapping, + wrapT: ClampToEdgeWrapping, + useRenderToTexture: extensions.has('WEBGL_multisampled_render_to_texture') + }); + } + + const currentRenderTarget = _this.getRenderTarget(); + + _this.setRenderTarget(_transmissionRenderTarget); + + _this.clear(); // Turn off the features which can affect the frag color for opaque objects pass. + // Otherwise they are applied twice in opaque objects pass and transmission objects pass. + + + const currentToneMapping = _this.toneMapping; + _this.toneMapping = NoToneMapping; + renderObjects(opaqueObjects, scene, camera); + _this.toneMapping = currentToneMapping; + textures.updateMultisampleRenderTarget(_transmissionRenderTarget); + textures.updateRenderTargetMipmap(_transmissionRenderTarget); + + _this.setRenderTarget(currentRenderTarget); + } + + function renderObjects(renderList, scene, camera) { + const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; + + for (let i = 0, l = renderList.length; i < l; i++) { + const renderItem = renderList[i]; + const object = renderItem.object; + const geometry = renderItem.geometry; + const material = overrideMaterial === null ? renderItem.material : overrideMaterial; + const group = renderItem.group; + + if (object.layers.test(camera.layers)) { + renderObject(object, scene, camera, geometry, material, group); + } + } + } + + function renderObject(object, scene, camera, geometry, material, group) { + object.onBeforeRender(_this, scene, camera, geometry, material, group); + object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld); + object.normalMatrix.getNormalMatrix(object.modelViewMatrix); + material.onBeforeRender(_this, scene, camera, geometry, object, group); + + if (material.transparent === true && material.side === DoubleSide) { + material.side = BackSide; + material.needsUpdate = true; + + _this.renderBufferDirect(camera, scene, geometry, material, object, group); + + material.side = FrontSide; + material.needsUpdate = true; + + _this.renderBufferDirect(camera, scene, geometry, material, object, group); + + material.side = DoubleSide; + } else { + _this.renderBufferDirect(camera, scene, geometry, material, object, group); + } + + object.onAfterRender(_this, scene, camera, geometry, material, group); + } + + function getProgram(material, scene, object) { + if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... + + const materialProperties = properties.get(material); + const lights = currentRenderState.state.lights; + const shadowsArray = currentRenderState.state.shadowsArray; + const lightsStateVersion = lights.state.version; + const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object); + const programCacheKey = programCache.getProgramCacheKey(parameters); + let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change + + materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; + materialProperties.fog = scene.fog; + materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment); + + if (programs === undefined) { + // new material + material.addEventListener('dispose', onMaterialDispose); + programs = new Map(); + materialProperties.programs = programs; + } + + let program = programs.get(programCacheKey); + + if (program !== undefined) { + // early out if program and light state is identical + if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) { + updateCommonMaterialProperties(material, parameters); + return program; + } + } else { + parameters.uniforms = programCache.getUniforms(material); + material.onBuild(object, parameters, _this); + material.onBeforeCompile(parameters, _this); + program = programCache.acquireProgram(parameters, programCacheKey); + programs.set(programCacheKey, program); + materialProperties.uniforms = parameters.uniforms; + } + + const uniforms = materialProperties.uniforms; + + if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) { + uniforms.clippingPlanes = clipping.uniform; + } + + updateCommonMaterialProperties(material, parameters); // store the light setup it was created for + + materialProperties.needsLights = materialNeedsLights(material); + materialProperties.lightsStateVersion = lightsStateVersion; + + if (materialProperties.needsLights) { + // wire up the material to this renderer's lighting state + uniforms.ambientLightColor.value = lights.state.ambient; + uniforms.lightProbe.value = lights.state.probe; + uniforms.directionalLights.value = lights.state.directional; + uniforms.directionalLightShadows.value = lights.state.directionalShadow; + uniforms.spotLights.value = lights.state.spot; + uniforms.spotLightShadows.value = lights.state.spotShadow; + uniforms.rectAreaLights.value = lights.state.rectArea; + uniforms.ltc_1.value = lights.state.rectAreaLTC1; + uniforms.ltc_2.value = lights.state.rectAreaLTC2; + uniforms.pointLights.value = lights.state.point; + uniforms.pointLightShadows.value = lights.state.pointShadow; + uniforms.hemisphereLights.value = lights.state.hemi; + uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; + uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; + uniforms.spotShadowMap.value = lights.state.spotShadowMap; + uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; + uniforms.pointShadowMap.value = lights.state.pointShadowMap; + uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms + } + + materialProperties.currentProgram = program; + materialProperties.uniformsList = null; + return program; + } + + function getUniformList(materialProperties) { + if (materialProperties.uniformsList === null) { + const progUniforms = materialProperties.currentProgram.getUniforms(); + materialProperties.uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, materialProperties.uniforms); + } + + return materialProperties.uniformsList; + } + + function updateCommonMaterialProperties(material, parameters) { + const materialProperties = properties.get(material); + materialProperties.outputEncoding = parameters.outputEncoding; + materialProperties.instancing = parameters.instancing; + materialProperties.skinning = parameters.skinning; + materialProperties.morphTargets = parameters.morphTargets; + materialProperties.morphNormals = parameters.morphNormals; + materialProperties.morphTargetsCount = parameters.morphTargetsCount; + materialProperties.numClippingPlanes = parameters.numClippingPlanes; + materialProperties.numIntersection = parameters.numClipIntersection; + materialProperties.vertexAlphas = parameters.vertexAlphas; + materialProperties.vertexTangents = parameters.vertexTangents; + materialProperties.toneMapping = parameters.toneMapping; + } + + function setProgram(camera, scene, geometry, material, object) { + if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... + + textures.resetTextureUnits(); + const fog = scene.fog; + const environment = material.isMeshStandardMaterial ? scene.environment : null; + const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding; + const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment); + const vertexAlphas = material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4; + const vertexTangents = !!material.normalMap && !!geometry.attributes.tangent; + const morphTargets = !!geometry.morphAttributes.position; + const morphNormals = !!geometry.morphAttributes.normal; + const morphTargetsCount = !!geometry.morphAttributes.position ? geometry.morphAttributes.position.length : 0; + const toneMapping = material.toneMapped ? _this.toneMapping : NoToneMapping; + const materialProperties = properties.get(material); + const lights = currentRenderState.state.lights; + + if (_clippingEnabled === true) { + if (_localClippingEnabled === true || camera !== _currentCamera) { + const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup + // object instead of the material, once it becomes feasible + // (#8465, #8379) + + clipping.setState(material, camera, useCache); + } + } // + + + let needsProgramChange = false; + + if (material.version === materialProperties.__version) { + if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) { + needsProgramChange = true; + } else if (materialProperties.outputEncoding !== encoding) { + needsProgramChange = true; + } else if (object.isInstancedMesh && materialProperties.instancing === false) { + needsProgramChange = true; + } else if (!object.isInstancedMesh && materialProperties.instancing === true) { + needsProgramChange = true; + } else if (object.isSkinnedMesh && materialProperties.skinning === false) { + needsProgramChange = true; + } else if (!object.isSkinnedMesh && materialProperties.skinning === true) { + needsProgramChange = true; + } else if (materialProperties.envMap !== envMap) { + needsProgramChange = true; + } else if (material.fog && materialProperties.fog !== fog) { + needsProgramChange = true; + } else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) { + needsProgramChange = true; + } else if (materialProperties.vertexAlphas !== vertexAlphas) { + needsProgramChange = true; + } else if (materialProperties.vertexTangents !== vertexTangents) { + needsProgramChange = true; + } else if (materialProperties.morphTargets !== morphTargets) { + needsProgramChange = true; + } else if (materialProperties.morphNormals !== morphNormals) { + needsProgramChange = true; + } else if (materialProperties.toneMapping !== toneMapping) { + needsProgramChange = true; + } else if (capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount) { + needsProgramChange = true; + } + } else { + needsProgramChange = true; + materialProperties.__version = material.version; + } // + + + let program = materialProperties.currentProgram; + + if (needsProgramChange === true) { + program = getProgram(material, scene, object); + } + + let refreshProgram = false; + let refreshMaterial = false; + let refreshLights = false; + const p_uniforms = program.getUniforms(), + m_uniforms = materialProperties.uniforms; + + if (state.useProgram(program.program)) { + refreshProgram = true; + refreshMaterial = true; + refreshLights = true; + } + + if (material.id !== _currentMaterialId) { + _currentMaterialId = material.id; + refreshMaterial = true; + } + + if (refreshProgram || _currentCamera !== camera) { + p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix); + + if (capabilities.logarithmicDepthBuffer) { + p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2)); + } + + if (_currentCamera !== camera) { + _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update + // now, in case this material supports lights - or later, when + // the next material that does gets activated: + + refreshMaterial = true; // set to true on material change + + refreshLights = true; // remains set until update done + } // load material specific uniforms + // (shader material also gets them for the sake of genericity) + + + if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) { + const uCamPos = p_uniforms.map.cameraPosition; + + if (uCamPos !== undefined) { + uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld)); + } + } + + if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) { + p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true); + } + + if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) { + p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse); + } + } // skinning and morph target uniforms must be set even if material didn't change + // auto-setting of texture unit for bone and morph texture must go before other textures + // otherwise textures used for skinning and morphing can take over texture units reserved for other material textures + + + if (object.isSkinnedMesh) { + p_uniforms.setOptional(_gl, object, 'bindMatrix'); + p_uniforms.setOptional(_gl, object, 'bindMatrixInverse'); + const skeleton = object.skeleton; + + if (skeleton) { + if (capabilities.floatVertexTextures) { + if (skeleton.boneTexture === null) skeleton.computeBoneTexture(); + p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures); + p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize); + } else { + p_uniforms.setOptional(_gl, skeleton, 'boneMatrices'); + } + } + } + + if (!!geometry && (geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined)) { + morphtargets.update(object, geometry, material, program); + } + + if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) { + materialProperties.receiveShadow = object.receiveShadow; + p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow); + } + + if (refreshMaterial) { + p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure); + + if (materialProperties.needsLights) { + // the current material requires lighting info + // note: all lighting uniforms are always set correctly + // they simply reference the renderer's state for their + // values + // + // use the current material's .needsUpdate flags to set + // the GL state when required + markUniformsLightsNeedsUpdate(m_uniforms, refreshLights); + } // refresh uniforms common to several materials + + + if (fog && material.fog) { + materials.refreshFogUniforms(m_uniforms, fog); + } + + materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget); + WebGLUniforms.upload(_gl, getUniformList(materialProperties), m_uniforms, textures); + } + + if (material.isShaderMaterial && material.uniformsNeedUpdate === true) { + WebGLUniforms.upload(_gl, getUniformList(materialProperties), m_uniforms, textures); + material.uniformsNeedUpdate = false; + } + + if (material.isSpriteMaterial) { + p_uniforms.setValue(_gl, 'center', object.center); + } // common matrices + + + p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix); + p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix); + p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld); + return program; + } // If uniforms are marked as clean, they don't need to be loaded to the GPU. + + + function markUniformsLightsNeedsUpdate(uniforms, value) { + uniforms.ambientLightColor.needsUpdate = value; + uniforms.lightProbe.needsUpdate = value; + uniforms.directionalLights.needsUpdate = value; + uniforms.directionalLightShadows.needsUpdate = value; + uniforms.pointLights.needsUpdate = value; + uniforms.pointLightShadows.needsUpdate = value; + uniforms.spotLights.needsUpdate = value; + uniforms.spotLightShadows.needsUpdate = value; + uniforms.rectAreaLights.needsUpdate = value; + uniforms.hemisphereLights.needsUpdate = value; + } + + function materialNeedsLights(material) { + return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true; + } + + this.getActiveCubeFace = function () { + return _currentActiveCubeFace; + }; + + this.getActiveMipmapLevel = function () { + return _currentActiveMipmapLevel; + }; + + this.getRenderTarget = function () { + return _currentRenderTarget; + }; + + this.setRenderTargetTextures = function (renderTarget, colorTexture, depthTexture) { + properties.get(renderTarget.texture).__webglTexture = colorTexture; + properties.get(renderTarget.depthTexture).__webglTexture = depthTexture; + const renderTargetProperties = properties.get(renderTarget); + renderTargetProperties.__hasExternalTextures = true; + + if (renderTargetProperties.__hasExternalTextures) { + renderTargetProperties.__autoAllocateDepthBuffer = depthTexture === undefined; + + if (!renderTargetProperties.__autoAllocateDepthBuffer) { + // The multisample_render_to_texture extension doesn't work properly if there + // are midframe flushes and an external depth buffer. Disable use of the extension. + if (renderTarget.useRenderToTexture) { + console.warn('render-to-texture extension was disabled because an external texture was provided'); + renderTarget.useRenderToTexture = false; + renderTarget.useRenderbuffer = true; + } + } + } + }; + + this.setRenderTargetFramebuffer = function (renderTarget, defaultFramebuffer) { + const renderTargetProperties = properties.get(renderTarget); + renderTargetProperties.__webglFramebuffer = defaultFramebuffer; + renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined; + }; + + this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) { + _currentRenderTarget = renderTarget; + _currentActiveCubeFace = activeCubeFace; + _currentActiveMipmapLevel = activeMipmapLevel; + let useDefaultFramebuffer = true; + + if (renderTarget) { + const renderTargetProperties = properties.get(renderTarget); + + if (renderTargetProperties.__useDefaultFramebuffer !== undefined) { + // We need to make sure to rebind the framebuffer. + state.bindFramebuffer(_gl.FRAMEBUFFER, null); + useDefaultFramebuffer = false; + } else if (renderTargetProperties.__webglFramebuffer === undefined) { + textures.setupRenderTarget(renderTarget); + } else if (renderTargetProperties.__hasExternalTextures) { + // Color and depth texture must be rebound in order for the swapchain to update. + textures.rebindTextures(renderTarget, properties.get(renderTarget.texture).__webglTexture, properties.get(renderTarget.depthTexture).__webglTexture); + } + } + + let framebuffer = null; + let isCube = false; + let isRenderTarget3D = false; + + if (renderTarget) { + const texture = renderTarget.texture; + + if (texture.isDataTexture3D || texture.isDataTexture2DArray) { + isRenderTarget3D = true; + } + + const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer; + + if (renderTarget.isWebGLCubeRenderTarget) { + framebuffer = __webglFramebuffer[activeCubeFace]; + isCube = true; + } else if (renderTarget.useRenderbuffer) { + framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer; + } else { + framebuffer = __webglFramebuffer; + } + + _currentViewport.copy(renderTarget.viewport); + + _currentScissor.copy(renderTarget.scissor); + + _currentScissorTest = renderTarget.scissorTest; + } else { + _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor(); + + _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor(); + + _currentScissorTest = _scissorTest; + } + + const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + if (framebufferBound && capabilities.drawBuffers && useDefaultFramebuffer) { + let needsUpdate = false; + + if (renderTarget) { + if (renderTarget.isWebGLMultipleRenderTargets) { + const textures = renderTarget.texture; + + if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) { + for (let i = 0, il = textures.length; i < il; i++) { + _currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i; + } + + _currentDrawBuffers.length = textures.length; + needsUpdate = true; + } + } else { + if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) { + _currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0; + _currentDrawBuffers.length = 1; + needsUpdate = true; + } + } + } else { + if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) { + _currentDrawBuffers[0] = _gl.BACK; + _currentDrawBuffers.length = 1; + needsUpdate = true; + } + } + + if (needsUpdate) { + if (capabilities.isWebGL2) { + _gl.drawBuffers(_currentDrawBuffers); + } else { + extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers); + } + } + } + + state.viewport(_currentViewport); + state.scissor(_currentScissor); + state.setScissorTest(_currentScissorTest); + + if (isCube) { + const textureProperties = properties.get(renderTarget.texture); + + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel); + } else if (isRenderTarget3D) { + const textureProperties = properties.get(renderTarget.texture); + const layer = activeCubeFace || 0; + + _gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer); + } + + _currentMaterialId = -1; // reset current material to ensure correct uniform bindings + }; + + this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) { + if (!(renderTarget && renderTarget.isWebGLRenderTarget)) { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.'); + return; + } + + let framebuffer = properties.get(renderTarget).__webglFramebuffer; + + if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) { + framebuffer = framebuffer[activeCubeFaceIndex]; + } + + if (framebuffer) { + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + try { + const texture = renderTarget.texture; + const textureFormat = texture.format; + const textureType = texture.type; + + if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.'); + return; + } + + const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float')); + + if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513) + !(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox + !halfFloatSupportedByExt) { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.'); + return; + } + + if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) { + // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) + if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) { + _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer); + } + } else { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.'); + } + } finally { + // restore framebuffer of current render target if necessary + const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null; + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + } + } + }; + + this.copyFramebufferToTexture = function (position, texture, level = 0) { + if (texture.isFramebufferTexture !== true) { + console.error('THREE.WebGLRenderer: copyFramebufferToTexture() can only be used with FramebufferTexture.'); + return; + } + + const levelScale = Math.pow(2, -level); + const width = Math.floor(texture.image.width * levelScale); + const height = Math.floor(texture.image.height * levelScale); + textures.setTexture2D(texture, 0); + + _gl.copyTexSubImage2D(_gl.TEXTURE_2D, level, 0, 0, position.x, position.y, width, height); + + state.unbindTexture(); + }; + + this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) { + const width = srcTexture.image.width; + const height = srcTexture.image.height; + const glFormat = utils.convert(dstTexture.format); + const glType = utils.convert(dstTexture.type); + textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei + // parameters, make sure they are correct for the dstTexture + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment); + + if (srcTexture.isDataTexture) { + _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data); + } else { + if (srcTexture.isCompressedTexture) { + _gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data); + } else { + _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image); + } + } // Generate mipmaps only when copying level 0 + + + if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D); + state.unbindTexture(); + }; + + this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) { + if (_this.isWebGL1Renderer) { + console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.'); + return; + } + + const width = sourceBox.max.x - sourceBox.min.x + 1; + const height = sourceBox.max.y - sourceBox.min.y + 1; + const depth = sourceBox.max.z - sourceBox.min.z + 1; + const glFormat = utils.convert(dstTexture.format); + const glType = utils.convert(dstTexture.type); + let glTarget; + + if (dstTexture.isDataTexture3D) { + textures.setTexture3D(dstTexture, 0); + glTarget = _gl.TEXTURE_3D; + } else if (dstTexture.isDataTexture2DArray) { + textures.setTexture2DArray(dstTexture, 0); + glTarget = _gl.TEXTURE_2D_ARRAY; + } else { + console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.'); + return; + } + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment); + + const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH); + + const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT); + + const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS); + + const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS); + + const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES); + + const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image; + + _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width); + + _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height); + + _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x); + + _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y); + + _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z); + + if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) { + _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data); + } else { + if (srcTexture.isCompressedTexture) { + console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.'); + + _gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data); + } else { + _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image); + } + } + + _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen); + + _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight); + + _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels); + + _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows); + + _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0 + + + if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget); + state.unbindTexture(); + }; + + this.initTexture = function (texture) { + textures.setTexture2D(texture, 0); + state.unbindTexture(); + }; + + this.resetState = function () { + _currentActiveCubeFace = 0; + _currentActiveMipmapLevel = 0; + _currentRenderTarget = null; + state.reset(); + bindingStates.reset(); + }; + + this.getWebGLAttributes = function () { + return attributes; + }; + + if (typeof __THREE_DEVTOOLS__ !== 'undefined') { + __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { + detail: this + })); + } +} + +WebGLRenderer.prototype.isWebGLRenderer = true; + +class WebGL1Renderer extends WebGLRenderer {} + +WebGL1Renderer.prototype.isWebGL1Renderer = true; + +class FogExp2 { + constructor(color, density = 0.00025) { + this.name = ''; + this.color = new Color(color); + this.density = density; + } + + clone() { + return new FogExp2(this.color, this.density); + } + + toJSON() { + return { + type: 'FogExp2', + color: this.color.getHex(), + density: this.density + }; + } + +} + +FogExp2.prototype.isFogExp2 = true; + +class Fog { + constructor(color, near = 1, far = 1000) { + this.name = ''; + this.color = new Color(color); + this.near = near; + this.far = far; + } + + clone() { + return new Fog(this.color, this.near, this.far); + } + + toJSON() { + return { + type: 'Fog', + color: this.color.getHex(), + near: this.near, + far: this.far + }; + } + +} + +Fog.prototype.isFog = true; + +class Scene extends Object3D { + constructor() { + super(); + this.type = 'Scene'; + this.background = null; + this.environment = null; + this.fog = null; + this.overrideMaterial = null; + this.autoUpdate = true; // checked by the renderer + + if (typeof __THREE_DEVTOOLS__ !== 'undefined') { + __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { + detail: this + })); + } + } + + copy(source, recursive) { + super.copy(source, recursive); + if (source.background !== null) this.background = source.background.clone(); + if (source.environment !== null) this.environment = source.environment.clone(); + if (source.fog !== null) this.fog = source.fog.clone(); + if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone(); + this.autoUpdate = source.autoUpdate; + this.matrixAutoUpdate = source.matrixAutoUpdate; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + if (this.fog !== null) data.object.fog = this.fog.toJSON(); + return data; + } + +} + +Scene.prototype.isScene = true; + +class InterleavedBuffer { + constructor(array, stride) { + this.array = array; + this.stride = stride; + this.count = array !== undefined ? array.length / stride : 0; + this.usage = StaticDrawUsage; + this.updateRange = { + offset: 0, + count: -1 + }; + this.version = 0; + this.uuid = generateUUID(); + } + + onUploadCallback() {} + + set needsUpdate(value) { + if (value === true) this.version++; + } + + setUsage(value) { + this.usage = value; + return this; + } + + copy(source) { + this.array = new source.array.constructor(source.array); + this.count = source.count; + this.stride = source.stride; + this.usage = source.usage; + return this; + } + + copyAt(index1, attribute, index2) { + index1 *= this.stride; + index2 *= attribute.stride; + + for (let i = 0, l = this.stride; i < l; i++) { + this.array[index1 + i] = attribute.array[index2 + i]; + } + + return this; + } + + set(value, offset = 0) { + this.array.set(value, offset); + return this; + } + + clone(data) { + if (data.arrayBuffers === undefined) { + data.arrayBuffers = {}; + } + + if (this.array.buffer._uuid === undefined) { + this.array.buffer._uuid = generateUUID(); + } + + if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { + data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer; + } + + const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]); + const ib = new this.constructor(array, this.stride); + ib.setUsage(this.usage); + return ib; + } + + onUpload(callback) { + this.onUploadCallback = callback; + return this; + } + + toJSON(data) { + if (data.arrayBuffers === undefined) { + data.arrayBuffers = {}; + } // generate UUID for array buffer if necessary + + + if (this.array.buffer._uuid === undefined) { + this.array.buffer._uuid = generateUUID(); + } + + if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { + data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer)); + } // + + + return { + uuid: this.uuid, + buffer: this.array.buffer._uuid, + type: this.array.constructor.name, + stride: this.stride + }; + } + +} + +InterleavedBuffer.prototype.isInterleavedBuffer = true; + +const _vector$6 = /*@__PURE__*/new Vector3(); + +class InterleavedBufferAttribute { + constructor(interleavedBuffer, itemSize, offset, normalized = false) { + this.name = ''; + this.data = interleavedBuffer; + this.itemSize = itemSize; + this.offset = offset; + this.normalized = normalized === true; + } + + get count() { + return this.data.count; + } + + get array() { + return this.data.array; + } + + set needsUpdate(value) { + this.data.needsUpdate = value; + } + + applyMatrix4(m) { + for (let i = 0, l = this.data.count; i < l; i++) { + _vector$6.x = this.getX(i); + _vector$6.y = this.getY(i); + _vector$6.z = this.getZ(i); + + _vector$6.applyMatrix4(m); + + this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); + } + + return this; + } + + applyNormalMatrix(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$6.x = this.getX(i); + _vector$6.y = this.getY(i); + _vector$6.z = this.getZ(i); + + _vector$6.applyNormalMatrix(m); + + this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); + } + + return this; + } + + transformDirection(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$6.x = this.getX(i); + _vector$6.y = this.getY(i); + _vector$6.z = this.getZ(i); + + _vector$6.transformDirection(m); + + this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); + } + + return this; + } + + setX(index, x) { + this.data.array[index * this.data.stride + this.offset] = x; + return this; + } + + setY(index, y) { + this.data.array[index * this.data.stride + this.offset + 1] = y; + return this; + } + + setZ(index, z) { + this.data.array[index * this.data.stride + this.offset + 2] = z; + return this; + } + + setW(index, w) { + this.data.array[index * this.data.stride + this.offset + 3] = w; + return this; + } + + getX(index) { + return this.data.array[index * this.data.stride + this.offset]; + } + + getY(index) { + return this.data.array[index * this.data.stride + this.offset + 1]; + } + + getZ(index) { + return this.data.array[index * this.data.stride + this.offset + 2]; + } + + getW(index) { + return this.data.array[index * this.data.stride + this.offset + 3]; + } + + setXY(index, x, y) { + index = index * this.data.stride + this.offset; + this.data.array[index + 0] = x; + this.data.array[index + 1] = y; + return this; + } + + setXYZ(index, x, y, z) { + index = index * this.data.stride + this.offset; + this.data.array[index + 0] = x; + this.data.array[index + 1] = y; + this.data.array[index + 2] = z; + return this; + } + + setXYZW(index, x, y, z, w) { + index = index * this.data.stride + this.offset; + this.data.array[index + 0] = x; + this.data.array[index + 1] = y; + this.data.array[index + 2] = z; + this.data.array[index + 3] = w; + return this; + } + + clone(data) { + if (data === undefined) { + console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.'); + const array = []; + + for (let i = 0; i < this.count; i++) { + const index = i * this.data.stride + this.offset; + + for (let j = 0; j < this.itemSize; j++) { + array.push(this.data.array[index + j]); + } + } + + return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized); + } else { + if (data.interleavedBuffers === undefined) { + data.interleavedBuffers = {}; + } + + if (data.interleavedBuffers[this.data.uuid] === undefined) { + data.interleavedBuffers[this.data.uuid] = this.data.clone(data); + } + + return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized); + } + } + + toJSON(data) { + if (data === undefined) { + console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.'); + const array = []; + + for (let i = 0; i < this.count; i++) { + const index = i * this.data.stride + this.offset; + + for (let j = 0; j < this.itemSize; j++) { + array.push(this.data.array[index + j]); + } + } // deinterleave data and save it as an ordinary buffer attribute for now + + + return { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: array, + normalized: this.normalized + }; + } else { + // save as true interlaved attribtue + if (data.interleavedBuffers === undefined) { + data.interleavedBuffers = {}; + } + + if (data.interleavedBuffers[this.data.uuid] === undefined) { + data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data); + } + + return { + isInterleavedBufferAttribute: true, + itemSize: this.itemSize, + data: this.data.uuid, + offset: this.offset, + normalized: this.normalized + }; + } + } + +} + +InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true; + +/** + * parameters = { + * color: , + * map: new THREE.Texture( ), + * alphaMap: new THREE.Texture( ), + * rotation: , + * sizeAttenuation: + * } + */ + +class SpriteMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'SpriteMaterial'; + this.color = new Color(0xffffff); + this.map = null; + this.alphaMap = null; + this.rotation = 0; + this.sizeAttenuation = true; + this.transparent = true; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.alphaMap = source.alphaMap; + this.rotation = source.rotation; + this.sizeAttenuation = source.sizeAttenuation; + return this; + } + +} + +SpriteMaterial.prototype.isSpriteMaterial = true; + +let _geometry; + +const _intersectPoint = /*@__PURE__*/new Vector3(); + +const _worldScale = /*@__PURE__*/new Vector3(); + +const _mvPosition = /*@__PURE__*/new Vector3(); + +const _alignedPosition = /*@__PURE__*/new Vector2(); + +const _rotatedPosition = /*@__PURE__*/new Vector2(); + +const _viewWorldMatrix = /*@__PURE__*/new Matrix4(); + +const _vA = /*@__PURE__*/new Vector3(); + +const _vB = /*@__PURE__*/new Vector3(); + +const _vC = /*@__PURE__*/new Vector3(); + +const _uvA = /*@__PURE__*/new Vector2(); + +const _uvB = /*@__PURE__*/new Vector2(); + +const _uvC = /*@__PURE__*/new Vector2(); + +class Sprite extends Object3D { + constructor(material) { + super(); + this.type = 'Sprite'; + + if (_geometry === undefined) { + _geometry = new BufferGeometry(); + const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]); + const interleavedBuffer = new InterleavedBuffer(float32Array, 5); + + _geometry.setIndex([0, 1, 2, 0, 2, 3]); + + _geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false)); + + _geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false)); + } + + this.geometry = _geometry; + this.material = material !== undefined ? material : new SpriteMaterial(); + this.center = new Vector2(0.5, 0.5); + } + + raycast(raycaster, intersects) { + if (raycaster.camera === null) { + console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.'); + } + + _worldScale.setFromMatrixScale(this.matrixWorld); + + _viewWorldMatrix.copy(raycaster.camera.matrixWorld); + + this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld); + + _mvPosition.setFromMatrixPosition(this.modelViewMatrix); + + if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) { + _worldScale.multiplyScalar(-_mvPosition.z); + } + + const rotation = this.material.rotation; + let sin, cos; + + if (rotation !== 0) { + cos = Math.cos(rotation); + sin = Math.sin(rotation); + } + + const center = this.center; + transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); + transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); + transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); + + _uvA.set(0, 0); + + _uvB.set(1, 0); + + _uvC.set(1, 1); // check first triangle + + + let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint); + + if (intersect === null) { + // check second triangle + transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); + + _uvB.set(0, 1); + + intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint); + + if (intersect === null) { + return; + } + } + + const distance = raycaster.ray.origin.distanceTo(_intersectPoint); + if (distance < raycaster.near || distance > raycaster.far) return; + intersects.push({ + distance: distance, + point: _intersectPoint.clone(), + uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()), + face: null, + object: this + }); + } + + copy(source) { + super.copy(source); + if (source.center !== undefined) this.center.copy(source.center); + this.material = source.material; + return this; + } + +} + +Sprite.prototype.isSprite = true; + +function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) { + // compute position in camera space + _alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero + + + if (sin !== undefined) { + _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y; + _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y; + } else { + _rotatedPosition.copy(_alignedPosition); + } + + vertexPosition.copy(mvPosition); + vertexPosition.x += _rotatedPosition.x; + vertexPosition.y += _rotatedPosition.y; // transform to world space + + vertexPosition.applyMatrix4(_viewWorldMatrix); +} + +const _v1$2 = /*@__PURE__*/new Vector3(); + +const _v2$1 = /*@__PURE__*/new Vector3(); + +class LOD extends Object3D { + constructor() { + super(); + this._currentLevel = 0; + this.type = 'LOD'; + Object.defineProperties(this, { + levels: { + enumerable: true, + value: [] + }, + isLOD: { + value: true + } + }); + this.autoUpdate = true; + } + + copy(source) { + super.copy(source, false); + const levels = source.levels; + + for (let i = 0, l = levels.length; i < l; i++) { + const level = levels[i]; + this.addLevel(level.object.clone(), level.distance); + } + + this.autoUpdate = source.autoUpdate; + return this; + } + + addLevel(object, distance = 0) { + distance = Math.abs(distance); + const levels = this.levels; + let l; + + for (l = 0; l < levels.length; l++) { + if (distance < levels[l].distance) { + break; + } + } + + levels.splice(l, 0, { + distance: distance, + object: object + }); + this.add(object); + return this; + } + + getCurrentLevel() { + return this._currentLevel; + } + + getObjectForDistance(distance) { + const levels = this.levels; + + if (levels.length > 0) { + let i, l; + + for (i = 1, l = levels.length; i < l; i++) { + if (distance < levels[i].distance) { + break; + } + } + + return levels[i - 1].object; + } + + return null; + } + + raycast(raycaster, intersects) { + const levels = this.levels; + + if (levels.length > 0) { + _v1$2.setFromMatrixPosition(this.matrixWorld); + + const distance = raycaster.ray.origin.distanceTo(_v1$2); + this.getObjectForDistance(distance).raycast(raycaster, intersects); + } + } + + update(camera) { + const levels = this.levels; + + if (levels.length > 1) { + _v1$2.setFromMatrixPosition(camera.matrixWorld); + + _v2$1.setFromMatrixPosition(this.matrixWorld); + + const distance = _v1$2.distanceTo(_v2$1) / camera.zoom; + levels[0].object.visible = true; + let i, l; + + for (i = 1, l = levels.length; i < l; i++) { + if (distance >= levels[i].distance) { + levels[i - 1].object.visible = false; + levels[i].object.visible = true; + } else { + break; + } + } + + this._currentLevel = i - 1; + + for (; i < l; i++) { + levels[i].object.visible = false; + } + } + } + + toJSON(meta) { + const data = super.toJSON(meta); + if (this.autoUpdate === false) data.object.autoUpdate = false; + data.object.levels = []; + const levels = this.levels; + + for (let i = 0, l = levels.length; i < l; i++) { + const level = levels[i]; + data.object.levels.push({ + object: level.object.uuid, + distance: level.distance + }); + } + + return data; + } + +} + +const _basePosition = /*@__PURE__*/new Vector3(); + +const _skinIndex = /*@__PURE__*/new Vector4(); + +const _skinWeight = /*@__PURE__*/new Vector4(); + +const _vector$5 = /*@__PURE__*/new Vector3(); + +const _matrix = /*@__PURE__*/new Matrix4(); + +class SkinnedMesh extends Mesh { + constructor(geometry, material) { + super(geometry, material); + this.type = 'SkinnedMesh'; + this.bindMode = 'attached'; + this.bindMatrix = new Matrix4(); + this.bindMatrixInverse = new Matrix4(); + } + + copy(source) { + super.copy(source); + this.bindMode = source.bindMode; + this.bindMatrix.copy(source.bindMatrix); + this.bindMatrixInverse.copy(source.bindMatrixInverse); + this.skeleton = source.skeleton; + return this; + } + + bind(skeleton, bindMatrix) { + this.skeleton = skeleton; + + if (bindMatrix === undefined) { + this.updateMatrixWorld(true); + this.skeleton.calculateInverses(); + bindMatrix = this.matrixWorld; + } + + this.bindMatrix.copy(bindMatrix); + this.bindMatrixInverse.copy(bindMatrix).invert(); + } + + pose() { + this.skeleton.pose(); + } + + normalizeSkinWeights() { + const vector = new Vector4(); + const skinWeight = this.geometry.attributes.skinWeight; + + for (let i = 0, l = skinWeight.count; i < l; i++) { + vector.x = skinWeight.getX(i); + vector.y = skinWeight.getY(i); + vector.z = skinWeight.getZ(i); + vector.w = skinWeight.getW(i); + const scale = 1.0 / vector.manhattanLength(); + + if (scale !== Infinity) { + vector.multiplyScalar(scale); + } else { + vector.set(1, 0, 0, 0); // do something reasonable + } + + skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w); + } + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + + if (this.bindMode === 'attached') { + this.bindMatrixInverse.copy(this.matrixWorld).invert(); + } else if (this.bindMode === 'detached') { + this.bindMatrixInverse.copy(this.bindMatrix).invert(); + } else { + console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode); + } + } + + boneTransform(index, target) { + const skeleton = this.skeleton; + const geometry = this.geometry; + + _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index); + + _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index); + + _basePosition.copy(target).applyMatrix4(this.bindMatrix); + + target.set(0, 0, 0); + + for (let i = 0; i < 4; i++) { + const weight = _skinWeight.getComponent(i); + + if (weight !== 0) { + const boneIndex = _skinIndex.getComponent(i); + + _matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]); + + target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight); + } + } + + return target.applyMatrix4(this.bindMatrixInverse); + } + +} + +SkinnedMesh.prototype.isSkinnedMesh = true; + +class Bone extends Object3D { + constructor() { + super(); + this.type = 'Bone'; + } + +} + +Bone.prototype.isBone = true; + +class DataTexture extends Texture { + constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) { + super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); + this.image = { + data: data, + width: width, + height: height + }; + this.magFilter = magFilter; + this.minFilter = minFilter; + this.generateMipmaps = false; + this.flipY = false; + this.unpackAlignment = 1; + } + +} + +DataTexture.prototype.isDataTexture = true; + +const _offsetMatrix = /*@__PURE__*/new Matrix4(); + +const _identityMatrix = /*@__PURE__*/new Matrix4(); + +class Skeleton { + constructor(bones = [], boneInverses = []) { + this.uuid = generateUUID(); + this.bones = bones.slice(0); + this.boneInverses = boneInverses; + this.boneMatrices = null; + this.boneTexture = null; + this.boneTextureSize = 0; + this.frame = -1; + this.init(); + } + + init() { + const bones = this.bones; + const boneInverses = this.boneInverses; + this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary + + if (boneInverses.length === 0) { + this.calculateInverses(); + } else { + // handle special case + if (bones.length !== boneInverses.length) { + console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.'); + this.boneInverses = []; + + for (let i = 0, il = this.bones.length; i < il; i++) { + this.boneInverses.push(new Matrix4()); + } + } + } + } + + calculateInverses() { + this.boneInverses.length = 0; + + for (let i = 0, il = this.bones.length; i < il; i++) { + const inverse = new Matrix4(); + + if (this.bones[i]) { + inverse.copy(this.bones[i].matrixWorld).invert(); + } + + this.boneInverses.push(inverse); + } + } + + pose() { + // recover the bind-time world matrices + for (let i = 0, il = this.bones.length; i < il; i++) { + const bone = this.bones[i]; + + if (bone) { + bone.matrixWorld.copy(this.boneInverses[i]).invert(); + } + } // compute the local matrices, positions, rotations and scales + + + for (let i = 0, il = this.bones.length; i < il; i++) { + const bone = this.bones[i]; + + if (bone) { + if (bone.parent && bone.parent.isBone) { + bone.matrix.copy(bone.parent.matrixWorld).invert(); + bone.matrix.multiply(bone.matrixWorld); + } else { + bone.matrix.copy(bone.matrixWorld); + } + + bone.matrix.decompose(bone.position, bone.quaternion, bone.scale); + } + } + } + + update() { + const bones = this.bones; + const boneInverses = this.boneInverses; + const boneMatrices = this.boneMatrices; + const boneTexture = this.boneTexture; // flatten bone matrices to array + + for (let i = 0, il = bones.length; i < il; i++) { + // compute the offset between the current and the original transform + const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix; + + _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]); + + _offsetMatrix.toArray(boneMatrices, i * 16); + } + + if (boneTexture !== null) { + boneTexture.needsUpdate = true; + } + } + + clone() { + return new Skeleton(this.bones, this.boneInverses); + } + + computeBoneTexture() { + // layout (1 matrix = 4 pixels) + // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) + // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) + // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) + // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) + // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) + let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix + + size = ceilPowerOfTwo(size); + size = Math.max(size, 4); + const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel + + boneMatrices.set(this.boneMatrices); // copy current values + + const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType); + boneTexture.needsUpdate = true; + this.boneMatrices = boneMatrices; + this.boneTexture = boneTexture; + this.boneTextureSize = size; + return this; + } + + getBoneByName(name) { + for (let i = 0, il = this.bones.length; i < il; i++) { + const bone = this.bones[i]; + + if (bone.name === name) { + return bone; + } + } + + return undefined; + } + + dispose() { + if (this.boneTexture !== null) { + this.boneTexture.dispose(); + this.boneTexture = null; + } + } + + fromJSON(json, bones) { + this.uuid = json.uuid; + + for (let i = 0, l = json.bones.length; i < l; i++) { + const uuid = json.bones[i]; + let bone = bones[uuid]; + + if (bone === undefined) { + console.warn('THREE.Skeleton: No bone found with UUID:', uuid); + bone = new Bone(); + } + + this.bones.push(bone); + this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i])); + } + + this.init(); + return this; + } + + toJSON() { + const data = { + metadata: { + version: 4.5, + type: 'Skeleton', + generator: 'Skeleton.toJSON' + }, + bones: [], + boneInverses: [] + }; + data.uuid = this.uuid; + const bones = this.bones; + const boneInverses = this.boneInverses; + + for (let i = 0, l = bones.length; i < l; i++) { + const bone = bones[i]; + data.bones.push(bone.uuid); + const boneInverse = boneInverses[i]; + data.boneInverses.push(boneInverse.toArray()); + } + + return data; + } + +} + +class InstancedBufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized, meshPerAttribute = 1) { + if (typeof normalized === 'number') { + meshPerAttribute = normalized; + normalized = false; + console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.'); + } + + super(array, itemSize, normalized); + this.meshPerAttribute = meshPerAttribute; + } + + copy(source) { + super.copy(source); + this.meshPerAttribute = source.meshPerAttribute; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.meshPerAttribute = this.meshPerAttribute; + data.isInstancedBufferAttribute = true; + return data; + } + +} + +InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true; + +const _instanceLocalMatrix = /*@__PURE__*/new Matrix4(); + +const _instanceWorldMatrix = /*@__PURE__*/new Matrix4(); + +const _instanceIntersects = []; + +const _mesh = /*@__PURE__*/new Mesh(); + +class InstancedMesh extends Mesh { + constructor(geometry, material, count) { + super(geometry, material); + this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16); + this.instanceColor = null; + this.count = count; + this.frustumCulled = false; + } + + copy(source) { + super.copy(source); + this.instanceMatrix.copy(source.instanceMatrix); + if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone(); + this.count = source.count; + return this; + } + + getColorAt(index, color) { + color.fromArray(this.instanceColor.array, index * 3); + } + + getMatrixAt(index, matrix) { + matrix.fromArray(this.instanceMatrix.array, index * 16); + } + + raycast(raycaster, intersects) { + const matrixWorld = this.matrixWorld; + const raycastTimes = this.count; + _mesh.geometry = this.geometry; + _mesh.material = this.material; + if (_mesh.material === undefined) return; + + for (let instanceId = 0; instanceId < raycastTimes; instanceId++) { + // calculate the world matrix for each instance + this.getMatrixAt(instanceId, _instanceLocalMatrix); + + _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance + + + _mesh.matrixWorld = _instanceWorldMatrix; + + _mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast + + + for (let i = 0, l = _instanceIntersects.length; i < l; i++) { + const intersect = _instanceIntersects[i]; + intersect.instanceId = instanceId; + intersect.object = this; + intersects.push(intersect); + } + + _instanceIntersects.length = 0; + } + } + + setColorAt(index, color) { + if (this.instanceColor === null) { + this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3); + } + + color.toArray(this.instanceColor.array, index * 3); + } + + setMatrixAt(index, matrix) { + matrix.toArray(this.instanceMatrix.array, index * 16); + } + + updateMorphTargets() {} + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + +} + +InstancedMesh.prototype.isInstancedMesh = true; + +/** + * parameters = { + * color: , + * opacity: , + * + * linewidth: , + * linecap: "round", + * linejoin: "round" + * } + */ + +class LineBasicMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'LineBasicMaterial'; + this.color = new Color(0xffffff); + this.linewidth = 1; + this.linecap = 'round'; + this.linejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.linewidth = source.linewidth; + this.linecap = source.linecap; + this.linejoin = source.linejoin; + return this; + } + +} + +LineBasicMaterial.prototype.isLineBasicMaterial = true; + +const _start$1 = /*@__PURE__*/new Vector3(); + +const _end$1 = /*@__PURE__*/new Vector3(); + +const _inverseMatrix$1 = /*@__PURE__*/new Matrix4(); + +const _ray$1 = /*@__PURE__*/new Ray(); + +const _sphere$1 = /*@__PURE__*/new Sphere(); + +class Line extends Object3D { + constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) { + super(); + this.type = 'Line'; + this.geometry = geometry; + this.material = material; + this.updateMorphTargets(); + } + + copy(source) { + super.copy(source); + this.material = source.material; + this.geometry = source.geometry; + return this; + } + + computeLineDistances() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + // we assume non-indexed geometry + if (geometry.index === null) { + const positionAttribute = geometry.attributes.position; + const lineDistances = [0]; + + for (let i = 1, l = positionAttribute.count; i < l; i++) { + _start$1.fromBufferAttribute(positionAttribute, i - 1); + + _end$1.fromBufferAttribute(positionAttribute, i); + + lineDistances[i] = lineDistances[i - 1]; + lineDistances[i] += _start$1.distanceTo(_end$1); + } + + geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)); + } else { + console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.'); + } + } else if (geometry.isGeometry) { + console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + + return this; + } + + raycast(raycaster, intersects) { + const geometry = this.geometry; + const matrixWorld = this.matrixWorld; + const threshold = raycaster.params.Line.threshold; + const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray + + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere$1.copy(geometry.boundingSphere); + + _sphere$1.applyMatrix4(matrixWorld); + + _sphere$1.radius += threshold; + if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; // + + _inverseMatrix$1.copy(matrixWorld).invert(); + + _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1); + + const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); + const localThresholdSq = localThreshold * localThreshold; + const vStart = new Vector3(); + const vEnd = new Vector3(); + const interSegment = new Vector3(); + const interRay = new Vector3(); + const step = this.isLineSegments ? 2 : 1; + + if (geometry.isBufferGeometry) { + const index = geometry.index; + const attributes = geometry.attributes; + const positionAttribute = attributes.position; + + if (index !== null) { + const start = Math.max(0, drawRange.start); + const end = Math.min(index.count, drawRange.start + drawRange.count); + + for (let i = start, l = end - 1; i < l; i += step) { + const a = index.getX(i); + const b = index.getX(i + 1); + vStart.fromBufferAttribute(positionAttribute, a); + vEnd.fromBufferAttribute(positionAttribute, b); + + const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment); + + if (distSq > localThresholdSq) continue; + interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation + + const distance = raycaster.ray.origin.distanceTo(interRay); + if (distance < raycaster.near || distance > raycaster.far) continue; + intersects.push({ + distance: distance, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: interSegment.clone().applyMatrix4(this.matrixWorld), + index: i, + face: null, + faceIndex: null, + object: this + }); + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); + + for (let i = start, l = end - 1; i < l; i += step) { + vStart.fromBufferAttribute(positionAttribute, i); + vEnd.fromBufferAttribute(positionAttribute, i + 1); + + const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment); + + if (distSq > localThresholdSq) continue; + interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation + + const distance = raycaster.ray.origin.distanceTo(interRay); + if (distance < raycaster.near || distance > raycaster.far) continue; + intersects.push({ + distance: distance, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: interSegment.clone().applyMatrix4(this.matrixWorld), + index: i, + face: null, + faceIndex: null, + object: this + }); + } + } + } else if (geometry.isGeometry) { + console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + + updateMorphTargets() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys(morphAttributes); + + if (keys.length > 0) { + const morphAttribute = morphAttributes[keys[0]]; + + if (morphAttribute !== undefined) { + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for (let m = 0, ml = morphAttribute.length; m < ml; m++) { + const name = morphAttribute[m].name || String(m); + this.morphTargetInfluences.push(0); + this.morphTargetDictionary[name] = m; + } + } + } + } else { + const morphTargets = geometry.morphTargets; + + if (morphTargets !== undefined && morphTargets.length > 0) { + console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + } + +} + +Line.prototype.isLine = true; + +const _start = /*@__PURE__*/new Vector3(); + +const _end = /*@__PURE__*/new Vector3(); + +class LineSegments extends Line { + constructor(geometry, material) { + super(geometry, material); + this.type = 'LineSegments'; + } + + computeLineDistances() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + // we assume non-indexed geometry + if (geometry.index === null) { + const positionAttribute = geometry.attributes.position; + const lineDistances = []; + + for (let i = 0, l = positionAttribute.count; i < l; i += 2) { + _start.fromBufferAttribute(positionAttribute, i); + + _end.fromBufferAttribute(positionAttribute, i + 1); + + lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1]; + lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end); + } + + geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)); + } else { + console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.'); + } + } else if (geometry.isGeometry) { + console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + + return this; + } + +} + +LineSegments.prototype.isLineSegments = true; + +class LineLoop extends Line { + constructor(geometry, material) { + super(geometry, material); + this.type = 'LineLoop'; + } + +} + +LineLoop.prototype.isLineLoop = true; + +/** + * parameters = { + * color: , + * opacity: , + * map: new THREE.Texture( ), + * alphaMap: new THREE.Texture( ), + * + * size: , + * sizeAttenuation: + * + * } + */ + +class PointsMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'PointsMaterial'; + this.color = new Color(0xffffff); + this.map = null; + this.alphaMap = null; + this.size = 1; + this.sizeAttenuation = true; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.alphaMap = source.alphaMap; + this.size = source.size; + this.sizeAttenuation = source.sizeAttenuation; + return this; + } + +} + +PointsMaterial.prototype.isPointsMaterial = true; + +const _inverseMatrix = /*@__PURE__*/new Matrix4(); + +const _ray = /*@__PURE__*/new Ray(); + +const _sphere = /*@__PURE__*/new Sphere(); + +const _position$2 = /*@__PURE__*/new Vector3(); + +class Points extends Object3D { + constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) { + super(); + this.type = 'Points'; + this.geometry = geometry; + this.material = material; + this.updateMorphTargets(); + } + + copy(source) { + super.copy(source); + this.material = source.material; + this.geometry = source.geometry; + return this; + } + + raycast(raycaster, intersects) { + const geometry = this.geometry; + const matrixWorld = this.matrixWorld; + const threshold = raycaster.params.Points.threshold; + const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray + + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere.copy(geometry.boundingSphere); + + _sphere.applyMatrix4(matrixWorld); + + _sphere.radius += threshold; + if (raycaster.ray.intersectsSphere(_sphere) === false) return; // + + _inverseMatrix.copy(matrixWorld).invert(); + + _ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix); + + const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); + const localThresholdSq = localThreshold * localThreshold; + + if (geometry.isBufferGeometry) { + const index = geometry.index; + const attributes = geometry.attributes; + const positionAttribute = attributes.position; + + if (index !== null) { + const start = Math.max(0, drawRange.start); + const end = Math.min(index.count, drawRange.start + drawRange.count); + + for (let i = start, il = end; i < il; i++) { + const a = index.getX(i); + + _position$2.fromBufferAttribute(positionAttribute, a); + + testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this); + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); + + for (let i = start, l = end; i < l; i++) { + _position$2.fromBufferAttribute(positionAttribute, i); + + testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this); + } + } + } else { + console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + + updateMorphTargets() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys(morphAttributes); + + if (keys.length > 0) { + const morphAttribute = morphAttributes[keys[0]]; + + if (morphAttribute !== undefined) { + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for (let m = 0, ml = morphAttribute.length; m < ml; m++) { + const name = morphAttribute[m].name || String(m); + this.morphTargetInfluences.push(0); + this.morphTargetDictionary[name] = m; + } + } + } + } else { + const morphTargets = geometry.morphTargets; + + if (morphTargets !== undefined && morphTargets.length > 0) { + console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + } + +} + +Points.prototype.isPoints = true; + +function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) { + const rayPointDistanceSq = _ray.distanceSqToPoint(point); + + if (rayPointDistanceSq < localThresholdSq) { + const intersectPoint = new Vector3(); + + _ray.closestPointToPoint(point, intersectPoint); + + intersectPoint.applyMatrix4(matrixWorld); + const distance = raycaster.ray.origin.distanceTo(intersectPoint); + if (distance < raycaster.near || distance > raycaster.far) return; + intersects.push({ + distance: distance, + distanceToRay: Math.sqrt(rayPointDistanceSq), + point: intersectPoint, + index: index, + face: null, + object: object + }); + } +} + +class VideoTexture extends Texture { + constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { + super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); + this.format = format !== undefined ? format : RGBFormat; + this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; + this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; + this.generateMipmaps = false; + const scope = this; + + function updateVideo() { + scope.needsUpdate = true; + video.requestVideoFrameCallback(updateVideo); + } + + if ('requestVideoFrameCallback' in video) { + video.requestVideoFrameCallback(updateVideo); + } + } + + clone() { + return new this.constructor(this.image).copy(this); + } + + update() { + const video = this.image; + const hasVideoFrameCallback = ('requestVideoFrameCallback' in video); + + if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) { + this.needsUpdate = true; + } + } + +} + +VideoTexture.prototype.isVideoTexture = true; + +class FramebufferTexture extends Texture { + constructor(width, height, format) { + super({ + width, + height + }); + this.format = format; + this.magFilter = NearestFilter; + this.minFilter = NearestFilter; + this.generateMipmaps = false; + this.needsUpdate = true; + } + +} + +FramebufferTexture.prototype.isFramebufferTexture = true; + +class CompressedTexture extends Texture { + constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) { + super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); + this.image = { + width: width, + height: height + }; + this.mipmaps = mipmaps; // no flipping for cube textures + // (also flipping doesn't work for compressed textures ) + + this.flipY = false; // can't generate mipmaps for compressed textures + // mips must be embedded in DDS files + + this.generateMipmaps = false; + } + +} + +CompressedTexture.prototype.isCompressedTexture = true; + +class CanvasTexture extends Texture { + constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { + super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); + this.needsUpdate = true; + } + +} + +CanvasTexture.prototype.isCanvasTexture = true; + +class CircleGeometry extends BufferGeometry { + constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) { + super(); + this.type = 'CircleGeometry'; + this.parameters = { + radius: radius, + segments: segments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + segments = Math.max(3, segments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + const vertex = new Vector3(); + const uv = new Vector2(); // center point + + vertices.push(0, 0, 0); + normals.push(0, 0, 1); + uvs.push(0.5, 0.5); + + for (let s = 0, i = 3; s <= segments; s++, i += 3) { + const segment = thetaStart + s / segments * thetaLength; // vertex + + vertex.x = radius * Math.cos(segment); + vertex.y = radius * Math.sin(segment); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normals.push(0, 0, 1); // uvs + + uv.x = (vertices[i] / radius + 1) / 2; + uv.y = (vertices[i + 1] / radius + 1) / 2; + uvs.push(uv.x, uv.y); + } // indices + + + for (let i = 1; i <= segments; i++) { + indices.push(i, i + 1, 0); + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength); + } + +} + +class CylinderGeometry extends BufferGeometry { + constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { + super(); + this.type = 'CylinderGeometry'; + this.parameters = { + radiusTop: radiusTop, + radiusBottom: radiusBottom, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + const scope = this; + radialSegments = Math.floor(radialSegments); + heightSegments = Math.floor(heightSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + let index = 0; + const indexArray = []; + const halfHeight = height / 2; + let groupStart = 0; // generate geometry + + generateTorso(); + + if (openEnded === false) { + if (radiusTop > 0) generateCap(true); + if (radiusBottom > 0) generateCap(false); + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + + function generateTorso() { + const normal = new Vector3(); + const vertex = new Vector3(); + let groupCount = 0; // this will be used to calculate the normal + + const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs + + for (let y = 0; y <= heightSegments; y++) { + const indexRow = []; + const v = y / heightSegments; // calculate the radius of the current row + + const radius = v * (radiusBottom - radiusTop) + radiusTop; + + for (let x = 0; x <= radialSegments; x++) { + const u = x / radialSegments; + const theta = u * thetaLength + thetaStart; + const sinTheta = Math.sin(theta); + const cosTheta = Math.cos(theta); // vertex + + vertex.x = radius * sinTheta; + vertex.y = -v * height + halfHeight; + vertex.z = radius * cosTheta; + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normal.set(sinTheta, slope, cosTheta).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(u, 1 - v); // save index of vertex in respective row + + indexRow.push(index++); + } // now save vertices of the row in our index array + + + indexArray.push(indexRow); + } // generate indices + + + for (let x = 0; x < radialSegments; x++) { + for (let y = 0; y < heightSegments; y++) { + // we use the index array to access the correct indices + const a = indexArray[y][x]; + const b = indexArray[y + 1][x]; + const c = indexArray[y + 1][x + 1]; + const d = indexArray[y][x + 1]; // faces + + indices.push(a, b, d); + indices.push(b, c, d); // update group counter + + groupCount += 6; + } + } // add a group to the geometry. this will ensure multi material support + + + scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups + + groupStart += groupCount; + } + + function generateCap(top) { + // save the index of the first center vertex + const centerIndexStart = index; + const uv = new Vector2(); + const vertex = new Vector3(); + let groupCount = 0; + const radius = top === true ? radiusTop : radiusBottom; + const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap. + // because the geometry needs one set of uvs per face, + // we must generate a center vertex per face/segment + + for (let x = 1; x <= radialSegments; x++) { + // vertex + vertices.push(0, halfHeight * sign, 0); // normal + + normals.push(0, sign, 0); // uv + + uvs.push(0.5, 0.5); // increase index + + index++; + } // save the index of the last center vertex + + + const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs + + for (let x = 0; x <= radialSegments; x++) { + const u = x / radialSegments; + const theta = u * thetaLength + thetaStart; + const cosTheta = Math.cos(theta); + const sinTheta = Math.sin(theta); // vertex + + vertex.x = radius * sinTheta; + vertex.y = halfHeight * sign; + vertex.z = radius * cosTheta; + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normals.push(0, sign, 0); // uv + + uv.x = cosTheta * 0.5 + 0.5; + uv.y = sinTheta * 0.5 * sign + 0.5; + uvs.push(uv.x, uv.y); // increase index + + index++; + } // generate indices + + + for (let x = 0; x < radialSegments; x++) { + const c = centerIndexStart + x; + const i = centerIndexEnd + x; + + if (top === true) { + // face top + indices.push(i, i + 1, c); + } else { + // face bottom + indices.push(i + 1, i, c); + } + + groupCount += 3; + } // add a group to the geometry. this will ensure multi material support + + + scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups + + groupStart += groupCount; + } + } + + static fromJSON(data) { + return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); + } + +} + +class ConeGeometry extends CylinderGeometry { + constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { + super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength); + this.type = 'ConeGeometry'; + this.parameters = { + radius: radius, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + } + + static fromJSON(data) { + return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); + } + +} + +class PolyhedronGeometry extends BufferGeometry { + constructor(vertices = [], indices = [], radius = 1, detail = 0) { + super(); + this.type = 'PolyhedronGeometry'; + this.parameters = { + vertices: vertices, + indices: indices, + radius: radius, + detail: detail + }; // default buffer data + + const vertexBuffer = []; + const uvBuffer = []; // the subdivision creates the vertex buffer data + + subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius + + applyRadius(radius); // finally, create the uv data + + generateUVs(); // build non-indexed geometry + + this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3)); + this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2)); + + if (detail === 0) { + this.computeVertexNormals(); // flat normals + } else { + this.normalizeNormals(); // smooth normals + } // helper functions + + + function subdivide(detail) { + const a = new Vector3(); + const b = new Vector3(); + const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value + + for (let i = 0; i < indices.length; i += 3) { + // get the vertices of the face + getVertexByIndex(indices[i + 0], a); + getVertexByIndex(indices[i + 1], b); + getVertexByIndex(indices[i + 2], c); // perform subdivision + + subdivideFace(a, b, c, detail); + } + } + + function subdivideFace(a, b, c, detail) { + const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision + + const v = []; // construct all of the vertices for this subdivision + + for (let i = 0; i <= cols; i++) { + v[i] = []; + const aj = a.clone().lerp(c, i / cols); + const bj = b.clone().lerp(c, i / cols); + const rows = cols - i; + + for (let j = 0; j <= rows; j++) { + if (j === 0 && i === cols) { + v[i][j] = aj; + } else { + v[i][j] = aj.clone().lerp(bj, j / rows); + } + } + } // construct all of the faces + + + for (let i = 0; i < cols; i++) { + for (let j = 0; j < 2 * (cols - i) - 1; j++) { + const k = Math.floor(j / 2); + + if (j % 2 === 0) { + pushVertex(v[i][k + 1]); + pushVertex(v[i + 1][k]); + pushVertex(v[i][k]); + } else { + pushVertex(v[i][k + 1]); + pushVertex(v[i + 1][k + 1]); + pushVertex(v[i + 1][k]); + } + } + } + } + + function applyRadius(radius) { + const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex + + for (let i = 0; i < vertexBuffer.length; i += 3) { + vertex.x = vertexBuffer[i + 0]; + vertex.y = vertexBuffer[i + 1]; + vertex.z = vertexBuffer[i + 2]; + vertex.normalize().multiplyScalar(radius); + vertexBuffer[i + 0] = vertex.x; + vertexBuffer[i + 1] = vertex.y; + vertexBuffer[i + 2] = vertex.z; + } + } + + function generateUVs() { + const vertex = new Vector3(); + + for (let i = 0; i < vertexBuffer.length; i += 3) { + vertex.x = vertexBuffer[i + 0]; + vertex.y = vertexBuffer[i + 1]; + vertex.z = vertexBuffer[i + 2]; + const u = azimuth(vertex) / 2 / Math.PI + 0.5; + const v = inclination(vertex) / Math.PI + 0.5; + uvBuffer.push(u, 1 - v); + } + + correctUVs(); + correctSeam(); + } + + function correctSeam() { + // handle case when face straddles the seam, see #3269 + for (let i = 0; i < uvBuffer.length; i += 6) { + // uv data of a single face + const x0 = uvBuffer[i + 0]; + const x1 = uvBuffer[i + 2]; + const x2 = uvBuffer[i + 4]; + const max = Math.max(x0, x1, x2); + const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary + + if (max > 0.9 && min < 0.1) { + if (x0 < 0.2) uvBuffer[i + 0] += 1; + if (x1 < 0.2) uvBuffer[i + 2] += 1; + if (x2 < 0.2) uvBuffer[i + 4] += 1; + } + } + } + + function pushVertex(vertex) { + vertexBuffer.push(vertex.x, vertex.y, vertex.z); + } + + function getVertexByIndex(index, vertex) { + const stride = index * 3; + vertex.x = vertices[stride + 0]; + vertex.y = vertices[stride + 1]; + vertex.z = vertices[stride + 2]; + } + + function correctUVs() { + const a = new Vector3(); + const b = new Vector3(); + const c = new Vector3(); + const centroid = new Vector3(); + const uvA = new Vector2(); + const uvB = new Vector2(); + const uvC = new Vector2(); + + for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) { + a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]); + b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]); + c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]); + uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]); + uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]); + uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]); + centroid.copy(a).add(b).add(c).divideScalar(3); + const azi = azimuth(centroid); + correctUV(uvA, j + 0, a, azi); + correctUV(uvB, j + 2, b, azi); + correctUV(uvC, j + 4, c, azi); + } + } + + function correctUV(uv, stride, vector, azimuth) { + if (azimuth < 0 && uv.x === 1) { + uvBuffer[stride] = uv.x - 1; + } + + if (vector.x === 0 && vector.z === 0) { + uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5; + } + } // Angle around the Y axis, counter-clockwise when looking from above. + + + function azimuth(vector) { + return Math.atan2(vector.z, -vector.x); + } // Angle above the XZ plane. + + + function inclination(vector) { + return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z)); + } + } + + static fromJSON(data) { + return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details); + } + +} + +class DodecahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const t = (1 + Math.sqrt(5)) / 2; + const r = 1 / t; + const vertices = [// (±1, ±1, ±1) + -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ) + 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0) + -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ) + -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r]; + const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9]; + super(vertices, indices, radius, detail); + this.type = 'DodecahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new DodecahedronGeometry(data.radius, data.detail); + } + +} + +const _v0 = new Vector3(); + +const _v1$1 = new Vector3(); + +const _normal = new Vector3(); + +const _triangle = new Triangle(); + +class EdgesGeometry extends BufferGeometry { + constructor(geometry = null, thresholdAngle = 1) { + super(); + this.type = 'EdgesGeometry'; + this.parameters = { + geometry: geometry, + thresholdAngle: thresholdAngle + }; + + if (geometry !== null) { + const precisionPoints = 4; + const precision = Math.pow(10, precisionPoints); + const thresholdDot = Math.cos(DEG2RAD * thresholdAngle); + const indexAttr = geometry.getIndex(); + const positionAttr = geometry.getAttribute('position'); + const indexCount = indexAttr ? indexAttr.count : positionAttr.count; + const indexArr = [0, 0, 0]; + const vertKeys = ['a', 'b', 'c']; + const hashes = new Array(3); + const edgeData = {}; + const vertices = []; + + for (let i = 0; i < indexCount; i += 3) { + if (indexAttr) { + indexArr[0] = indexAttr.getX(i); + indexArr[1] = indexAttr.getX(i + 1); + indexArr[2] = indexAttr.getX(i + 2); + } else { + indexArr[0] = i; + indexArr[1] = i + 1; + indexArr[2] = i + 2; + } + + const { + a, + b, + c + } = _triangle; + a.fromBufferAttribute(positionAttr, indexArr[0]); + b.fromBufferAttribute(positionAttr, indexArr[1]); + c.fromBufferAttribute(positionAttr, indexArr[2]); + + _triangle.getNormal(_normal); // create hashes for the edge from the vertices + + + hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`; + hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`; + hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles + + if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) { + continue; + } // iterate over every edge + + + for (let j = 0; j < 3; j++) { + // get the first and next vertex making up the edge + const jNext = (j + 1) % 3; + const vecHash0 = hashes[j]; + const vecHash1 = hashes[jNext]; + const v0 = _triangle[vertKeys[j]]; + const v1 = _triangle[vertKeys[jNext]]; + const hash = `${vecHash0}_${vecHash1}`; + const reverseHash = `${vecHash1}_${vecHash0}`; + + if (reverseHash in edgeData && edgeData[reverseHash]) { + // if we found a sibling edge add it into the vertex array if + // it meets the angle threshold and delete the edge from the map. + if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) { + vertices.push(v0.x, v0.y, v0.z); + vertices.push(v1.x, v1.y, v1.z); + } + + edgeData[reverseHash] = null; + } else if (!(hash in edgeData)) { + // if we've already got an edge here then skip adding a new one + edgeData[hash] = { + index0: indexArr[j], + index1: indexArr[jNext], + normal: _normal.clone() + }; + } + } + } // iterate over all remaining, unmatched edges and add them to the vertex array + + + for (const key in edgeData) { + if (edgeData[key]) { + const { + index0, + index1 + } = edgeData[key]; + + _v0.fromBufferAttribute(positionAttr, index0); + + _v1$1.fromBufferAttribute(positionAttr, index1); + + vertices.push(_v0.x, _v0.y, _v0.z); + vertices.push(_v1$1.x, _v1$1.y, _v1$1.z); + } + } + + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + } + } + +} + +/** + * Extensible curve object. + * + * Some common of curve methods: + * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) + * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) + * .getPoints(), .getSpacedPoints() + * .getLength() + * .updateArcLengths() + * + * This following curves inherit from THREE.Curve: + * + * -- 2D curves -- + * THREE.ArcCurve + * THREE.CubicBezierCurve + * THREE.EllipseCurve + * THREE.LineCurve + * THREE.QuadraticBezierCurve + * THREE.SplineCurve + * + * -- 3D curves -- + * THREE.CatmullRomCurve3 + * THREE.CubicBezierCurve3 + * THREE.LineCurve3 + * THREE.QuadraticBezierCurve3 + * + * A series of curves can be represented as a THREE.CurvePath. + * + **/ + +class Curve { + constructor() { + this.type = 'Curve'; + this.arcLengthDivisions = 200; + } // Virtual base class method to overwrite and implement in subclasses + // - t [0 .. 1] + + + getPoint() { + console.warn('THREE.Curve: .getPoint() not implemented.'); + return null; + } // Get point at relative position in curve according to arc length + // - u [0 .. 1] + + + getPointAt(u, optionalTarget) { + const t = this.getUtoTmapping(u); + return this.getPoint(t, optionalTarget); + } // Get sequence of points using getPoint( t ) + + + getPoints(divisions = 5) { + const points = []; + + for (let d = 0; d <= divisions; d++) { + points.push(this.getPoint(d / divisions)); + } + + return points; + } // Get sequence of points using getPointAt( u ) + + + getSpacedPoints(divisions = 5) { + const points = []; + + for (let d = 0; d <= divisions; d++) { + points.push(this.getPointAt(d / divisions)); + } + + return points; + } // Get total curve arc length + + + getLength() { + const lengths = this.getLengths(); + return lengths[lengths.length - 1]; + } // Get list of cumulative segment lengths + + + getLengths(divisions = this.arcLengthDivisions) { + if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) { + return this.cacheArcLengths; + } + + this.needsUpdate = false; + const cache = []; + let current, + last = this.getPoint(0); + let sum = 0; + cache.push(0); + + for (let p = 1; p <= divisions; p++) { + current = this.getPoint(p / divisions); + sum += current.distanceTo(last); + cache.push(sum); + last = current; + } + + this.cacheArcLengths = cache; + return cache; // { sums: cache, sum: sum }; Sum is in the last element. + } + + updateArcLengths() { + this.needsUpdate = true; + this.getLengths(); + } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant + + + getUtoTmapping(u, distance) { + const arcLengths = this.getLengths(); + let i = 0; + const il = arcLengths.length; + let targetArcLength; // The targeted u distance value to get + + if (distance) { + targetArcLength = distance; + } else { + targetArcLength = u * arcLengths[il - 1]; + } // binary search for the index with largest value smaller than target u distance + + + let low = 0, + high = il - 1, + comparison; + + while (low <= high) { + i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats + + comparison = arcLengths[i] - targetArcLength; + + if (comparison < 0) { + low = i + 1; + } else if (comparison > 0) { + high = i - 1; + } else { + high = i; + break; // DONE + } + } + + i = high; + + if (arcLengths[i] === targetArcLength) { + return i / (il - 1); + } // we could get finer grain at lengths, or use simple interpolation between two points + + + const lengthBefore = arcLengths[i]; + const lengthAfter = arcLengths[i + 1]; + const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points + + const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t + + const t = (i + segmentFraction) / (il - 1); + return t; + } // Returns a unit vector tangent at t + // In case any sub curve does not implement its tangent derivation, + // 2 points a small delta apart will be used to find its gradient + // which seems to give a reasonable approximation + + + getTangent(t, optionalTarget) { + const delta = 0.0001; + let t1 = t - delta; + let t2 = t + delta; // Capping in case of danger + + if (t1 < 0) t1 = 0; + if (t2 > 1) t2 = 1; + const pt1 = this.getPoint(t1); + const pt2 = this.getPoint(t2); + const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3()); + tangent.copy(pt2).sub(pt1).normalize(); + return tangent; + } + + getTangentAt(u, optionalTarget) { + const t = this.getUtoTmapping(u); + return this.getTangent(t, optionalTarget); + } + + computeFrenetFrames(segments, closed) { + // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf + const normal = new Vector3(); + const tangents = []; + const normals = []; + const binormals = []; + const vec = new Vector3(); + const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve + + for (let i = 0; i <= segments; i++) { + const u = i / segments; + tangents[i] = this.getTangentAt(u, new Vector3()); + } // select an initial normal vector perpendicular to the first tangent vector, + // and in the direction of the minimum tangent xyz component + + + normals[0] = new Vector3(); + binormals[0] = new Vector3(); + let min = Number.MAX_VALUE; + const tx = Math.abs(tangents[0].x); + const ty = Math.abs(tangents[0].y); + const tz = Math.abs(tangents[0].z); + + if (tx <= min) { + min = tx; + normal.set(1, 0, 0); + } + + if (ty <= min) { + min = ty; + normal.set(0, 1, 0); + } + + if (tz <= min) { + normal.set(0, 0, 1); + } + + vec.crossVectors(tangents[0], normal).normalize(); + normals[0].crossVectors(tangents[0], vec); + binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve + + for (let i = 1; i <= segments; i++) { + normals[i] = normals[i - 1].clone(); + binormals[i] = binormals[i - 1].clone(); + vec.crossVectors(tangents[i - 1], tangents[i]); + + if (vec.length() > Number.EPSILON) { + vec.normalize(); + const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors + + normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta)); + } + + binormals[i].crossVectors(tangents[i], normals[i]); + } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same + + + if (closed === true) { + let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1)); + theta /= segments; + + if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) { + theta = -theta; + } + + for (let i = 1; i <= segments; i++) { + // twist a little... + normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i)); + binormals[i].crossVectors(tangents[i], normals[i]); + } + } + + return { + tangents: tangents, + normals: normals, + binormals: binormals + }; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.arcLengthDivisions = source.arcLengthDivisions; + return this; + } + + toJSON() { + const data = { + metadata: { + version: 4.5, + type: 'Curve', + generator: 'Curve.toJSON' + } + }; + data.arcLengthDivisions = this.arcLengthDivisions; + data.type = this.type; + return data; + } + + fromJSON(json) { + this.arcLengthDivisions = json.arcLengthDivisions; + return this; + } + +} + +class EllipseCurve extends Curve { + constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) { + super(); + this.type = 'EllipseCurve'; + this.aX = aX; + this.aY = aY; + this.xRadius = xRadius; + this.yRadius = yRadius; + this.aStartAngle = aStartAngle; + this.aEndAngle = aEndAngle; + this.aClockwise = aClockwise; + this.aRotation = aRotation; + } + + getPoint(t, optionalTarget) { + const point = optionalTarget || new Vector2(); + const twoPi = Math.PI * 2; + let deltaAngle = this.aEndAngle - this.aStartAngle; + const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI + + while (deltaAngle < 0) deltaAngle += twoPi; + + while (deltaAngle > twoPi) deltaAngle -= twoPi; + + if (deltaAngle < Number.EPSILON) { + if (samePoints) { + deltaAngle = 0; + } else { + deltaAngle = twoPi; + } + } + + if (this.aClockwise === true && !samePoints) { + if (deltaAngle === twoPi) { + deltaAngle = -twoPi; + } else { + deltaAngle = deltaAngle - twoPi; + } + } + + const angle = this.aStartAngle + t * deltaAngle; + let x = this.aX + this.xRadius * Math.cos(angle); + let y = this.aY + this.yRadius * Math.sin(angle); + + if (this.aRotation !== 0) { + const cos = Math.cos(this.aRotation); + const sin = Math.sin(this.aRotation); + const tx = x - this.aX; + const ty = y - this.aY; // Rotate the point about the center of the ellipse. + + x = tx * cos - ty * sin + this.aX; + y = tx * sin + ty * cos + this.aY; + } + + return point.set(x, y); + } + + copy(source) { + super.copy(source); + this.aX = source.aX; + this.aY = source.aY; + this.xRadius = source.xRadius; + this.yRadius = source.yRadius; + this.aStartAngle = source.aStartAngle; + this.aEndAngle = source.aEndAngle; + this.aClockwise = source.aClockwise; + this.aRotation = source.aRotation; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.aX = this.aX; + data.aY = this.aY; + data.xRadius = this.xRadius; + data.yRadius = this.yRadius; + data.aStartAngle = this.aStartAngle; + data.aEndAngle = this.aEndAngle; + data.aClockwise = this.aClockwise; + data.aRotation = this.aRotation; + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.aX = json.aX; + this.aY = json.aY; + this.xRadius = json.xRadius; + this.yRadius = json.yRadius; + this.aStartAngle = json.aStartAngle; + this.aEndAngle = json.aEndAngle; + this.aClockwise = json.aClockwise; + this.aRotation = json.aRotation; + return this; + } + +} + +EllipseCurve.prototype.isEllipseCurve = true; + +class ArcCurve extends EllipseCurve { + constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { + super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); + this.type = 'ArcCurve'; + } + +} + +ArcCurve.prototype.isArcCurve = true; + +/** + * Centripetal CatmullRom Curve - which is useful for avoiding + * cusps and self-intersections in non-uniform catmull rom curves. + * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf + * + * curve.type accepts centripetal(default), chordal and catmullrom + * curve.tension is used for catmullrom which defaults to 0.5 + */ + +/* +Based on an optimized c++ solution in + - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ + - http://ideone.com/NoEbVM + +This CubicPoly class could be used for reusing some variables and calculations, +but for three.js curve use, it could be possible inlined and flatten into a single function call +which can be placed in CurveUtils. +*/ + +function CubicPoly() { + let c0 = 0, + c1 = 0, + c2 = 0, + c3 = 0; + /* + * Compute coefficients for a cubic polynomial + * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 + * such that + * p(0) = x0, p(1) = x1 + * and + * p'(0) = t0, p'(1) = t1. + */ + + function init(x0, x1, t0, t1) { + c0 = x0; + c1 = t0; + c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1; + c3 = 2 * x0 - 2 * x1 + t0 + t1; + } + + return { + initCatmullRom: function (x0, x1, x2, x3, tension) { + init(x1, x2, tension * (x2 - x0), tension * (x3 - x1)); + }, + initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) { + // compute tangents when parameterized in [t1,t2] + let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1; + let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1] + + t1 *= dt1; + t2 *= dt1; + init(x1, x2, t1, t2); + }, + calc: function (t) { + const t2 = t * t; + const t3 = t2 * t; + return c0 + c1 * t + c2 * t2 + c3 * t3; + } + }; +} // + + +const tmp = new Vector3(); +const px = new CubicPoly(), + py = new CubicPoly(), + pz = new CubicPoly(); + +class CatmullRomCurve3 extends Curve { + constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) { + super(); + this.type = 'CatmullRomCurve3'; + this.points = points; + this.closed = closed; + this.curveType = curveType; + this.tension = tension; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + const points = this.points; + const l = points.length; + const p = (l - (this.closed ? 0 : 1)) * t; + let intPoint = Math.floor(p); + let weight = p - intPoint; + + if (this.closed) { + intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l; + } else if (weight === 0 && intPoint === l - 1) { + intPoint = l - 2; + weight = 1; + } + + let p0, p3; // 4 points (p1 & p2 defined below) + + if (this.closed || intPoint > 0) { + p0 = points[(intPoint - 1) % l]; + } else { + // extrapolate first point + tmp.subVectors(points[0], points[1]).add(points[0]); + p0 = tmp; + } + + const p1 = points[intPoint % l]; + const p2 = points[(intPoint + 1) % l]; + + if (this.closed || intPoint + 2 < l) { + p3 = points[(intPoint + 2) % l]; + } else { + // extrapolate last point + tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]); + p3 = tmp; + } + + if (this.curveType === 'centripetal' || this.curveType === 'chordal') { + // init Centripetal / Chordal Catmull-Rom + const pow = this.curveType === 'chordal' ? 0.5 : 0.25; + let dt0 = Math.pow(p0.distanceToSquared(p1), pow); + let dt1 = Math.pow(p1.distanceToSquared(p2), pow); + let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points + + if (dt1 < 1e-4) dt1 = 1.0; + if (dt0 < 1e-4) dt0 = dt1; + if (dt2 < 1e-4) dt2 = dt1; + px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2); + py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2); + pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2); + } else if (this.curveType === 'catmullrom') { + px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension); + py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension); + pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension); + } + + point.set(px.calc(weight), py.calc(weight), pz.calc(weight)); + return point; + } + + copy(source) { + super.copy(source); + this.points = []; + + for (let i = 0, l = source.points.length; i < l; i++) { + const point = source.points[i]; + this.points.push(point.clone()); + } + + this.closed = source.closed; + this.curveType = source.curveType; + this.tension = source.tension; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.points = []; + + for (let i = 0, l = this.points.length; i < l; i++) { + const point = this.points[i]; + data.points.push(point.toArray()); + } + + data.closed = this.closed; + data.curveType = this.curveType; + data.tension = this.tension; + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.points = []; + + for (let i = 0, l = json.points.length; i < l; i++) { + const point = json.points[i]; + this.points.push(new Vector3().fromArray(point)); + } + + this.closed = json.closed; + this.curveType = json.curveType; + this.tension = json.tension; + return this; + } + +} + +CatmullRomCurve3.prototype.isCatmullRomCurve3 = true; + +/** + * Bezier Curves formulas obtained from + * https://en.wikipedia.org/wiki/B%C3%A9zier_curve + */ +function CatmullRom(t, p0, p1, p2, p3) { + const v0 = (p2 - p0) * 0.5; + const v1 = (p3 - p1) * 0.5; + const t2 = t * t; + const t3 = t * t2; + return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; +} // + + +function QuadraticBezierP0(t, p) { + const k = 1 - t; + return k * k * p; +} + +function QuadraticBezierP1(t, p) { + return 2 * (1 - t) * t * p; +} + +function QuadraticBezierP2(t, p) { + return t * t * p; +} + +function QuadraticBezier(t, p0, p1, p2) { + return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2); +} // + + +function CubicBezierP0(t, p) { + const k = 1 - t; + return k * k * k * p; +} + +function CubicBezierP1(t, p) { + const k = 1 - t; + return 3 * k * k * t * p; +} + +function CubicBezierP2(t, p) { + return 3 * (1 - t) * t * t * p; +} + +function CubicBezierP3(t, p) { + return t * t * t * p; +} + +function CubicBezier(t, p0, p1, p2, p3) { + return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3); +} + +class CubicBezierCurve extends Curve { + constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) { + super(); + this.type = 'CubicBezierCurve'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + this.v3 = v3; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2, + v3 = this.v3; + point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + this.v3.copy(source.v3); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + this.v3.fromArray(json.v3); + return this; + } + +} + +CubicBezierCurve.prototype.isCubicBezierCurve = true; + +class CubicBezierCurve3 extends Curve { + constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) { + super(); + this.type = 'CubicBezierCurve3'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + this.v3 = v3; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2, + v3 = this.v3; + point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + this.v3.copy(source.v3); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + this.v3.fromArray(json.v3); + return this; + } + +} + +CubicBezierCurve3.prototype.isCubicBezierCurve3 = true; + +class LineCurve extends Curve { + constructor(v1 = new Vector2(), v2 = new Vector2()) { + super(); + this.type = 'LineCurve'; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + + if (t === 1) { + point.copy(this.v2); + } else { + point.copy(this.v2).sub(this.v1); + point.multiplyScalar(t).add(this.v1); + } + + return point; + } // Line curve is linear, so we can overwrite default getPointAt + + + getPointAt(u, optionalTarget) { + return this.getPoint(u, optionalTarget); + } + + getTangent(t, optionalTarget) { + const tangent = optionalTarget || new Vector2(); + tangent.copy(this.v2).sub(this.v1).normalize(); + return tangent; + } + + copy(source) { + super.copy(source); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + +} + +LineCurve.prototype.isLineCurve = true; + +class LineCurve3 extends Curve { + constructor(v1 = new Vector3(), v2 = new Vector3()) { + super(); + this.type = 'LineCurve3'; + this.isLineCurve3 = true; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + + if (t === 1) { + point.copy(this.v2); + } else { + point.copy(this.v2).sub(this.v1); + point.multiplyScalar(t).add(this.v1); + } + + return point; + } // Line curve is linear, so we can overwrite default getPointAt + + + getPointAt(u, optionalTarget) { + return this.getPoint(u, optionalTarget); + } + + copy(source) { + super.copy(source); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + +} + +class QuadraticBezierCurve extends Curve { + constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) { + super(); + this.type = 'QuadraticBezierCurve'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2; + point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + +} + +QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true; + +class QuadraticBezierCurve3 extends Curve { + constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) { + super(); + this.type = 'QuadraticBezierCurve3'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2; + point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + +} + +QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true; + +class SplineCurve extends Curve { + constructor(points = []) { + super(); + this.type = 'SplineCurve'; + this.points = points; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + const points = this.points; + const p = (points.length - 1) * t; + const intPoint = Math.floor(p); + const weight = p - intPoint; + const p0 = points[intPoint === 0 ? intPoint : intPoint - 1]; + const p1 = points[intPoint]; + const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1]; + const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2]; + point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y)); + return point; + } + + copy(source) { + super.copy(source); + this.points = []; + + for (let i = 0, l = source.points.length; i < l; i++) { + const point = source.points[i]; + this.points.push(point.clone()); + } + + return this; + } + + toJSON() { + const data = super.toJSON(); + data.points = []; + + for (let i = 0, l = this.points.length; i < l; i++) { + const point = this.points[i]; + data.points.push(point.toArray()); + } + + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.points = []; + + for (let i = 0, l = json.points.length; i < l; i++) { + const point = json.points[i]; + this.points.push(new Vector2().fromArray(point)); + } + + return this; + } + +} + +SplineCurve.prototype.isSplineCurve = true; + +var Curves = /*#__PURE__*/Object.freeze({ + __proto__: null, + ArcCurve: ArcCurve, + CatmullRomCurve3: CatmullRomCurve3, + CubicBezierCurve: CubicBezierCurve, + CubicBezierCurve3: CubicBezierCurve3, + EllipseCurve: EllipseCurve, + LineCurve: LineCurve, + LineCurve3: LineCurve3, + QuadraticBezierCurve: QuadraticBezierCurve, + QuadraticBezierCurve3: QuadraticBezierCurve3, + SplineCurve: SplineCurve +}); + +/************************************************************** + * Curved Path - a curve path is simply a array of connected + * curves, but retains the api of a curve + **************************************************************/ + +class CurvePath extends Curve { + constructor() { + super(); + this.type = 'CurvePath'; + this.curves = []; + this.autoClose = false; // Automatically closes the path + } + + add(curve) { + this.curves.push(curve); + } + + closePath() { + // Add a line curve if start and end of lines are not connected + const startPoint = this.curves[0].getPoint(0); + const endPoint = this.curves[this.curves.length - 1].getPoint(1); + + if (!startPoint.equals(endPoint)) { + this.curves.push(new LineCurve(endPoint, startPoint)); + } + } // To get accurate point with reference to + // entire path distance at time t, + // following has to be done: + // 1. Length of each sub path have to be known + // 2. Locate and identify type of curve + // 3. Get t for the curve + // 4. Return curve.getPointAt(t') + + + getPoint(t, optionalTarget) { + const d = t * this.getLength(); + const curveLengths = this.getCurveLengths(); + let i = 0; // To think about boundaries points. + + while (i < curveLengths.length) { + if (curveLengths[i] >= d) { + const diff = curveLengths[i] - d; + const curve = this.curves[i]; + const segmentLength = curve.getLength(); + const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; + return curve.getPointAt(u, optionalTarget); + } + + i++; + } + + return null; // loop where sum != 0, sum > d , sum+1 1 && !points[points.length - 1].equals(points[0])) { + points.push(points[0]); + } + + return points; + } + + copy(source) { + super.copy(source); + this.curves = []; + + for (let i = 0, l = source.curves.length; i < l; i++) { + const curve = source.curves[i]; + this.curves.push(curve.clone()); + } + + this.autoClose = source.autoClose; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.autoClose = this.autoClose; + data.curves = []; + + for (let i = 0, l = this.curves.length; i < l; i++) { + const curve = this.curves[i]; + data.curves.push(curve.toJSON()); + } + + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.autoClose = json.autoClose; + this.curves = []; + + for (let i = 0, l = json.curves.length; i < l; i++) { + const curve = json.curves[i]; + this.curves.push(new Curves[curve.type]().fromJSON(curve)); + } + + return this; + } + +} + +class Path extends CurvePath { + constructor(points) { + super(); + this.type = 'Path'; + this.currentPoint = new Vector2(); + + if (points) { + this.setFromPoints(points); + } + } + + setFromPoints(points) { + this.moveTo(points[0].x, points[0].y); + + for (let i = 1, l = points.length; i < l; i++) { + this.lineTo(points[i].x, points[i].y); + } + + return this; + } + + moveTo(x, y) { + this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying? + + return this; + } + + lineTo(x, y) { + const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y)); + this.curves.push(curve); + this.currentPoint.set(x, y); + return this; + } + + quadraticCurveTo(aCPx, aCPy, aX, aY) { + const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY)); + this.curves.push(curve); + this.currentPoint.set(aX, aY); + return this; + } + + bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { + const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY)); + this.curves.push(curve); + this.currentPoint.set(aX, aY); + return this; + } + + splineThru(pts + /*Array of Vector*/ + ) { + const npts = [this.currentPoint.clone()].concat(pts); + const curve = new SplineCurve(npts); + this.curves.push(curve); + this.currentPoint.copy(pts[pts.length - 1]); + return this; + } + + arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { + const x0 = this.currentPoint.x; + const y0 = this.currentPoint.y; + this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise); + return this; + } + + absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { + this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); + return this; + } + + ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { + const x0 = this.currentPoint.x; + const y0 = this.currentPoint.y; + this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); + return this; + } + + absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { + const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); + + if (this.curves.length > 0) { + // if a previous curve is present, attempt to join + const firstPoint = curve.getPoint(0); + + if (!firstPoint.equals(this.currentPoint)) { + this.lineTo(firstPoint.x, firstPoint.y); + } + } + + this.curves.push(curve); + const lastPoint = curve.getPoint(1); + this.currentPoint.copy(lastPoint); + return this; + } + + copy(source) { + super.copy(source); + this.currentPoint.copy(source.currentPoint); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.currentPoint = this.currentPoint.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.currentPoint.fromArray(json.currentPoint); + return this; + } + +} + +class Shape extends Path { + constructor(points) { + super(points); + this.uuid = generateUUID(); + this.type = 'Shape'; + this.holes = []; + } + + getPointsHoles(divisions) { + const holesPts = []; + + for (let i = 0, l = this.holes.length; i < l; i++) { + holesPts[i] = this.holes[i].getPoints(divisions); + } + + return holesPts; + } // get points of shape and holes (keypoints based on segments parameter) + + + extractPoints(divisions) { + return { + shape: this.getPoints(divisions), + holes: this.getPointsHoles(divisions) + }; + } + + copy(source) { + super.copy(source); + this.holes = []; + + for (let i = 0, l = source.holes.length; i < l; i++) { + const hole = source.holes[i]; + this.holes.push(hole.clone()); + } + + return this; + } + + toJSON() { + const data = super.toJSON(); + data.uuid = this.uuid; + data.holes = []; + + for (let i = 0, l = this.holes.length; i < l; i++) { + const hole = this.holes[i]; + data.holes.push(hole.toJSON()); + } + + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.uuid = json.uuid; + this.holes = []; + + for (let i = 0, l = json.holes.length; i < l; i++) { + const hole = json.holes[i]; + this.holes.push(new Path().fromJSON(hole)); + } + + return this; + } + +} + +/** + * Port from https://github.com/mapbox/earcut (v2.2.2) + */ +const Earcut = { + triangulate: function (data, holeIndices, dim = 2) { + const hasHoles = holeIndices && holeIndices.length; + const outerLen = hasHoles ? holeIndices[0] * dim : data.length; + let outerNode = linkedList(data, 0, outerLen, dim, true); + const triangles = []; + if (!outerNode || outerNode.next === outerNode.prev) return triangles; + let minX, minY, maxX, maxY, x, y, invSize; + if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox + + if (data.length > 80 * dim) { + minX = maxX = data[0]; + minY = maxY = data[1]; + + for (let i = dim; i < outerLen; i += dim) { + x = data[i]; + y = data[i + 1]; + if (x < minX) minX = x; + if (y < minY) minY = y; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + } // minX, minY and invSize are later used to transform coords into integers for z-order calculation + + + invSize = Math.max(maxX - minX, maxY - minY); + invSize = invSize !== 0 ? 1 / invSize : 0; + } + + earcutLinked(outerNode, triangles, dim, minX, minY, invSize); + return triangles; + } +}; // create a circular doubly linked list from polygon points in the specified winding order + +function linkedList(data, start, end, dim, clockwise) { + let i, last; + + if (clockwise === signedArea(data, start, end, dim) > 0) { + for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last); + } else { + for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last); + } + + if (last && equals(last, last.next)) { + removeNode(last); + last = last.next; + } + + return last; +} // eliminate colinear or duplicate points + + +function filterPoints(start, end) { + if (!start) return start; + if (!end) end = start; + let p = start, + again; + + do { + again = false; + + if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { + removeNode(p); + p = end = p.prev; + if (p === p.next) break; + again = true; + } else { + p = p.next; + } + } while (again || p !== end); + + return end; +} // main ear slicing loop which triangulates a polygon (given as a linked list) + + +function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { + if (!ear) return; // interlink polygon nodes in z-order + + if (!pass && invSize) indexCurve(ear, minX, minY, invSize); + let stop = ear, + prev, + next; // iterate through ears, slicing them one by one + + while (ear.prev !== ear.next) { + prev = ear.prev; + next = ear.next; + + if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { + // cut off the triangle + triangles.push(prev.i / dim); + triangles.push(ear.i / dim); + triangles.push(next.i / dim); + removeNode(ear); // skipping the next vertex leads to less sliver triangles + + ear = next.next; + stop = next.next; + continue; + } + + ear = next; // if we looped through the whole remaining polygon and can't find any more ears + + if (ear === stop) { + // try filtering points and slicing again + if (!pass) { + earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally + } else if (pass === 1) { + ear = cureLocalIntersections(filterPoints(ear), triangles, dim); + earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two + } else if (pass === 2) { + splitEarcut(ear, triangles, dim, minX, minY, invSize); + } + + break; + } + } +} // check whether a polygon node forms a valid ear with adjacent nodes + + +function isEar(ear) { + const a = ear.prev, + b = ear, + c = ear.next; + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + // now make sure we don't have other points inside the potential ear + + let p = ear.next.next; + + while (p !== ear.prev) { + if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.next; + } + + return true; +} + +function isEarHashed(ear, minX, minY, invSize) { + const a = ear.prev, + b = ear, + c = ear.next; + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + // triangle bbox; min & max are calculated like this for speed + + const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x, + minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y, + maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x, + maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox; + + const minZ = zOrder(minTX, minTY, minX, minY, invSize), + maxZ = zOrder(maxTX, maxTY, minX, minY, invSize); + let p = ear.prevZ, + n = ear.nextZ; // look for points inside the triangle in both directions + + while (p && p.z >= minZ && n && n.z <= maxZ) { + if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.prevZ; + if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; + n = n.nextZ; + } // look for remaining points in decreasing z-order + + + while (p && p.z >= minZ) { + if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.prevZ; + } // look for remaining points in increasing z-order + + + while (n && n.z <= maxZ) { + if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; + n = n.nextZ; + } + + return true; +} // go through all polygon nodes and cure small local self-intersections + + +function cureLocalIntersections(start, triangles, dim) { + let p = start; + + do { + const a = p.prev, + b = p.next.next; + + if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { + triangles.push(a.i / dim); + triangles.push(p.i / dim); + triangles.push(b.i / dim); // remove two nodes involved + + removeNode(p); + removeNode(p.next); + p = start = b; + } + + p = p.next; + } while (p !== start); + + return filterPoints(p); +} // try splitting polygon into two and triangulate them independently + + +function splitEarcut(start, triangles, dim, minX, minY, invSize) { + // look for a valid diagonal that divides the polygon into two + let a = start; + + do { + let b = a.next.next; + + while (b !== a.prev) { + if (a.i !== b.i && isValidDiagonal(a, b)) { + // split the polygon in two by the diagonal + let c = splitPolygon(a, b); // filter colinear points around the cuts + + a = filterPoints(a, a.next); + c = filterPoints(c, c.next); // run earcut on each half + + earcutLinked(a, triangles, dim, minX, minY, invSize); + earcutLinked(c, triangles, dim, minX, minY, invSize); + return; + } + + b = b.next; + } + + a = a.next; + } while (a !== start); +} // link every hole into the outer loop, producing a single-ring polygon without holes + + +function eliminateHoles(data, holeIndices, outerNode, dim) { + const queue = []; + let i, len, start, end, list; + + for (i = 0, len = holeIndices.length; i < len; i++) { + start = holeIndices[i] * dim; + end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; + list = linkedList(data, start, end, dim, false); + if (list === list.next) list.steiner = true; + queue.push(getLeftmost(list)); + } + + queue.sort(compareX); // process holes from left to right + + for (i = 0; i < queue.length; i++) { + eliminateHole(queue[i], outerNode); + outerNode = filterPoints(outerNode, outerNode.next); + } + + return outerNode; +} + +function compareX(a, b) { + return a.x - b.x; +} // find a bridge between vertices that connects hole with an outer ring and and link it + + +function eliminateHole(hole, outerNode) { + outerNode = findHoleBridge(hole, outerNode); + + if (outerNode) { + const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts + + filterPoints(outerNode, outerNode.next); + filterPoints(b, b.next); + } +} // David Eberly's algorithm for finding a bridge between hole and outer polygon + + +function findHoleBridge(hole, outerNode) { + let p = outerNode; + const hx = hole.x; + const hy = hole.y; + let qx = -Infinity, + m; // find a segment intersected by a ray from the hole's leftmost point to the left; + // segment's endpoint with lesser x will be potential connection point + + do { + if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { + const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); + + if (x <= hx && x > qx) { + qx = x; + + if (x === hx) { + if (hy === p.y) return p; + if (hy === p.next.y) return p.next; + } + + m = p.x < p.next.x ? p : p.next; + } + } + + p = p.next; + } while (p !== outerNode); + + if (!m) return null; + if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint + // look for points inside the triangle of hole point, segment intersection and endpoint; + // if there are no points found, we have a valid connection; + // otherwise choose the point of the minimum angle with the ray as connection point + + const stop = m, + mx = m.x, + my = m.y; + let tanMin = Infinity, + tan; + p = m; + + do { + if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { + tan = Math.abs(hy - p.y) / (hx - p.x); // tangential + + if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) { + m = p; + tanMin = tan; + } + } + + p = p.next; + } while (p !== stop); + + return m; +} // whether sector in vertex m contains sector in vertex p in the same coordinates + + +function sectorContainsSector(m, p) { + return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; +} // interlink polygon nodes in z-order + + +function indexCurve(start, minX, minY, invSize) { + let p = start; + + do { + if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize); + p.prevZ = p.prev; + p.nextZ = p.next; + p = p.next; + } while (p !== start); + + p.prevZ.nextZ = null; + p.prevZ = null; + sortLinked(p); +} // Simon Tatham's linked list merge sort algorithm +// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html + + +function sortLinked(list) { + let i, + p, + q, + e, + tail, + numMerges, + pSize, + qSize, + inSize = 1; + + do { + p = list; + list = null; + tail = null; + numMerges = 0; + + while (p) { + numMerges++; + q = p; + pSize = 0; + + for (i = 0; i < inSize; i++) { + pSize++; + q = q.nextZ; + if (!q) break; + } + + qSize = inSize; + + while (pSize > 0 || qSize > 0 && q) { + if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { + e = p; + p = p.nextZ; + pSize--; + } else { + e = q; + q = q.nextZ; + qSize--; + } + + if (tail) tail.nextZ = e;else list = e; + e.prevZ = tail; + tail = e; + } + + p = q; + } + + tail.nextZ = null; + inSize *= 2; + } while (numMerges > 1); + + return list; +} // z-order of a point given coords and inverse of the longer side of data bbox + + +function zOrder(x, y, minX, minY, invSize) { + // coords are transformed into non-negative 15-bit integer range + x = 32767 * (x - minX) * invSize; + y = 32767 * (y - minY) * invSize; + x = (x | x << 8) & 0x00FF00FF; + x = (x | x << 4) & 0x0F0F0F0F; + x = (x | x << 2) & 0x33333333; + x = (x | x << 1) & 0x55555555; + y = (y | y << 8) & 0x00FF00FF; + y = (y | y << 4) & 0x0F0F0F0F; + y = (y | y << 2) & 0x33333333; + y = (y | y << 1) & 0x55555555; + return x | y << 1; +} // find the leftmost node of a polygon ring + + +function getLeftmost(start) { + let p = start, + leftmost = start; + + do { + if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p; + p = p.next; + } while (p !== start); + + return leftmost; +} // check if a point lies within a convex triangle + + +function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { + return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; +} // check if a diagonal between two polygon nodes is valid (lies in polygon interior) + + +function isValidDiagonal(a, b) { + return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && ( // dones't intersect other edges + locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && ( // locally visible + area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors + equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case +} // signed area of a triangle + + +function area(p, q, r) { + return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); +} // check if two points are equal + + +function equals(p1, p2) { + return p1.x === p2.x && p1.y === p2.y; +} // check if two segments intersect + + +function intersects(p1, q1, p2, q2) { + const o1 = sign(area(p1, q1, p2)); + const o2 = sign(area(p1, q1, q2)); + const o3 = sign(area(p2, q2, p1)); + const o4 = sign(area(p2, q2, q1)); + if (o1 !== o2 && o3 !== o4) return true; // general case + + if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 + + if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 + + if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 + + if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 + + return false; +} // for collinear points p, q, r, check if point q lies on segment pr + + +function onSegment(p, q, r) { + return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y); +} + +function sign(num) { + return num > 0 ? 1 : num < 0 ? -1 : 0; +} // check if a polygon diagonal intersects any polygon segments + + +function intersectsPolygon(a, b) { + let p = a; + + do { + if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true; + p = p.next; + } while (p !== a); + + return false; +} // check if a polygon diagonal is locally inside the polygon + + +function locallyInside(a, b) { + return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; +} // check if the middle point of a polygon diagonal is inside the polygon + + +function middleInside(a, b) { + let p = a, + inside = false; + const px = (a.x + b.x) / 2, + py = (a.y + b.y) / 2; + + do { + if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside; + p = p.next; + } while (p !== a); + + return inside; +} // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; +// if one belongs to the outer ring and another to a hole, it merges it into a single ring + + +function splitPolygon(a, b) { + const a2 = new Node(a.i, a.x, a.y), + b2 = new Node(b.i, b.x, b.y), + an = a.next, + bp = b.prev; + a.next = b; + b.prev = a; + a2.next = an; + an.prev = a2; + b2.next = a2; + a2.prev = b2; + bp.next = b2; + b2.prev = bp; + return b2; +} // create a node and optionally link it with previous one (in a circular doubly linked list) + + +function insertNode(i, x, y, last) { + const p = new Node(i, x, y); + + if (!last) { + p.prev = p; + p.next = p; + } else { + p.next = last.next; + p.prev = last; + last.next.prev = p; + last.next = p; + } + + return p; +} + +function removeNode(p) { + p.next.prev = p.prev; + p.prev.next = p.next; + if (p.prevZ) p.prevZ.nextZ = p.nextZ; + if (p.nextZ) p.nextZ.prevZ = p.prevZ; +} + +function Node(i, x, y) { + // vertex index in coordinates array + this.i = i; // vertex coordinates + + this.x = x; + this.y = y; // previous and next vertex nodes in a polygon ring + + this.prev = null; + this.next = null; // z-order curve value + + this.z = null; // previous and next nodes in z-order + + this.prevZ = null; + this.nextZ = null; // indicates whether this is a steiner point + + this.steiner = false; +} + +function signedArea(data, start, end, dim) { + let sum = 0; + + for (let i = start, j = end - dim; i < end; i += dim) { + sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); + j = i; + } + + return sum; +} + +class ShapeUtils { + // calculate area of the contour polygon + static area(contour) { + const n = contour.length; + let a = 0.0; + + for (let p = n - 1, q = 0; q < n; p = q++) { + a += contour[p].x * contour[q].y - contour[q].x * contour[p].y; + } + + return a * 0.5; + } + + static isClockWise(pts) { + return ShapeUtils.area(pts) < 0; + } + + static triangulateShape(contour, holes) { + const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] + + const holeIndices = []; // array of hole indices + + const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] + + removeDupEndPts(contour); + addContour(vertices, contour); // + + let holeIndex = contour.length; + holes.forEach(removeDupEndPts); + + for (let i = 0; i < holes.length; i++) { + holeIndices.push(holeIndex); + holeIndex += holes[i].length; + addContour(vertices, holes[i]); + } // + + + const triangles = Earcut.triangulate(vertices, holeIndices); // + + for (let i = 0; i < triangles.length; i += 3) { + faces.push(triangles.slice(i, i + 3)); + } + + return faces; + } + +} + +function removeDupEndPts(points) { + const l = points.length; + + if (l > 2 && points[l - 1].equals(points[0])) { + points.pop(); + } +} + +function addContour(vertices, contour) { + for (let i = 0; i < contour.length; i++) { + vertices.push(contour[i].x); + vertices.push(contour[i].y); + } +} + +/** + * Creates extruded geometry from a path shape. + * + * parameters = { + * + * curveSegments: , // number of points on the curves + * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too + * depth: , // Depth to extrude the shape + * + * bevelEnabled: , // turn on bevel + * bevelThickness: , // how deep into the original shape bevel goes + * bevelSize: , // how far from shape outline (including bevelOffset) is bevel + * bevelOffset: , // how far from shape outline does bevel start + * bevelSegments: , // number of bevel layers + * + * extrudePath: // curve to extrude shape along + * + * UVGenerator: // object that provides UV generator functions + * + * } + */ + +class ExtrudeGeometry extends BufferGeometry { + constructor(shapes = new Shape([new Vector2(0.5, 0.5), new Vector2(-0.5, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), options = {}) { + super(); + this.type = 'ExtrudeGeometry'; + this.parameters = { + shapes: shapes, + options: options + }; + shapes = Array.isArray(shapes) ? shapes : [shapes]; + const scope = this; + const verticesArray = []; + const uvArray = []; + + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + addShape(shape); + } // build geometry + + + this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2)); + this.computeVertexNormals(); // functions + + function addShape(shape) { + const placeholder = []; // options + + const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; + const steps = options.steps !== undefined ? options.steps : 1; + let depth = options.depth !== undefined ? options.depth : 1; + let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; + let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2; + let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1; + let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; + let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; + const extrudePath = options.extrudePath; + const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options + + if (options.amount !== undefined) { + console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.'); + depth = options.amount; + } // + + + let extrudePts, + extrudeByPath = false; + let splineTube, binormal, normal, position2; + + if (extrudePath) { + extrudePts = extrudePath.getSpacedPoints(steps); + extrudeByPath = true; + bevelEnabled = false; // bevels not supported for path extrusion + // SETUP TNB variables + // TODO1 - have a .isClosed in spline? + + splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); + + binormal = new Vector3(); + normal = new Vector3(); + position2 = new Vector3(); + } // Safeguards if bevels are not enabled + + + if (!bevelEnabled) { + bevelSegments = 0; + bevelThickness = 0; + bevelSize = 0; + bevelOffset = 0; + } // Variables initialization + + + const shapePoints = shape.extractPoints(curveSegments); + let vertices = shapePoints.shape; + const holes = shapePoints.holes; + const reverse = !ShapeUtils.isClockWise(vertices); + + if (reverse) { + vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + + if (ShapeUtils.isClockWise(ahole)) { + holes[h] = ahole.reverse(); + } + } + } + + const faces = ShapeUtils.triangulateShape(vertices, holes); + /* Vertices */ + + const contour = vertices; // vertices has all points but contour has only points of circumference + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + vertices = vertices.concat(ahole); + } + + function scalePt2(pt, vec, size) { + if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist'); + return vec.clone().multiplyScalar(size).add(pt); + } + + const vlen = vertices.length, + flen = faces.length; // Find directions for point movement + + function getBevelVec(inPt, inPrev, inNext) { + // computes for inPt the corresponding point inPt' on a new contour + // shifted by 1 unit (length of normalized vector) to the left + // if we walk along contour clockwise, this new contour is outside the old one + // + // inPt' is the intersection of the two lines parallel to the two + // adjacent edges of inPt at a distance of 1 unit on the left side. + let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt + // good reading for geometry algorithms (here: line-line intersection) + // http://geomalgorithms.com/a05-_intersect-1.html + + const v_prev_x = inPt.x - inPrev.x, + v_prev_y = inPt.y - inPrev.y; + const v_next_x = inNext.x - inPt.x, + v_next_y = inNext.y - inPt.y; + const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges + + const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x; + + if (Math.abs(collinear0) > Number.EPSILON) { + // not collinear + // length of vectors for normalizing + const v_prev_len = Math.sqrt(v_prev_lensq); + const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left + + const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len; + const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len; + const ptNextShift_x = inNext.x - v_next_y / v_next_len; + const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point + + const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point + + v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x; + v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly + // but prevent crazy spikes + + const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y; + + if (v_trans_lensq <= 2) { + return new Vector2(v_trans_x, v_trans_y); + } else { + shrink_by = Math.sqrt(v_trans_lensq / 2); + } + } else { + // handle special case of collinear edges + let direction_eq = false; // assumes: opposite + + if (v_prev_x > Number.EPSILON) { + if (v_next_x > Number.EPSILON) { + direction_eq = true; + } + } else { + if (v_prev_x < -Number.EPSILON) { + if (v_next_x < -Number.EPSILON) { + direction_eq = true; + } + } else { + if (Math.sign(v_prev_y) === Math.sign(v_next_y)) { + direction_eq = true; + } + } + } + + if (direction_eq) { + // console.log("Warning: lines are a straight sequence"); + v_trans_x = -v_prev_y; + v_trans_y = v_prev_x; + shrink_by = Math.sqrt(v_prev_lensq); + } else { + // console.log("Warning: lines are a straight spike"); + v_trans_x = v_prev_x; + v_trans_y = v_prev_y; + shrink_by = Math.sqrt(v_prev_lensq / 2); + } + } + + return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by); + } + + const contourMovements = []; + + for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { + if (j === il) j = 0; + if (k === il) k = 0; // (j)---(i)---(k) + // console.log('i,j,k', i, j , k) + + contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]); + } + + const holesMovements = []; + let oneHoleMovements, + verticesMovements = contourMovements.concat(); + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + oneHoleMovements = []; + + for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { + if (j === il) j = 0; + if (k === il) k = 0; // (j)---(i)---(k) + + oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]); + } + + holesMovements.push(oneHoleMovements); + verticesMovements = verticesMovements.concat(oneHoleMovements); + } // Loop bevelSegments, 1 for the front, 1 for the back + + + for (let b = 0; b < bevelSegments; b++) { + //for ( b = bevelSegments; b > 0; b -- ) { + const t = b / bevelSegments; + const z = bevelThickness * Math.cos(t * Math.PI / 2); + const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape + + for (let i = 0, il = contour.length; i < il; i++) { + const vert = scalePt2(contour[i], contourMovements[i], bs); + v(vert.x, vert.y, -z); + } // expand holes + + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + oneHoleMovements = holesMovements[h]; + + for (let i = 0, il = ahole.length; i < il; i++) { + const vert = scalePt2(ahole[i], oneHoleMovements[i], bs); + v(vert.x, vert.y, -z); + } + } + } + + const bs = bevelSize + bevelOffset; // Back facing vertices + + for (let i = 0; i < vlen; i++) { + const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; + + if (!extrudeByPath) { + v(vert.x, vert.y, 0); + } else { + // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); + normal.copy(splineTube.normals[0]).multiplyScalar(vert.x); + binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y); + position2.copy(extrudePts[0]).add(normal).add(binormal); + v(position2.x, position2.y, position2.z); + } + } // Add stepped vertices... + // Including front facing vertices + + + for (let s = 1; s <= steps; s++) { + for (let i = 0; i < vlen; i++) { + const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; + + if (!extrudeByPath) { + v(vert.x, vert.y, depth / steps * s); + } else { + // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); + normal.copy(splineTube.normals[s]).multiplyScalar(vert.x); + binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y); + position2.copy(extrudePts[s]).add(normal).add(binormal); + v(position2.x, position2.y, position2.z); + } + } + } // Add bevel segments planes + //for ( b = 1; b <= bevelSegments; b ++ ) { + + + for (let b = bevelSegments - 1; b >= 0; b--) { + const t = b / bevelSegments; + const z = bevelThickness * Math.cos(t * Math.PI / 2); + const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape + + for (let i = 0, il = contour.length; i < il; i++) { + const vert = scalePt2(contour[i], contourMovements[i], bs); + v(vert.x, vert.y, depth + z); + } // expand holes + + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + oneHoleMovements = holesMovements[h]; + + for (let i = 0, il = ahole.length; i < il; i++) { + const vert = scalePt2(ahole[i], oneHoleMovements[i], bs); + + if (!extrudeByPath) { + v(vert.x, vert.y, depth + z); + } else { + v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z); + } + } + } + } + /* Faces */ + // Top and bottom faces + + + buildLidFaces(); // Sides faces + + buildSideFaces(); ///// Internal functions + + function buildLidFaces() { + const start = verticesArray.length / 3; + + if (bevelEnabled) { + let layer = 0; // steps + 1 + + let offset = vlen * layer; // Bottom faces + + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[2] + offset, face[1] + offset, face[0] + offset); + } + + layer = steps + bevelSegments * 2; + offset = vlen * layer; // Top faces + + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[0] + offset, face[1] + offset, face[2] + offset); + } + } else { + // Bottom faces + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[2], face[1], face[0]); + } // Top faces + + + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps); + } + } + + scope.addGroup(start, verticesArray.length / 3 - start, 0); + } // Create faces for the z-sides of the shape + + + function buildSideFaces() { + const start = verticesArray.length / 3; + let layeroffset = 0; + sidewalls(contour, layeroffset); + layeroffset += contour.length; + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + sidewalls(ahole, layeroffset); //, true + + layeroffset += ahole.length; + } + + scope.addGroup(start, verticesArray.length / 3 - start, 1); + } + + function sidewalls(contour, layeroffset) { + let i = contour.length; + + while (--i >= 0) { + const j = i; + let k = i - 1; + if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); + + for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) { + const slen1 = vlen * s; + const slen2 = vlen * (s + 1); + const a = layeroffset + j + slen1, + b = layeroffset + k + slen1, + c = layeroffset + k + slen2, + d = layeroffset + j + slen2; + f4(a, b, c, d); + } + } + } + + function v(x, y, z) { + placeholder.push(x); + placeholder.push(y); + placeholder.push(z); + } + + function f3(a, b, c) { + addVertex(a); + addVertex(b); + addVertex(c); + const nextIndex = verticesArray.length / 3; + const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1); + addUV(uvs[0]); + addUV(uvs[1]); + addUV(uvs[2]); + } + + function f4(a, b, c, d) { + addVertex(a); + addVertex(b); + addVertex(d); + addVertex(b); + addVertex(c); + addVertex(d); + const nextIndex = verticesArray.length / 3; + const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1); + addUV(uvs[0]); + addUV(uvs[1]); + addUV(uvs[3]); + addUV(uvs[1]); + addUV(uvs[2]); + addUV(uvs[3]); + } + + function addVertex(index) { + verticesArray.push(placeholder[index * 3 + 0]); + verticesArray.push(placeholder[index * 3 + 1]); + verticesArray.push(placeholder[index * 3 + 2]); + } + + function addUV(vector2) { + uvArray.push(vector2.x); + uvArray.push(vector2.y); + } + } + } + + toJSON() { + const data = super.toJSON(); + const shapes = this.parameters.shapes; + const options = this.parameters.options; + return toJSON$1(shapes, options, data); + } + + static fromJSON(data, shapes) { + const geometryShapes = []; + + for (let j = 0, jl = data.shapes.length; j < jl; j++) { + const shape = shapes[data.shapes[j]]; + geometryShapes.push(shape); + } + + const extrudePath = data.options.extrudePath; + + if (extrudePath !== undefined) { + data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath); + } + + return new ExtrudeGeometry(geometryShapes, data.options); + } + +} + +const WorldUVGenerator = { + generateTopUV: function (geometry, vertices, indexA, indexB, indexC) { + const a_x = vertices[indexA * 3]; + const a_y = vertices[indexA * 3 + 1]; + const b_x = vertices[indexB * 3]; + const b_y = vertices[indexB * 3 + 1]; + const c_x = vertices[indexC * 3]; + const c_y = vertices[indexC * 3 + 1]; + return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)]; + }, + generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) { + const a_x = vertices[indexA * 3]; + const a_y = vertices[indexA * 3 + 1]; + const a_z = vertices[indexA * 3 + 2]; + const b_x = vertices[indexB * 3]; + const b_y = vertices[indexB * 3 + 1]; + const b_z = vertices[indexB * 3 + 2]; + const c_x = vertices[indexC * 3]; + const c_y = vertices[indexC * 3 + 1]; + const c_z = vertices[indexC * 3 + 2]; + const d_x = vertices[indexD * 3]; + const d_y = vertices[indexD * 3 + 1]; + const d_z = vertices[indexD * 3 + 2]; + + if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) { + return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)]; + } else { + return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)]; + } + } +}; + +function toJSON$1(shapes, options, data) { + data.shapes = []; + + if (Array.isArray(shapes)) { + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + data.shapes.push(shape.uuid); + } + } else { + data.shapes.push(shapes.uuid); + } + + if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON(); + return data; +} + +class IcosahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const t = (1 + Math.sqrt(5)) / 2; + const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1]; + const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1]; + super(vertices, indices, radius, detail); + this.type = 'IcosahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new IcosahedronGeometry(data.radius, data.detail); + } + +} + +class LatheGeometry extends BufferGeometry { + constructor(points = [new Vector2(0, 0.5), new Vector2(0.5, 0), new Vector2(0, -0.5)], segments = 12, phiStart = 0, phiLength = Math.PI * 2) { + super(); + this.type = 'LatheGeometry'; + this.parameters = { + points: points, + segments: segments, + phiStart: phiStart, + phiLength: phiLength + }; + segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ] + + phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers + + const indices = []; + const vertices = []; + const uvs = []; + const initNormals = []; + const normals = []; // helper variables + + const inverseSegments = 1.0 / segments; + const vertex = new Vector3(); + const uv = new Vector2(); + const normal = new Vector3(); + const curNormal = new Vector3(); + const prevNormal = new Vector3(); + let dx = 0; + let dy = 0; // pre-compute normals for initial "meridian" + + for (let j = 0; j <= points.length - 1; j++) { + switch (j) { + case 0: + // special handling for 1st vertex on path + dx = points[j + 1].x - points[j].x; + dy = points[j + 1].y - points[j].y; + normal.x = dy * 1.0; + normal.y = -dx; + normal.z = dy * 0.0; + prevNormal.copy(normal); + normal.normalize(); + initNormals.push(normal.x, normal.y, normal.z); + break; + + case points.length - 1: + // special handling for last Vertex on path + initNormals.push(prevNormal.x, prevNormal.y, prevNormal.z); + break; + + default: + // default handling for all vertices in between + dx = points[j + 1].x - points[j].x; + dy = points[j + 1].y - points[j].y; + normal.x = dy * 1.0; + normal.y = -dx; + normal.z = dy * 0.0; + curNormal.copy(normal); + normal.x += prevNormal.x; + normal.y += prevNormal.y; + normal.z += prevNormal.z; + normal.normalize(); + initNormals.push(normal.x, normal.y, normal.z); + prevNormal.copy(curNormal); + } + } // generate vertices, uvs and normals + + + for (let i = 0; i <= segments; i++) { + const phi = phiStart + i * inverseSegments * phiLength; + const sin = Math.sin(phi); + const cos = Math.cos(phi); + + for (let j = 0; j <= points.length - 1; j++) { + // vertex + vertex.x = points[j].x * sin; + vertex.y = points[j].y; + vertex.z = points[j].x * cos; + vertices.push(vertex.x, vertex.y, vertex.z); // uv + + uv.x = i / segments; + uv.y = j / (points.length - 1); + uvs.push(uv.x, uv.y); // normal + + const x = initNormals[3 * j + 0] * sin; + const y = initNormals[3 * j + 1]; + const z = initNormals[3 * j + 0] * cos; + normals.push(x, y, z); + } + } // indices + + + for (let i = 0; i < segments; i++) { + for (let j = 0; j < points.length - 1; j++) { + const base = j + i * points.length; + const a = base; + const b = base + points.length; + const c = base + points.length + 1; + const d = base + 1; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + } + + static fromJSON(data) { + return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength); + } + +} + +class OctahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1]; + const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2]; + super(vertices, indices, radius, detail); + this.type = 'OctahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new OctahedronGeometry(data.radius, data.detail); + } + +} + +class RingGeometry extends BufferGeometry { + constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) { + super(); + this.type = 'RingGeometry'; + this.parameters = { + innerRadius: innerRadius, + outerRadius: outerRadius, + thetaSegments: thetaSegments, + phiSegments: phiSegments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + thetaSegments = Math.max(3, thetaSegments); + phiSegments = Math.max(1, phiSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // some helper variables + + let radius = innerRadius; + const radiusStep = (outerRadius - innerRadius) / phiSegments; + const vertex = new Vector3(); + const uv = new Vector2(); // generate vertices, normals and uvs + + for (let j = 0; j <= phiSegments; j++) { + for (let i = 0; i <= thetaSegments; i++) { + // values are generate from the inside of the ring to the outside + const segment = thetaStart + i / thetaSegments * thetaLength; // vertex + + vertex.x = radius * Math.cos(segment); + vertex.y = radius * Math.sin(segment); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normals.push(0, 0, 1); // uv + + uv.x = (vertex.x / outerRadius + 1) / 2; + uv.y = (vertex.y / outerRadius + 1) / 2; + uvs.push(uv.x, uv.y); + } // increase the radius for next row of vertices + + + radius += radiusStep; + } // indices + + + for (let j = 0; j < phiSegments; j++) { + const thetaSegmentLevel = j * (thetaSegments + 1); + + for (let i = 0; i < thetaSegments; i++) { + const segment = i + thetaSegmentLevel; + const a = segment; + const b = segment + thetaSegments + 1; + const c = segment + thetaSegments + 2; + const d = segment + 1; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength); + } + +} + +class ShapeGeometry extends BufferGeometry { + constructor(shapes = new Shape([new Vector2(0, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), curveSegments = 12) { + super(); + this.type = 'ShapeGeometry'; + this.parameters = { + shapes: shapes, + curveSegments: curveSegments + }; // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + let groupStart = 0; + let groupCount = 0; // allow single and array values for "shapes" parameter + + if (Array.isArray(shapes) === false) { + addShape(shapes); + } else { + for (let i = 0; i < shapes.length; i++) { + addShape(shapes[i]); + this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support + + groupStart += groupCount; + groupCount = 0; + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions + + function addShape(shape) { + const indexOffset = vertices.length / 3; + const points = shape.extractPoints(curveSegments); + let shapeVertices = points.shape; + const shapeHoles = points.holes; // check direction of vertices + + if (ShapeUtils.isClockWise(shapeVertices) === false) { + shapeVertices = shapeVertices.reverse(); + } + + for (let i = 0, l = shapeHoles.length; i < l; i++) { + const shapeHole = shapeHoles[i]; + + if (ShapeUtils.isClockWise(shapeHole) === true) { + shapeHoles[i] = shapeHole.reverse(); + } + } + + const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array + + for (let i = 0, l = shapeHoles.length; i < l; i++) { + const shapeHole = shapeHoles[i]; + shapeVertices = shapeVertices.concat(shapeHole); + } // vertices, normals, uvs + + + for (let i = 0, l = shapeVertices.length; i < l; i++) { + const vertex = shapeVertices[i]; + vertices.push(vertex.x, vertex.y, 0); + normals.push(0, 0, 1); + uvs.push(vertex.x, vertex.y); // world uvs + } // incides + + + for (let i = 0, l = faces.length; i < l; i++) { + const face = faces[i]; + const a = face[0] + indexOffset; + const b = face[1] + indexOffset; + const c = face[2] + indexOffset; + indices.push(a, b, c); + groupCount += 3; + } + } + } + + toJSON() { + const data = super.toJSON(); + const shapes = this.parameters.shapes; + return toJSON(shapes, data); + } + + static fromJSON(data, shapes) { + const geometryShapes = []; + + for (let j = 0, jl = data.shapes.length; j < jl; j++) { + const shape = shapes[data.shapes[j]]; + geometryShapes.push(shape); + } + + return new ShapeGeometry(geometryShapes, data.curveSegments); + } + +} + +function toJSON(shapes, data) { + data.shapes = []; + + if (Array.isArray(shapes)) { + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + data.shapes.push(shape.uuid); + } + } else { + data.shapes.push(shapes.uuid); + } + + return data; +} + +class SphereGeometry extends BufferGeometry { + constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) { + super(); + this.type = 'SphereGeometry'; + this.parameters = { + radius: radius, + widthSegments: widthSegments, + heightSegments: heightSegments, + phiStart: phiStart, + phiLength: phiLength, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + widthSegments = Math.max(3, Math.floor(widthSegments)); + heightSegments = Math.max(2, Math.floor(heightSegments)); + const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI); + let index = 0; + const grid = []; + const vertex = new Vector3(); + const normal = new Vector3(); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // generate vertices, normals and uvs + + for (let iy = 0; iy <= heightSegments; iy++) { + const verticesRow = []; + const v = iy / heightSegments; // special case for the poles + + let uOffset = 0; + + if (iy == 0 && thetaStart == 0) { + uOffset = 0.5 / widthSegments; + } else if (iy == heightSegments && thetaEnd == Math.PI) { + uOffset = -0.5 / widthSegments; + } + + for (let ix = 0; ix <= widthSegments; ix++) { + const u = ix / widthSegments; // vertex + + vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); + vertex.y = radius * Math.cos(thetaStart + v * thetaLength); + vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normal.copy(vertex).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(u + uOffset, 1 - v); + verticesRow.push(index++); + } + + grid.push(verticesRow); + } // indices + + + for (let iy = 0; iy < heightSegments; iy++) { + for (let ix = 0; ix < widthSegments; ix++) { + const a = grid[iy][ix + 1]; + const b = grid[iy][ix]; + const c = grid[iy + 1][ix]; + const d = grid[iy + 1][ix + 1]; + if (iy !== 0 || thetaStart > 0) indices.push(a, b, d); + if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength); + } + +} + +class TetrahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1]; + const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1]; + super(vertices, indices, radius, detail); + this.type = 'TetrahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new TetrahedronGeometry(data.radius, data.detail); + } + +} + +class TorusGeometry extends BufferGeometry { + constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) { + super(); + this.type = 'TorusGeometry'; + this.parameters = { + radius: radius, + tube: tube, + radialSegments: radialSegments, + tubularSegments: tubularSegments, + arc: arc + }; + radialSegments = Math.floor(radialSegments); + tubularSegments = Math.floor(tubularSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + const center = new Vector3(); + const vertex = new Vector3(); + const normal = new Vector3(); // generate vertices, normals and uvs + + for (let j = 0; j <= radialSegments; j++) { + for (let i = 0; i <= tubularSegments; i++) { + const u = i / tubularSegments * arc; + const v = j / radialSegments * Math.PI * 2; // vertex + + vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u); + vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u); + vertex.z = tube * Math.sin(v); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + center.x = radius * Math.cos(u); + center.y = radius * Math.sin(u); + normal.subVectors(vertex, center).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(i / tubularSegments); + uvs.push(j / radialSegments); + } + } // generate indices + + + for (let j = 1; j <= radialSegments; j++) { + for (let i = 1; i <= tubularSegments; i++) { + // indices + const a = (tubularSegments + 1) * j + i - 1; + const b = (tubularSegments + 1) * (j - 1) + i - 1; + const c = (tubularSegments + 1) * (j - 1) + i; + const d = (tubularSegments + 1) * j + i; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc); + } + +} + +class TorusKnotGeometry extends BufferGeometry { + constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) { + super(); + this.type = 'TorusKnotGeometry'; + this.parameters = { + radius: radius, + tube: tube, + tubularSegments: tubularSegments, + radialSegments: radialSegments, + p: p, + q: q + }; + tubularSegments = Math.floor(tubularSegments); + radialSegments = Math.floor(radialSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + const vertex = new Vector3(); + const normal = new Vector3(); + const P1 = new Vector3(); + const P2 = new Vector3(); + const B = new Vector3(); + const T = new Vector3(); + const N = new Vector3(); // generate vertices, normals and uvs + + for (let i = 0; i <= tubularSegments; ++i) { + // the radian "u" is used to calculate the position on the torus curve of the current tubular segement + const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. + // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions + + calculatePositionOnCurve(u, p, q, radius, P1); + calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis + + T.subVectors(P2, P1); + N.addVectors(P2, P1); + B.crossVectors(T, N); + N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it + + B.normalize(); + N.normalize(); + + for (let j = 0; j <= radialSegments; ++j) { + // now calculate the vertices. they are nothing more than an extrusion of the torus curve. + // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. + const v = j / radialSegments * Math.PI * 2; + const cx = -tube * Math.cos(v); + const cy = tube * Math.sin(v); // now calculate the final vertex position. + // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve + + vertex.x = P1.x + (cx * N.x + cy * B.x); + vertex.y = P1.y + (cx * N.y + cy * B.y); + vertex.z = P1.z + (cx * N.z + cy * B.z); + vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) + + normal.subVectors(vertex, P1).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(i / tubularSegments); + uvs.push(j / radialSegments); + } + } // generate indices + + + for (let j = 1; j <= tubularSegments; j++) { + for (let i = 1; i <= radialSegments; i++) { + // indices + const a = (radialSegments + 1) * (j - 1) + (i - 1); + const b = (radialSegments + 1) * j + (i - 1); + const c = (radialSegments + 1) * j + i; + const d = (radialSegments + 1) * (j - 1) + i; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve + + function calculatePositionOnCurve(u, p, q, radius, position) { + const cu = Math.cos(u); + const su = Math.sin(u); + const quOverP = q / p * u; + const cs = Math.cos(quOverP); + position.x = radius * (2 + cs) * 0.5 * cu; + position.y = radius * (2 + cs) * su * 0.5; + position.z = radius * Math.sin(quOverP) * 0.5; + } + } + + static fromJSON(data) { + return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q); + } + +} + +class TubeGeometry extends BufferGeometry { + constructor(path = new QuadraticBezierCurve3(new Vector3(-1, -1, 0), new Vector3(-1, 1, 0), new Vector3(1, 1, 0)), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) { + super(); + this.type = 'TubeGeometry'; + this.parameters = { + path: path, + tubularSegments: tubularSegments, + radius: radius, + radialSegments: radialSegments, + closed: closed + }; + const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals + + this.tangents = frames.tangents; + this.normals = frames.normals; + this.binormals = frames.binormals; // helper variables + + const vertex = new Vector3(); + const normal = new Vector3(); + const uv = new Vector2(); + let P = new Vector3(); // buffer + + const vertices = []; + const normals = []; + const uvs = []; + const indices = []; // create buffer data + + generateBufferData(); // build geometry + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions + + function generateBufferData() { + for (let i = 0; i < tubularSegments; i++) { + generateSegment(i); + } // if the geometry is not closed, generate the last row of vertices and normals + // at the regular position on the given path + // + // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) + + + generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function. + // this makes it easy compute correct values for closed geometries + + generateUVs(); // finally create faces + + generateIndices(); + } + + function generateSegment(i) { + // we use getPointAt to sample evenly distributed points from the given path + P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal + + const N = frames.normals[i]; + const B = frames.binormals[i]; // generate normals and vertices for the current segment + + for (let j = 0; j <= radialSegments; j++) { + const v = j / radialSegments * Math.PI * 2; + const sin = Math.sin(v); + const cos = -Math.cos(v); // normal + + normal.x = cos * N.x + sin * B.x; + normal.y = cos * N.y + sin * B.y; + normal.z = cos * N.z + sin * B.z; + normal.normalize(); + normals.push(normal.x, normal.y, normal.z); // vertex + + vertex.x = P.x + radius * normal.x; + vertex.y = P.y + radius * normal.y; + vertex.z = P.z + radius * normal.z; + vertices.push(vertex.x, vertex.y, vertex.z); + } + } + + function generateIndices() { + for (let j = 1; j <= tubularSegments; j++) { + for (let i = 1; i <= radialSegments; i++) { + const a = (radialSegments + 1) * (j - 1) + (i - 1); + const b = (radialSegments + 1) * j + (i - 1); + const c = (radialSegments + 1) * j + i; + const d = (radialSegments + 1) * (j - 1) + i; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } + } + + function generateUVs() { + for (let i = 0; i <= tubularSegments; i++) { + for (let j = 0; j <= radialSegments; j++) { + uv.x = i / tubularSegments; + uv.y = j / radialSegments; + uvs.push(uv.x, uv.y); + } + } + } + } + + toJSON() { + const data = super.toJSON(); + data.path = this.parameters.path.toJSON(); + return data; + } + + static fromJSON(data) { + // This only works for built-in curves (e.g. CatmullRomCurve3). + // User defined curves or instances of CurvePath will not be deserialized. + return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed); + } + +} + +class WireframeGeometry extends BufferGeometry { + constructor(geometry = null) { + super(); + this.type = 'WireframeGeometry'; + this.parameters = { + geometry: geometry + }; + + if (geometry !== null) { + // buffer + const vertices = []; + const edges = new Set(); // helper variables + + const start = new Vector3(); + const end = new Vector3(); + + if (geometry.index !== null) { + // indexed BufferGeometry + const position = geometry.attributes.position; + const indices = geometry.index; + let groups = geometry.groups; + + if (groups.length === 0) { + groups = [{ + start: 0, + count: indices.count, + materialIndex: 0 + }]; + } // create a data structure that contains all eges without duplicates + + + for (let o = 0, ol = groups.length; o < ol; ++o) { + const group = groups[o]; + const groupStart = group.start; + const groupCount = group.count; + + for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) { + for (let j = 0; j < 3; j++) { + const index1 = indices.getX(i + j); + const index2 = indices.getX(i + (j + 1) % 3); + start.fromBufferAttribute(position, index1); + end.fromBufferAttribute(position, index2); + + if (isUniqueEdge(start, end, edges) === true) { + vertices.push(start.x, start.y, start.z); + vertices.push(end.x, end.y, end.z); + } + } + } + } + } else { + // non-indexed BufferGeometry + const position = geometry.attributes.position; + + for (let i = 0, l = position.count / 3; i < l; i++) { + for (let j = 0; j < 3; j++) { + // three edges per triangle, an edge is represented as (index1, index2) + // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) + const index1 = 3 * i + j; + const index2 = 3 * i + (j + 1) % 3; + start.fromBufferAttribute(position, index1); + end.fromBufferAttribute(position, index2); + + if (isUniqueEdge(start, end, edges) === true) { + vertices.push(start.x, start.y, start.z); + vertices.push(end.x, end.y, end.z); + } + } + } + } // build geometry + + + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + } + } + +} + +function isUniqueEdge(start, end, edges) { + const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`; + const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge + + if (edges.has(hash1) === true || edges.has(hash2) === true) { + return false; + } else { + edges.add(hash1, hash2); + return true; + } +} + +var Geometries = /*#__PURE__*/Object.freeze({ + __proto__: null, + BoxGeometry: BoxGeometry, + BoxBufferGeometry: BoxGeometry, + CircleGeometry: CircleGeometry, + CircleBufferGeometry: CircleGeometry, + ConeGeometry: ConeGeometry, + ConeBufferGeometry: ConeGeometry, + CylinderGeometry: CylinderGeometry, + CylinderBufferGeometry: CylinderGeometry, + DodecahedronGeometry: DodecahedronGeometry, + DodecahedronBufferGeometry: DodecahedronGeometry, + EdgesGeometry: EdgesGeometry, + ExtrudeGeometry: ExtrudeGeometry, + ExtrudeBufferGeometry: ExtrudeGeometry, + IcosahedronGeometry: IcosahedronGeometry, + IcosahedronBufferGeometry: IcosahedronGeometry, + LatheGeometry: LatheGeometry, + LatheBufferGeometry: LatheGeometry, + OctahedronGeometry: OctahedronGeometry, + OctahedronBufferGeometry: OctahedronGeometry, + PlaneGeometry: PlaneGeometry, + PlaneBufferGeometry: PlaneGeometry, + PolyhedronGeometry: PolyhedronGeometry, + PolyhedronBufferGeometry: PolyhedronGeometry, + RingGeometry: RingGeometry, + RingBufferGeometry: RingGeometry, + ShapeGeometry: ShapeGeometry, + ShapeBufferGeometry: ShapeGeometry, + SphereGeometry: SphereGeometry, + SphereBufferGeometry: SphereGeometry, + TetrahedronGeometry: TetrahedronGeometry, + TetrahedronBufferGeometry: TetrahedronGeometry, + TorusGeometry: TorusGeometry, + TorusBufferGeometry: TorusGeometry, + TorusKnotGeometry: TorusKnotGeometry, + TorusKnotBufferGeometry: TorusKnotGeometry, + TubeGeometry: TubeGeometry, + TubeBufferGeometry: TubeGeometry, + WireframeGeometry: WireframeGeometry +}); + +/** + * parameters = { + * color: + * } + */ + +class ShadowMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'ShadowMaterial'; + this.color = new Color(0x000000); + this.transparent = true; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + return this; + } + +} + +ShadowMaterial.prototype.isShadowMaterial = true; + +/** + * parameters = { + * color: , + * roughness: , + * metalness: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * roughnessMap: new THREE.Texture( ), + * + * metalnessMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * envMapIntensity: + * + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * flatShading: + * } + */ + +class MeshStandardMaterial extends Material { + constructor(parameters) { + super(); + this.defines = { + 'STANDARD': '' + }; + this.type = 'MeshStandardMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.roughness = 1.0; + this.metalness = 0.0; + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.roughnessMap = null; + this.metalnessMap = null; + this.alphaMap = null; + this.envMap = null; + this.envMapIntensity = 1.0; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.defines = { + 'STANDARD': '' + }; + this.color.copy(source.color); + this.roughness = source.roughness; + this.metalness = source.metalness; + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.roughnessMap = source.roughnessMap; + this.metalnessMap = source.metalnessMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.envMapIntensity = source.envMapIntensity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + this.flatShading = source.flatShading; + return this; + } + +} + +MeshStandardMaterial.prototype.isMeshStandardMaterial = true; + +/** + * parameters = { + * clearcoat: , + * clearcoatMap: new THREE.Texture( ), + * clearcoatRoughness: , + * clearcoatRoughnessMap: new THREE.Texture( ), + * clearcoatNormalScale: , + * clearcoatNormalMap: new THREE.Texture( ), + * + * ior: , + * reflectivity: , + * + * sheen: , + * sheenColor: , + * sheenColorMap: new THREE.Texture( ), + * sheenRoughness: , + * sheenRoughnessMap: new THREE.Texture( ), + * + * transmission: , + * transmissionMap: new THREE.Texture( ), + * + * thickness: , + * thicknessMap: new THREE.Texture( ), + * attenuationDistance: , + * attenuationColor: , + * + * specularIntensity: , + * specularIntensityMap: new THREE.Texture( ), + * specularColor: , + * specularColorMap: new THREE.Texture( ) + * } + */ + +class MeshPhysicalMaterial extends MeshStandardMaterial { + constructor(parameters) { + super(); + this.defines = { + 'STANDARD': '', + 'PHYSICAL': '' + }; + this.type = 'MeshPhysicalMaterial'; + this.clearcoatMap = null; + this.clearcoatRoughness = 0.0; + this.clearcoatRoughnessMap = null; + this.clearcoatNormalScale = new Vector2(1, 1); + this.clearcoatNormalMap = null; + this.ior = 1.5; + Object.defineProperty(this, 'reflectivity', { + get: function () { + return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1); + }, + set: function (reflectivity) { + this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity); + } + }); + this.sheenColor = new Color(0x000000); + this.sheenColorMap = null; + this.sheenRoughness = 1.0; + this.sheenRoughnessMap = null; + this.transmissionMap = null; + this.thickness = 0; + this.thicknessMap = null; + this.attenuationDistance = 0.0; + this.attenuationColor = new Color(1, 1, 1); + this.specularIntensity = 1.0; + this.specularIntensityMap = null; + this.specularColor = new Color(1, 1, 1); + this.specularColorMap = null; + this._sheen = 0.0; + this._clearcoat = 0; + this._transmission = 0; + this.setValues(parameters); + } + + get sheen() { + return this._sheen; + } + + set sheen(value) { + if (this._sheen > 0 !== value > 0) { + this.version++; + } + + this._sheen = value; + } + + get clearcoat() { + return this._clearcoat; + } + + set clearcoat(value) { + if (this._clearcoat > 0 !== value > 0) { + this.version++; + } + + this._clearcoat = value; + } + + get transmission() { + return this._transmission; + } + + set transmission(value) { + if (this._transmission > 0 !== value > 0) { + this.version++; + } + + this._transmission = value; + } + + copy(source) { + super.copy(source); + this.defines = { + 'STANDARD': '', + 'PHYSICAL': '' + }; + this.clearcoat = source.clearcoat; + this.clearcoatMap = source.clearcoatMap; + this.clearcoatRoughness = source.clearcoatRoughness; + this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; + this.clearcoatNormalMap = source.clearcoatNormalMap; + this.clearcoatNormalScale.copy(source.clearcoatNormalScale); + this.ior = source.ior; + this.sheen = source.sheen; + this.sheenColor.copy(source.sheenColor); + this.sheenColorMap = source.sheenColorMap; + this.sheenRoughness = source.sheenRoughness; + this.sheenRoughnessMap = source.sheenRoughnessMap; + this.transmission = source.transmission; + this.transmissionMap = source.transmissionMap; + this.thickness = source.thickness; + this.thicknessMap = source.thicknessMap; + this.attenuationDistance = source.attenuationDistance; + this.attenuationColor.copy(source.attenuationColor); + this.specularIntensity = source.specularIntensity; + this.specularIntensityMap = source.specularIntensityMap; + this.specularColor.copy(source.specularColor); + this.specularColorMap = source.specularColorMap; + return this; + } + +} + +MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; + +/** + * parameters = { + * color: , + * specular: , + * shininess: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.MultiplyOperation, + * reflectivity: , + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * flatShading: + * } + */ + +class MeshPhongMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshPhongMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.specular = new Color(0x111111); + this.shininess = 30; + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.specularMap = null; + this.alphaMap = null; + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.specular.copy(source.specular); + this.shininess = source.shininess; + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.specularMap = source.specularMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + this.flatShading = source.flatShading; + return this; + } + +} + +MeshPhongMaterial.prototype.isMeshPhongMaterial = true; + +/** + * parameters = { + * color: , + * + * map: new THREE.Texture( ), + * gradientMap: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * alphaMap: new THREE.Texture( ), + * + * wireframe: , + * wireframeLinewidth: , + * + * } + */ + +class MeshToonMaterial extends Material { + constructor(parameters) { + super(); + this.defines = { + 'TOON': '' + }; + this.type = 'MeshToonMaterial'; + this.color = new Color(0xffffff); + this.map = null; + this.gradientMap = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.alphaMap = null; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.gradientMap = source.gradientMap; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.alphaMap = source.alphaMap; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + return this; + } + +} + +MeshToonMaterial.prototype.isMeshToonMaterial = true; + +/** + * parameters = { + * opacity: , + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * wireframe: , + * wireframeLinewidth: + * + * flatShading: + * } + */ + +class MeshNormalMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshNormalMaterial'; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.fog = false; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.flatShading = source.flatShading; + return this; + } + +} + +MeshNormalMaterial.prototype.isMeshNormalMaterial = true; + +/** + * parameters = { + * color: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.Multiply, + * reflectivity: , + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * } + */ + +class MeshLambertMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshLambertMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.specularMap = null; + this.alphaMap = null; + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.specularMap = source.specularMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + return this; + } + +} + +MeshLambertMaterial.prototype.isMeshLambertMaterial = true; + +/** + * parameters = { + * color: , + * opacity: , + * + * matcap: new THREE.Texture( ), + * + * map: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * alphaMap: new THREE.Texture( ), + * + * flatShading: + * } + */ + +class MeshMatcapMaterial extends Material { + constructor(parameters) { + super(); + this.defines = { + 'MATCAP': '' + }; + this.type = 'MeshMatcapMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.matcap = null; + this.map = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.alphaMap = null; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.defines = { + 'MATCAP': '' + }; + this.color.copy(source.color); + this.matcap = source.matcap; + this.map = source.map; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.alphaMap = source.alphaMap; + this.flatShading = source.flatShading; + return this; + } + +} + +MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true; + +/** + * parameters = { + * color: , + * opacity: , + * + * linewidth: , + * + * scale: , + * dashSize: , + * gapSize: + * } + */ + +class LineDashedMaterial extends LineBasicMaterial { + constructor(parameters) { + super(); + this.type = 'LineDashedMaterial'; + this.scale = 1; + this.dashSize = 3; + this.gapSize = 1; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.scale = source.scale; + this.dashSize = source.dashSize; + this.gapSize = source.gapSize; + return this; + } + +} + +LineDashedMaterial.prototype.isLineDashedMaterial = true; + +var Materials = /*#__PURE__*/Object.freeze({ + __proto__: null, + ShadowMaterial: ShadowMaterial, + SpriteMaterial: SpriteMaterial, + RawShaderMaterial: RawShaderMaterial, + ShaderMaterial: ShaderMaterial, + PointsMaterial: PointsMaterial, + MeshPhysicalMaterial: MeshPhysicalMaterial, + MeshStandardMaterial: MeshStandardMaterial, + MeshPhongMaterial: MeshPhongMaterial, + MeshToonMaterial: MeshToonMaterial, + MeshNormalMaterial: MeshNormalMaterial, + MeshLambertMaterial: MeshLambertMaterial, + MeshDepthMaterial: MeshDepthMaterial, + MeshDistanceMaterial: MeshDistanceMaterial, + MeshBasicMaterial: MeshBasicMaterial, + MeshMatcapMaterial: MeshMatcapMaterial, + LineDashedMaterial: LineDashedMaterial, + LineBasicMaterial: LineBasicMaterial, + Material: Material +}); + +const AnimationUtils = { + // same as Array.prototype.slice, but also works on typed arrays + arraySlice: function (array, from, to) { + if (AnimationUtils.isTypedArray(array)) { + // in ios9 array.subarray(from, undefined) will return empty array + // but array.subarray(from) or array.subarray(from, len) is correct + return new array.constructor(array.subarray(from, to !== undefined ? to : array.length)); + } + + return array.slice(from, to); + }, + // converts an array to a specific type + convertArray: function (array, type, forceClone) { + if (!array || // let 'undefined' and 'null' pass + !forceClone && array.constructor === type) return array; + + if (typeof type.BYTES_PER_ELEMENT === 'number') { + return new type(array); // create typed array + } + + return Array.prototype.slice.call(array); // create Array + }, + isTypedArray: function (object) { + return ArrayBuffer.isView(object) && !(object instanceof DataView); + }, + // returns an array by which times and values can be sorted + getKeyframeOrder: function (times) { + function compareTime(i, j) { + return times[i] - times[j]; + } + + const n = times.length; + const result = new Array(n); + + for (let i = 0; i !== n; ++i) result[i] = i; + + result.sort(compareTime); + return result; + }, + // uses the array previously returned by 'getKeyframeOrder' to sort data + sortedArray: function (values, stride, order) { + const nValues = values.length; + const result = new values.constructor(nValues); + + for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) { + const srcOffset = order[i] * stride; + + for (let j = 0; j !== stride; ++j) { + result[dstOffset++] = values[srcOffset + j]; + } + } + + return result; + }, + // function for parsing AOS keyframe formats + flattenJSON: function (jsonKeys, times, values, valuePropertyName) { + let i = 1, + key = jsonKeys[0]; + + while (key !== undefined && key[valuePropertyName] === undefined) { + key = jsonKeys[i++]; + } + + if (key === undefined) return; // no data + + let value = key[valuePropertyName]; + if (value === undefined) return; // no data + + if (Array.isArray(value)) { + do { + value = key[valuePropertyName]; + + if (value !== undefined) { + times.push(key.time); + values.push.apply(values, value); // push all elements + } + + key = jsonKeys[i++]; + } while (key !== undefined); + } else if (value.toArray !== undefined) { + // ...assume THREE.Math-ish + do { + value = key[valuePropertyName]; + + if (value !== undefined) { + times.push(key.time); + value.toArray(values, values.length); + } + + key = jsonKeys[i++]; + } while (key !== undefined); + } else { + // otherwise push as-is + do { + value = key[valuePropertyName]; + + if (value !== undefined) { + times.push(key.time); + values.push(value); + } + + key = jsonKeys[i++]; + } while (key !== undefined); + } + }, + subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) { + const clip = sourceClip.clone(); + clip.name = name; + const tracks = []; + + for (let i = 0; i < clip.tracks.length; ++i) { + const track = clip.tracks[i]; + const valueSize = track.getValueSize(); + const times = []; + const values = []; + + for (let j = 0; j < track.times.length; ++j) { + const frame = track.times[j] * fps; + if (frame < startFrame || frame >= endFrame) continue; + times.push(track.times[j]); + + for (let k = 0; k < valueSize; ++k) { + values.push(track.values[j * valueSize + k]); + } + } + + if (times.length === 0) continue; + track.times = AnimationUtils.convertArray(times, track.times.constructor); + track.values = AnimationUtils.convertArray(values, track.values.constructor); + tracks.push(track); + } + + clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip + + let minStartTime = Infinity; + + for (let i = 0; i < clip.tracks.length; ++i) { + if (minStartTime > clip.tracks[i].times[0]) { + minStartTime = clip.tracks[i].times[0]; + } + } // shift all tracks such that clip begins at t=0 + + + for (let i = 0; i < clip.tracks.length; ++i) { + clip.tracks[i].shift(-1 * minStartTime); + } + + clip.resetDuration(); + return clip; + }, + makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) { + if (fps <= 0) fps = 30; + const numTracks = referenceClip.tracks.length; + const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame + + for (let i = 0; i < numTracks; ++i) { + const referenceTrack = referenceClip.tracks[i]; + const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric + + if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track + + const targetTrack = targetClip.tracks.find(function (track) { + return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType; + }); + if (targetTrack === undefined) continue; + let referenceOffset = 0; + const referenceValueSize = referenceTrack.getValueSize(); + + if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { + referenceOffset = referenceValueSize / 3; + } + + let targetOffset = 0; + const targetValueSize = targetTrack.getValueSize(); + + if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { + targetOffset = targetValueSize / 3; + } + + const lastIndex = referenceTrack.times.length - 1; + let referenceValue; // Find the value to subtract out of the track + + if (referenceTime <= referenceTrack.times[0]) { + // Reference frame is earlier than the first keyframe, so just use the first keyframe + const startIndex = referenceOffset; + const endIndex = referenceValueSize - referenceOffset; + referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex); + } else if (referenceTime >= referenceTrack.times[lastIndex]) { + // Reference frame is after the last keyframe, so just use the last keyframe + const startIndex = lastIndex * referenceValueSize + referenceOffset; + const endIndex = startIndex + referenceValueSize - referenceOffset; + referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex); + } else { + // Interpolate to the reference value + const interpolant = referenceTrack.createInterpolant(); + const startIndex = referenceOffset; + const endIndex = referenceValueSize - referenceOffset; + interpolant.evaluate(referenceTime); + referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex); + } // Conjugate the quaternion + + + if (referenceTrackType === 'quaternion') { + const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate(); + referenceQuat.toArray(referenceValue); + } // Subtract the reference value from all of the track values + + + const numTimes = targetTrack.times.length; + + for (let j = 0; j < numTimes; ++j) { + const valueStart = j * targetValueSize + targetOffset; + + if (referenceTrackType === 'quaternion') { + // Multiply the conjugate for quaternion track types + Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart); + } else { + const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types + + for (let k = 0; k < valueEnd; ++k) { + targetTrack.values[valueStart + k] -= referenceValue[k]; + } + } + } + } + + targetClip.blendMode = AdditiveAnimationBlendMode; + return targetClip; + } +}; + +/** + * Abstract base class of interpolants over parametric samples. + * + * The parameter domain is one dimensional, typically the time or a path + * along a curve defined by the data. + * + * The sample values can have any dimensionality and derived classes may + * apply special interpretations to the data. + * + * This class provides the interval seek in a Template Method, deferring + * the actual interpolation to derived classes. + * + * Time complexity is O(1) for linear access crossing at most two points + * and O(log N) for random access, where N is the number of positions. + * + * References: + * + * http://www.oodesign.com/template-method-pattern.html + * + */ +class Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + this.parameterPositions = parameterPositions; + this._cachedIndex = 0; + this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize); + this.sampleValues = sampleValues; + this.valueSize = sampleSize; + this.settings = null; + this.DefaultSettings_ = {}; + } + + evaluate(t) { + const pp = this.parameterPositions; + let i1 = this._cachedIndex, + t1 = pp[i1], + t0 = pp[i1 - 1]; + + validate_interval: { + seek: { + let right; + + linear_scan: { + //- See http://jsperf.com/comparison-to-undefined/3 + //- slower code: + //- + //- if ( t >= t1 || t1 === undefined ) { + forward_scan: if (!(t < t1)) { + for (let giveUpAt = i1 + 2;;) { + if (t1 === undefined) { + if (t < t0) break forward_scan; // after end + + i1 = pp.length; + this._cachedIndex = i1; + return this.afterEnd_(i1 - 1, t, t0); + } + + if (i1 === giveUpAt) break; // this loop + + t0 = t1; + t1 = pp[++i1]; + + if (t < t1) { + // we have arrived at the sought interval + break seek; + } + } // prepare binary search on the right side of the index + + + right = pp.length; + break linear_scan; + } //- slower code: + //- if ( t < t0 || t0 === undefined ) { + + + if (!(t >= t0)) { + // looping? + const t1global = pp[1]; + + if (t < t1global) { + i1 = 2; // + 1, using the scan for the details + + t0 = t1global; + } // linear reverse scan + + + for (let giveUpAt = i1 - 2;;) { + if (t0 === undefined) { + // before start + this._cachedIndex = 0; + return this.beforeStart_(0, t, t1); + } + + if (i1 === giveUpAt) break; // this loop + + t1 = t0; + t0 = pp[--i1 - 1]; + + if (t >= t0) { + // we have arrived at the sought interval + break seek; + } + } // prepare binary search on the left side of the index + + + right = i1; + i1 = 0; + break linear_scan; + } // the interval is valid + + + break validate_interval; + } // linear scan + // binary search + + + while (i1 < right) { + const mid = i1 + right >>> 1; + + if (t < pp[mid]) { + right = mid; + } else { + i1 = mid + 1; + } + } + + t1 = pp[i1]; + t0 = pp[i1 - 1]; // check boundary cases, again + + if (t0 === undefined) { + this._cachedIndex = 0; + return this.beforeStart_(0, t, t1); + } + + if (t1 === undefined) { + i1 = pp.length; + this._cachedIndex = i1; + return this.afterEnd_(i1 - 1, t0, t); + } + } // seek + + + this._cachedIndex = i1; + this.intervalChanged_(i1, t0, t1); + } // validate_interval + + + return this.interpolate_(i1, t0, t, t1); + } + + getSettings_() { + return this.settings || this.DefaultSettings_; + } + + copySampleValue_(index) { + // copies a sample value to the result buffer + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + offset = index * stride; + + for (let i = 0; i !== stride; ++i) { + result[i] = values[offset + i]; + } + + return result; + } // Template methods for derived classes: + + + interpolate_() { + throw new Error('call to abstract method'); // implementations shall return this.resultBuffer + } + + intervalChanged_() {// empty + } + +} // ALIAS DEFINITIONS + + +Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_; +Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_; + +/** + * Fast and simple cubic spline interpolant. + * + * It was derived from a Hermitian construction setting the first derivative + * at each sample position to the linear slope between neighboring positions + * over their parameter interval. + */ + +class CubicInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + this._weightPrev = -0; + this._offsetPrev = -0; + this._weightNext = -0; + this._offsetNext = -0; + this.DefaultSettings_ = { + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + }; + } + + intervalChanged_(i1, t0, t1) { + const pp = this.parameterPositions; + let iPrev = i1 - 2, + iNext = i1 + 1, + tPrev = pp[iPrev], + tNext = pp[iNext]; + + if (tPrev === undefined) { + switch (this.getSettings_().endingStart) { + case ZeroSlopeEnding: + // f'(t0) = 0 + iPrev = i1; + tPrev = 2 * t0 - t1; + break; + + case WrapAroundEnding: + // use the other end of the curve + iPrev = pp.length - 2; + tPrev = t0 + pp[iPrev] - pp[iPrev + 1]; + break; + + default: + // ZeroCurvatureEnding + // f''(t0) = 0 a.k.a. Natural Spline + iPrev = i1; + tPrev = t1; + } + } + + if (tNext === undefined) { + switch (this.getSettings_().endingEnd) { + case ZeroSlopeEnding: + // f'(tN) = 0 + iNext = i1; + tNext = 2 * t1 - t0; + break; + + case WrapAroundEnding: + // use the other end of the curve + iNext = 1; + tNext = t1 + pp[1] - pp[0]; + break; + + default: + // ZeroCurvatureEnding + // f''(tN) = 0, a.k.a. Natural Spline + iNext = i1 - 1; + tNext = t0; + } + } + + const halfDt = (t1 - t0) * 0.5, + stride = this.valueSize; + this._weightPrev = halfDt / (t0 - tPrev); + this._weightNext = halfDt / (tNext - t1); + this._offsetPrev = iPrev * stride; + this._offsetNext = iNext * stride; + } + + interpolate_(i1, t0, t, t1) { + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + o1 = i1 * stride, + o0 = o1 - stride, + oP = this._offsetPrev, + oN = this._offsetNext, + wP = this._weightPrev, + wN = this._weightNext, + p = (t - t0) / (t1 - t0), + pp = p * p, + ppp = pp * p; // evaluate polynomials + + const sP = -wP * ppp + 2 * wP * pp - wP * p; + const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1; + const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p; + const sN = wN * ppp - wN * pp; // combine data linearly + + for (let i = 0; i !== stride; ++i) { + result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i]; + } + + return result; + } + +} + +class LinearInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + } + + interpolate_(i1, t0, t, t1) { + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + offset1 = i1 * stride, + offset0 = offset1 - stride, + weight1 = (t - t0) / (t1 - t0), + weight0 = 1 - weight1; + + for (let i = 0; i !== stride; ++i) { + result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1; + } + + return result; + } + +} + +/** + * + * Interpolant that evaluates to the sample value at the position preceeding + * the parameter. + */ + +class DiscreteInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + } + + interpolate_(i1 + /*, t0, t, t1 */ + ) { + return this.copySampleValue_(i1 - 1); + } + +} + +class KeyframeTrack { + constructor(name, times, values, interpolation) { + if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined'); + if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name); + this.name = name; + this.times = AnimationUtils.convertArray(times, this.TimeBufferType); + this.values = AnimationUtils.convertArray(values, this.ValueBufferType); + this.setInterpolation(interpolation || this.DefaultInterpolation); + } // Serialization (in static context, because of constructor invocation + // and automatic invocation of .toJSON): + + + static toJSON(track) { + const trackType = track.constructor; + let json; // derived classes can define a static toJSON method + + if (trackType.toJSON !== this.toJSON) { + json = trackType.toJSON(track); + } else { + // by default, we assume the data can be serialized as-is + json = { + 'name': track.name, + 'times': AnimationUtils.convertArray(track.times, Array), + 'values': AnimationUtils.convertArray(track.values, Array) + }; + const interpolation = track.getInterpolation(); + + if (interpolation !== track.DefaultInterpolation) { + json.interpolation = interpolation; + } + } + + json.type = track.ValueTypeName; // mandatory + + return json; + } + + InterpolantFactoryMethodDiscrete(result) { + return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result); + } + + InterpolantFactoryMethodLinear(result) { + return new LinearInterpolant(this.times, this.values, this.getValueSize(), result); + } + + InterpolantFactoryMethodSmooth(result) { + return new CubicInterpolant(this.times, this.values, this.getValueSize(), result); + } + + setInterpolation(interpolation) { + let factoryMethod; + + switch (interpolation) { + case InterpolateDiscrete: + factoryMethod = this.InterpolantFactoryMethodDiscrete; + break; + + case InterpolateLinear: + factoryMethod = this.InterpolantFactoryMethodLinear; + break; + + case InterpolateSmooth: + factoryMethod = this.InterpolantFactoryMethodSmooth; + break; + } + + if (factoryMethod === undefined) { + const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name; + + if (this.createInterpolant === undefined) { + // fall back to default, unless the default itself is messed up + if (interpolation !== this.DefaultInterpolation) { + this.setInterpolation(this.DefaultInterpolation); + } else { + throw new Error(message); // fatal, in this case + } + } + + console.warn('THREE.KeyframeTrack:', message); + return this; + } + + this.createInterpolant = factoryMethod; + return this; + } + + getInterpolation() { + switch (this.createInterpolant) { + case this.InterpolantFactoryMethodDiscrete: + return InterpolateDiscrete; + + case this.InterpolantFactoryMethodLinear: + return InterpolateLinear; + + case this.InterpolantFactoryMethodSmooth: + return InterpolateSmooth; + } + } + + getValueSize() { + return this.values.length / this.times.length; + } // move all keyframes either forwards or backwards in time + + + shift(timeOffset) { + if (timeOffset !== 0.0) { + const times = this.times; + + for (let i = 0, n = times.length; i !== n; ++i) { + times[i] += timeOffset; + } + } + + return this; + } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) + + + scale(timeScale) { + if (timeScale !== 1.0) { + const times = this.times; + + for (let i = 0, n = times.length; i !== n; ++i) { + times[i] *= timeScale; + } + } + + return this; + } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. + // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values + + + trim(startTime, endTime) { + const times = this.times, + nKeys = times.length; + let from = 0, + to = nKeys - 1; + + while (from !== nKeys && times[from] < startTime) { + ++from; + } + + while (to !== -1 && times[to] > endTime) { + --to; + } + + ++to; // inclusive -> exclusive bound + + if (from !== 0 || to !== nKeys) { + // empty tracks are forbidden, so keep at least one keyframe + if (from >= to) { + to = Math.max(to, 1); + from = to - 1; + } + + const stride = this.getValueSize(); + this.times = AnimationUtils.arraySlice(times, from, to); + this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride); + } + + return this; + } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable + + + validate() { + let valid = true; + const valueSize = this.getValueSize(); + + if (valueSize - Math.floor(valueSize) !== 0) { + console.error('THREE.KeyframeTrack: Invalid value size in track.', this); + valid = false; + } + + const times = this.times, + values = this.values, + nKeys = times.length; + + if (nKeys === 0) { + console.error('THREE.KeyframeTrack: Track is empty.', this); + valid = false; + } + + let prevTime = null; + + for (let i = 0; i !== nKeys; i++) { + const currTime = times[i]; + + if (typeof currTime === 'number' && isNaN(currTime)) { + console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime); + valid = false; + break; + } + + if (prevTime !== null && prevTime > currTime) { + console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime); + valid = false; + break; + } + + prevTime = currTime; + } + + if (values !== undefined) { + if (AnimationUtils.isTypedArray(values)) { + for (let i = 0, n = values.length; i !== n; ++i) { + const value = values[i]; + + if (isNaN(value)) { + console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value); + valid = false; + break; + } + } + } + } + + return valid; + } // removes equivalent sequential keys as common in morph target sequences + // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) + + + optimize() { + // times or values may be shared with other tracks, so overwriting is unsafe + const times = AnimationUtils.arraySlice(this.times), + values = AnimationUtils.arraySlice(this.values), + stride = this.getValueSize(), + smoothInterpolation = this.getInterpolation() === InterpolateSmooth, + lastIndex = times.length - 1; + let writeIndex = 1; + + for (let i = 1; i < lastIndex; ++i) { + let keep = false; + const time = times[i]; + const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time + + if (time !== timeNext && (i !== 1 || time !== times[0])) { + if (!smoothInterpolation) { + // remove unnecessary keyframes same as their neighbors + const offset = i * stride, + offsetP = offset - stride, + offsetN = offset + stride; + + for (let j = 0; j !== stride; ++j) { + const value = values[offset + j]; + + if (value !== values[offsetP + j] || value !== values[offsetN + j]) { + keep = true; + break; + } + } + } else { + keep = true; + } + } // in-place compaction + + + if (keep) { + if (i !== writeIndex) { + times[writeIndex] = times[i]; + const readOffset = i * stride, + writeOffset = writeIndex * stride; + + for (let j = 0; j !== stride; ++j) { + values[writeOffset + j] = values[readOffset + j]; + } + } + + ++writeIndex; + } + } // flush last keyframe (compaction looks ahead) + + + if (lastIndex > 0) { + times[writeIndex] = times[lastIndex]; + + for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) { + values[writeOffset + j] = values[readOffset + j]; + } + + ++writeIndex; + } + + if (writeIndex !== times.length) { + this.times = AnimationUtils.arraySlice(times, 0, writeIndex); + this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride); + } else { + this.times = times; + this.values = values; + } + + return this; + } + + clone() { + const times = AnimationUtils.arraySlice(this.times, 0); + const values = AnimationUtils.arraySlice(this.values, 0); + const TypedKeyframeTrack = this.constructor; + const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly. + + track.createInterpolant = this.createInterpolant; + return track; + } + +} + +KeyframeTrack.prototype.TimeBufferType = Float32Array; +KeyframeTrack.prototype.ValueBufferType = Float32Array; +KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; + +/** + * A Track of Boolean keyframe values. + */ + +class BooleanKeyframeTrack extends KeyframeTrack {} + +BooleanKeyframeTrack.prototype.ValueTypeName = 'bool'; +BooleanKeyframeTrack.prototype.ValueBufferType = Array; +BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; +BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; +BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed + +/** + * A Track of keyframe values that represent color. + */ + +class ColorKeyframeTrack extends KeyframeTrack {} + +ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited + +/** + * A Track of numeric keyframe values. + */ + +class NumberKeyframeTrack extends KeyframeTrack {} + +NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited + +/** + * Spherical linear unit quaternion interpolant. + */ + +class QuaternionLinearInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + } + + interpolate_(i1, t0, t, t1) { + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + alpha = (t - t0) / (t1 - t0); + let offset = i1 * stride; + + for (let end = offset + stride; offset !== end; offset += 4) { + Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha); + } + + return result; + } + +} + +/** + * A Track of quaternion keyframe values. + */ + +class QuaternionKeyframeTrack extends KeyframeTrack { + InterpolantFactoryMethodLinear(result) { + return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result); + } + +} + +QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited + +QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; +QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; + +/** + * A Track that interpolates Strings + */ + +class StringKeyframeTrack extends KeyframeTrack {} + +StringKeyframeTrack.prototype.ValueTypeName = 'string'; +StringKeyframeTrack.prototype.ValueBufferType = Array; +StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; +StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; +StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; + +/** + * A Track of vectored keyframe values. + */ + +class VectorKeyframeTrack extends KeyframeTrack {} + +VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited + +class AnimationClip { + constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) { + this.name = name; + this.tracks = tracks; + this.duration = duration; + this.blendMode = blendMode; + this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks + + if (this.duration < 0) { + this.resetDuration(); + } + } + + static parse(json) { + const tracks = [], + jsonTracks = json.tracks, + frameTime = 1.0 / (json.fps || 1.0); + + for (let i = 0, n = jsonTracks.length; i !== n; ++i) { + tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime)); + } + + const clip = new this(json.name, json.duration, tracks, json.blendMode); + clip.uuid = json.uuid; + return clip; + } + + static toJSON(clip) { + const tracks = [], + clipTracks = clip.tracks; + const json = { + 'name': clip.name, + 'duration': clip.duration, + 'tracks': tracks, + 'uuid': clip.uuid, + 'blendMode': clip.blendMode + }; + + for (let i = 0, n = clipTracks.length; i !== n; ++i) { + tracks.push(KeyframeTrack.toJSON(clipTracks[i])); + } + + return json; + } + + static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) { + const numMorphTargets = morphTargetSequence.length; + const tracks = []; + + for (let i = 0; i < numMorphTargets; i++) { + let times = []; + let values = []; + times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets); + values.push(0, 1, 0); + const order = AnimationUtils.getKeyframeOrder(times); + times = AnimationUtils.sortedArray(times, 1, order); + values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the + // last frame as well for perfect loop. + + if (!noLoop && times[0] === 0) { + times.push(numMorphTargets); + values.push(values[0]); + } + + tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps)); + } + + return new this(name, -1, tracks); + } + + static findByName(objectOrClipArray, name) { + let clipArray = objectOrClipArray; + + if (!Array.isArray(objectOrClipArray)) { + const o = objectOrClipArray; + clipArray = o.geometry && o.geometry.animations || o.animations; + } + + for (let i = 0; i < clipArray.length; i++) { + if (clipArray[i].name === name) { + return clipArray[i]; + } + } + + return null; + } + + static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) { + const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences + // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 + + const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based + // patterns like Walk_001, Walk_002, Run_001, Run_002 + + for (let i = 0, il = morphTargets.length; i < il; i++) { + const morphTarget = morphTargets[i]; + const parts = morphTarget.name.match(pattern); + + if (parts && parts.length > 1) { + const name = parts[1]; + let animationMorphTargets = animationToMorphTargets[name]; + + if (!animationMorphTargets) { + animationToMorphTargets[name] = animationMorphTargets = []; + } + + animationMorphTargets.push(morphTarget); + } + } + + const clips = []; + + for (const name in animationToMorphTargets) { + clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop)); + } + + return clips; + } // parse the animation.hierarchy format + + + static parseAnimation(animation, bones) { + if (!animation) { + console.error('THREE.AnimationClip: No animation in JSONLoader data.'); + return null; + } + + const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) { + // only return track if there are actually keys. + if (animationKeys.length !== 0) { + const times = []; + const values = []; + AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again + + if (times.length !== 0) { + destTracks.push(new trackType(trackName, times, values)); + } + } + }; + + const tracks = []; + const clipName = animation.name || 'default'; + const fps = animation.fps || 30; + const blendMode = animation.blendMode; // automatic length determination in AnimationClip. + + let duration = animation.length || -1; + const hierarchyTracks = animation.hierarchy || []; + + for (let h = 0; h < hierarchyTracks.length; h++) { + const animationKeys = hierarchyTracks[h].keys; // skip empty tracks + + if (!animationKeys || animationKeys.length === 0) continue; // process morph targets + + if (animationKeys[0].morphTargets) { + // figure out all morph targets used in this track + const morphTargetNames = {}; + let k; + + for (k = 0; k < animationKeys.length; k++) { + if (animationKeys[k].morphTargets) { + for (let m = 0; m < animationKeys[k].morphTargets.length; m++) { + morphTargetNames[animationKeys[k].morphTargets[m]] = -1; + } + } + } // create a track for each morph target with all zero + // morphTargetInfluences except for the keys in which + // the morphTarget is named. + + + for (const morphTargetName in morphTargetNames) { + const times = []; + const values = []; + + for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) { + const animationKey = animationKeys[k]; + times.push(animationKey.time); + values.push(animationKey.morphTarget === morphTargetName ? 1 : 0); + } + + tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values)); + } + + duration = morphTargetNames.length * (fps || 1.0); + } else { + // ...assume skeletal animation + const boneName = '.bones[' + bones[h].name + ']'; + addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks); + addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks); + addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks); + } + } + + if (tracks.length === 0) { + return null; + } + + const clip = new this(clipName, duration, tracks, blendMode); + return clip; + } + + resetDuration() { + const tracks = this.tracks; + let duration = 0; + + for (let i = 0, n = tracks.length; i !== n; ++i) { + const track = this.tracks[i]; + duration = Math.max(duration, track.times[track.times.length - 1]); + } + + this.duration = duration; + return this; + } + + trim() { + for (let i = 0; i < this.tracks.length; i++) { + this.tracks[i].trim(0, this.duration); + } + + return this; + } + + validate() { + let valid = true; + + for (let i = 0; i < this.tracks.length; i++) { + valid = valid && this.tracks[i].validate(); + } + + return valid; + } + + optimize() { + for (let i = 0; i < this.tracks.length; i++) { + this.tracks[i].optimize(); + } + + return this; + } + + clone() { + const tracks = []; + + for (let i = 0; i < this.tracks.length; i++) { + tracks.push(this.tracks[i].clone()); + } + + return new this.constructor(this.name, this.duration, tracks, this.blendMode); + } + + toJSON() { + return this.constructor.toJSON(this); + } + +} + +function getTrackTypeForValueTypeName(typeName) { + switch (typeName.toLowerCase()) { + case 'scalar': + case 'double': + case 'float': + case 'number': + case 'integer': + return NumberKeyframeTrack; + + case 'vector': + case 'vector2': + case 'vector3': + case 'vector4': + return VectorKeyframeTrack; + + case 'color': + return ColorKeyframeTrack; + + case 'quaternion': + return QuaternionKeyframeTrack; + + case 'bool': + case 'boolean': + return BooleanKeyframeTrack; + + case 'string': + return StringKeyframeTrack; + } + + throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName); +} + +function parseKeyframeTrack(json) { + if (json.type === undefined) { + throw new Error('THREE.KeyframeTrack: track type undefined, can not parse'); + } + + const trackType = getTrackTypeForValueTypeName(json.type); + + if (json.times === undefined) { + const times = [], + values = []; + AnimationUtils.flattenJSON(json.keys, times, values, 'value'); + json.times = times; + json.values = values; + } // derived classes can define a static parse method + + + if (trackType.parse !== undefined) { + return trackType.parse(json); + } else { + // by default, we assume a constructor compatible with the base + return new trackType(json.name, json.times, json.values, json.interpolation); + } +} + +const Cache = { + enabled: false, + files: {}, + add: function (key, file) { + if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key ); + + this.files[key] = file; + }, + get: function (key) { + if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key ); + + return this.files[key]; + }, + remove: function (key) { + delete this.files[key]; + }, + clear: function () { + this.files = {}; + } +}; + +class LoadingManager { + constructor(onLoad, onProgress, onError) { + const scope = this; + let isLoading = false; + let itemsLoaded = 0; + let itemsTotal = 0; + let urlModifier = undefined; + const handlers = []; // Refer to #5689 for the reason why we don't set .onStart + // in the constructor + + this.onStart = undefined; + this.onLoad = onLoad; + this.onProgress = onProgress; + this.onError = onError; + + this.itemStart = function (url) { + itemsTotal++; + + if (isLoading === false) { + if (scope.onStart !== undefined) { + scope.onStart(url, itemsLoaded, itemsTotal); + } + } + + isLoading = true; + }; + + this.itemEnd = function (url) { + itemsLoaded++; + + if (scope.onProgress !== undefined) { + scope.onProgress(url, itemsLoaded, itemsTotal); + } + + if (itemsLoaded === itemsTotal) { + isLoading = false; + + if (scope.onLoad !== undefined) { + scope.onLoad(); + } + } + }; + + this.itemError = function (url) { + if (scope.onError !== undefined) { + scope.onError(url); + } + }; + + this.resolveURL = function (url) { + if (urlModifier) { + return urlModifier(url); + } + + return url; + }; + + this.setURLModifier = function (transform) { + urlModifier = transform; + return this; + }; + + this.addHandler = function (regex, loader) { + handlers.push(regex, loader); + return this; + }; + + this.removeHandler = function (regex) { + const index = handlers.indexOf(regex); + + if (index !== -1) { + handlers.splice(index, 2); + } + + return this; + }; + + this.getHandler = function (file) { + for (let i = 0, l = handlers.length; i < l; i += 2) { + const regex = handlers[i]; + const loader = handlers[i + 1]; + if (regex.global) regex.lastIndex = 0; // see #17920 + + if (regex.test(file)) { + return loader; + } + } + + return null; + }; + } + +} + +const DefaultLoadingManager = new LoadingManager(); + +class Loader { + constructor(manager) { + this.manager = manager !== undefined ? manager : DefaultLoadingManager; + this.crossOrigin = 'anonymous'; + this.withCredentials = false; + this.path = ''; + this.resourcePath = ''; + this.requestHeader = {}; + } + + load() {} + + loadAsync(url, onProgress) { + const scope = this; + return new Promise(function (resolve, reject) { + scope.load(url, resolve, onProgress, reject); + }); + } + + parse() {} + + setCrossOrigin(crossOrigin) { + this.crossOrigin = crossOrigin; + return this; + } + + setWithCredentials(value) { + this.withCredentials = value; + return this; + } + + setPath(path) { + this.path = path; + return this; + } + + setResourcePath(resourcePath) { + this.resourcePath = resourcePath; + return this; + } + + setRequestHeader(requestHeader) { + this.requestHeader = requestHeader; + return this; + } + +} + +const loading = {}; + +class FileLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + if (url === undefined) url = ''; + if (this.path !== undefined) url = this.path + url; + url = this.manager.resolveURL(url); + const cached = Cache.get(url); + + if (cached !== undefined) { + this.manager.itemStart(url); + setTimeout(() => { + if (onLoad) onLoad(cached); + this.manager.itemEnd(url); + }, 0); + return cached; + } // Check if request is duplicate + + + if (loading[url] !== undefined) { + loading[url].push({ + onLoad: onLoad, + onProgress: onProgress, + onError: onError + }); + return; + } // Initialise array for duplicate requests + + + loading[url] = []; + loading[url].push({ + onLoad: onLoad, + onProgress: onProgress, + onError: onError + }); // create request + + const req = new Request(url, { + headers: new Headers(this.requestHeader), + credentials: this.withCredentials ? 'include' : 'same-origin' // An abort controller could be added within a future PR + + }); // start the fetch + + fetch(req).then(response => { + if (response.status === 200 || response.status === 0) { + // Some browsers return HTTP Status 0 when using non-http protocol + // e.g. 'file://' or 'data://'. Handle as success. + if (response.status === 0) { + console.warn('THREE.FileLoader: HTTP Status 0 received.'); + } + + if (typeof ReadableStream === 'undefined' || response.body.getReader === undefined) { + return response; + } + + const callbacks = loading[url]; + const reader = response.body.getReader(); + const contentLength = response.headers.get('Content-Length'); + const total = contentLength ? parseInt(contentLength) : 0; + const lengthComputable = total !== 0; + let loaded = 0; // periodically read data into the new stream tracking while download progress + + const stream = new ReadableStream({ + start(controller) { + readData(); + + function readData() { + reader.read().then(({ + done, + value + }) => { + if (done) { + controller.close(); + } else { + loaded += value.byteLength; + const event = new ProgressEvent('progress', { + lengthComputable, + loaded, + total + }); + + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onProgress) callback.onProgress(event); + } + + controller.enqueue(value); + readData(); + } + }); + } + } + + }); + return new Response(stream); + } else { + throw Error(`fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`); + } + }).then(response => { + switch (this.responseType) { + case 'arraybuffer': + return response.arrayBuffer(); + + case 'blob': + return response.blob(); + + case 'document': + return response.text().then(text => { + const parser = new DOMParser(); + return parser.parseFromString(text, this.mimeType); + }); + + case 'json': + return response.json(); + + default: + return response.text(); + } + }).then(data => { + // Add to cache only on HTTP success, so that we do not cache + // error response bodies as proper responses to requests. + Cache.add(url, data); + const callbacks = loading[url]; + delete loading[url]; + + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onLoad) callback.onLoad(data); + } + }).catch(err => { + // Abort errors and other errors are handled the same + const callbacks = loading[url]; + + if (callbacks === undefined) { + // When onLoad was called and url was deleted in `loading` + this.manager.itemError(url); + throw err; + } + + delete loading[url]; + + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onError) callback.onError(err); + } + + this.manager.itemError(url); + }).finally(() => { + this.manager.itemEnd(url); + }); + this.manager.itemStart(url); + } + + setResponseType(value) { + this.responseType = value; + return this; + } + + setMimeType(value) { + this.mimeType = value; + return this; + } + +} + +class AnimationLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + loader.load(url, function (text) { + try { + onLoad(scope.parse(JSON.parse(text))); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + + parse(json) { + const animations = []; + + for (let i = 0; i < json.length; i++) { + const clip = AnimationClip.parse(json[i]); + animations.push(clip); + } + + return animations; + } + +} + +/** + * Abstract Base class to block based textures loader (dds, pvr, ...) + * + * Sub classes have to implement the parse() method which will be used in load(). + */ + +class CompressedTextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const images = []; + const texture = new CompressedTexture(); + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setResponseType('arraybuffer'); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(scope.withCredentials); + let loaded = 0; + + function loadTexture(i) { + loader.load(url[i], function (buffer) { + const texDatas = scope.parse(buffer, true); + images[i] = { + width: texDatas.width, + height: texDatas.height, + format: texDatas.format, + mipmaps: texDatas.mipmaps + }; + loaded += 1; + + if (loaded === 6) { + if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter; + texture.image = images; + texture.format = texDatas.format; + texture.needsUpdate = true; + if (onLoad) onLoad(texture); + } + }, onProgress, onError); + } + + if (Array.isArray(url)) { + for (let i = 0, il = url.length; i < il; ++i) { + loadTexture(i); + } + } else { + // compressed cubemap texture stored in a single DDS file + loader.load(url, function (buffer) { + const texDatas = scope.parse(buffer, true); + + if (texDatas.isCubemap) { + const faces = texDatas.mipmaps.length / texDatas.mipmapCount; + + for (let f = 0; f < faces; f++) { + images[f] = { + mipmaps: [] + }; + + for (let i = 0; i < texDatas.mipmapCount; i++) { + images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]); + images[f].format = texDatas.format; + images[f].width = texDatas.width; + images[f].height = texDatas.height; + } + } + + texture.image = images; + } else { + texture.image.width = texDatas.width; + texture.image.height = texDatas.height; + texture.mipmaps = texDatas.mipmaps; + } + + if (texDatas.mipmapCount === 1) { + texture.minFilter = LinearFilter; + } + + texture.format = texDatas.format; + texture.needsUpdate = true; + if (onLoad) onLoad(texture); + }, onProgress, onError); + } + + return texture; + } + +} + +class ImageLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + if (this.path !== undefined) url = this.path + url; + url = this.manager.resolveURL(url); + const scope = this; + const cached = Cache.get(url); + + if (cached !== undefined) { + scope.manager.itemStart(url); + setTimeout(function () { + if (onLoad) onLoad(cached); + scope.manager.itemEnd(url); + }, 0); + return cached; + } + + const image = createElementNS('img'); + + function onImageLoad() { + removeEventListeners(); + Cache.add(url, this); + if (onLoad) onLoad(this); + scope.manager.itemEnd(url); + } + + function onImageError(event) { + removeEventListeners(); + if (onError) onError(event); + scope.manager.itemError(url); + scope.manager.itemEnd(url); + } + + function removeEventListeners() { + image.removeEventListener('load', onImageLoad, false); + image.removeEventListener('error', onImageError, false); + } + + image.addEventListener('load', onImageLoad, false); + image.addEventListener('error', onImageError, false); + + if (url.substr(0, 5) !== 'data:') { + if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin; + } + + scope.manager.itemStart(url); + image.src = url; + return image; + } + +} + +class CubeTextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(urls, onLoad, onProgress, onError) { + const texture = new CubeTexture(); + const loader = new ImageLoader(this.manager); + loader.setCrossOrigin(this.crossOrigin); + loader.setPath(this.path); + let loaded = 0; + + function loadTexture(i) { + loader.load(urls[i], function (image) { + texture.images[i] = image; + loaded++; + + if (loaded === 6) { + texture.needsUpdate = true; + if (onLoad) onLoad(texture); + } + }, undefined, onError); + } + + for (let i = 0; i < urls.length; ++i) { + loadTexture(i); + } + + return texture; + } + +} + +/** + * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) + * + * Sub classes have to implement the parse() method which will be used in load(). + */ + +class DataTextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const texture = new DataTexture(); + const loader = new FileLoader(this.manager); + loader.setResponseType('arraybuffer'); + loader.setRequestHeader(this.requestHeader); + loader.setPath(this.path); + loader.setWithCredentials(scope.withCredentials); + loader.load(url, function (buffer) { + const texData = scope.parse(buffer); + if (!texData) return; + + if (texData.image !== undefined) { + texture.image = texData.image; + } else if (texData.data !== undefined) { + texture.image.width = texData.width; + texture.image.height = texData.height; + texture.image.data = texData.data; + } + + texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; + texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; + texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; + texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; + texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; + + if (texData.encoding !== undefined) { + texture.encoding = texData.encoding; + } + + if (texData.flipY !== undefined) { + texture.flipY = texData.flipY; + } + + if (texData.format !== undefined) { + texture.format = texData.format; + } + + if (texData.type !== undefined) { + texture.type = texData.type; + } + + if (texData.mipmaps !== undefined) { + texture.mipmaps = texData.mipmaps; + texture.minFilter = LinearMipmapLinearFilter; // presumably... + } + + if (texData.mipmapCount === 1) { + texture.minFilter = LinearFilter; + } + + if (texData.generateMipmaps !== undefined) { + texture.generateMipmaps = texData.generateMipmaps; + } + + texture.needsUpdate = true; + if (onLoad) onLoad(texture, texData); + }, onProgress, onError); + return texture; + } + +} + +class TextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const texture = new Texture(); + const loader = new ImageLoader(this.manager); + loader.setCrossOrigin(this.crossOrigin); + loader.setPath(this.path); + loader.load(url, function (image) { + texture.image = image; + texture.needsUpdate = true; + + if (onLoad !== undefined) { + onLoad(texture); + } + }, onProgress, onError); + return texture; + } + +} + +class Light extends Object3D { + constructor(color, intensity = 1) { + super(); + this.type = 'Light'; + this.color = new Color(color); + this.intensity = intensity; + } + + dispose() {// Empty here in base class; some subclasses override. + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.intensity = source.intensity; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.color = this.color.getHex(); + data.object.intensity = this.intensity; + if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex(); + if (this.distance !== undefined) data.object.distance = this.distance; + if (this.angle !== undefined) data.object.angle = this.angle; + if (this.decay !== undefined) data.object.decay = this.decay; + if (this.penumbra !== undefined) data.object.penumbra = this.penumbra; + if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON(); + return data; + } + +} + +Light.prototype.isLight = true; + +class HemisphereLight extends Light { + constructor(skyColor, groundColor, intensity) { + super(skyColor, intensity); + this.type = 'HemisphereLight'; + this.position.copy(Object3D.DefaultUp); + this.updateMatrix(); + this.groundColor = new Color(groundColor); + } + + copy(source) { + Light.prototype.copy.call(this, source); + this.groundColor.copy(source.groundColor); + return this; + } + +} + +HemisphereLight.prototype.isHemisphereLight = true; + +const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4(); + +const _lightPositionWorld$1 = /*@__PURE__*/new Vector3(); + +const _lookTarget$1 = /*@__PURE__*/new Vector3(); + +class LightShadow { + constructor(camera) { + this.camera = camera; + this.bias = 0; + this.normalBias = 0; + this.radius = 1; + this.blurSamples = 8; + this.mapSize = new Vector2(512, 512); + this.map = null; + this.mapPass = null; + this.matrix = new Matrix4(); + this.autoUpdate = true; + this.needsUpdate = false; + this._frustum = new Frustum(); + this._frameExtents = new Vector2(1, 1); + this._viewportCount = 1; + this._viewports = [new Vector4(0, 0, 1, 1)]; + } + + getViewportCount() { + return this._viewportCount; + } + + getFrustum() { + return this._frustum; + } + + updateMatrices(light) { + const shadowCamera = this.camera; + const shadowMatrix = this.matrix; + + _lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld); + + shadowCamera.position.copy(_lightPositionWorld$1); + + _lookTarget$1.setFromMatrixPosition(light.target.matrixWorld); + + shadowCamera.lookAt(_lookTarget$1); + shadowCamera.updateMatrixWorld(); + + _projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse); + + this._frustum.setFromProjectionMatrix(_projScreenMatrix$1); + + shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0); + shadowMatrix.multiply(shadowCamera.projectionMatrix); + shadowMatrix.multiply(shadowCamera.matrixWorldInverse); + } + + getViewport(viewportIndex) { + return this._viewports[viewportIndex]; + } + + getFrameExtents() { + return this._frameExtents; + } + + dispose() { + if (this.map) { + this.map.dispose(); + } + + if (this.mapPass) { + this.mapPass.dispose(); + } + } + + copy(source) { + this.camera = source.camera.clone(); + this.bias = source.bias; + this.radius = source.radius; + this.mapSize.copy(source.mapSize); + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + toJSON() { + const object = {}; + if (this.bias !== 0) object.bias = this.bias; + if (this.normalBias !== 0) object.normalBias = this.normalBias; + if (this.radius !== 1) object.radius = this.radius; + if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray(); + object.camera = this.camera.toJSON(false).object; + delete object.camera.matrix; + return object; + } + +} + +class SpotLightShadow extends LightShadow { + constructor() { + super(new PerspectiveCamera(50, 1, 0.5, 500)); + this.focus = 1; + } + + updateMatrices(light) { + const camera = this.camera; + const fov = RAD2DEG * 2 * light.angle * this.focus; + const aspect = this.mapSize.width / this.mapSize.height; + const far = light.distance || camera.far; + + if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) { + camera.fov = fov; + camera.aspect = aspect; + camera.far = far; + camera.updateProjectionMatrix(); + } + + super.updateMatrices(light); + } + + copy(source) { + super.copy(source); + this.focus = source.focus; + return this; + } + +} + +SpotLightShadow.prototype.isSpotLightShadow = true; + +class SpotLight extends Light { + constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) { + super(color, intensity); + this.type = 'SpotLight'; + this.position.copy(Object3D.DefaultUp); + this.updateMatrix(); + this.target = new Object3D(); + this.distance = distance; + this.angle = angle; + this.penumbra = penumbra; + this.decay = decay; // for physically correct lights, should be 2. + + this.shadow = new SpotLightShadow(); + } + + get power() { + // compute the light's luminous power (in lumens) from its intensity (in candela) + // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd) + return this.intensity * Math.PI; + } + + set power(power) { + // set the light's intensity (in candela) from the desired luminous power (in lumens) + this.intensity = power / Math.PI; + } + + dispose() { + this.shadow.dispose(); + } + + copy(source) { + super.copy(source); + this.distance = source.distance; + this.angle = source.angle; + this.penumbra = source.penumbra; + this.decay = source.decay; + this.target = source.target.clone(); + this.shadow = source.shadow.clone(); + return this; + } + +} + +SpotLight.prototype.isSpotLight = true; + +const _projScreenMatrix = /*@__PURE__*/new Matrix4(); + +const _lightPositionWorld = /*@__PURE__*/new Vector3(); + +const _lookTarget = /*@__PURE__*/new Vector3(); + +class PointLightShadow extends LightShadow { + constructor() { + super(new PerspectiveCamera(90, 1, 0.5, 500)); + this._frameExtents = new Vector2(4, 2); + this._viewportCount = 6; + this._viewports = [// These viewports map a cube-map onto a 2D texture with the + // following orientation: + // + // xzXZ + // y Y + // + // X - Positive x direction + // x - Negative x direction + // Y - Positive y direction + // y - Negative y direction + // Z - Positive z direction + // z - Negative z direction + // positive X + new Vector4(2, 1, 1, 1), // negative X + new Vector4(0, 1, 1, 1), // positive Z + new Vector4(3, 1, 1, 1), // negative Z + new Vector4(1, 1, 1, 1), // positive Y + new Vector4(3, 0, 1, 1), // negative Y + new Vector4(1, 0, 1, 1)]; + this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)]; + this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)]; + } + + updateMatrices(light, viewportIndex = 0) { + const camera = this.camera; + const shadowMatrix = this.matrix; + const far = light.distance || camera.far; + + if (far !== camera.far) { + camera.far = far; + camera.updateProjectionMatrix(); + } + + _lightPositionWorld.setFromMatrixPosition(light.matrixWorld); + + camera.position.copy(_lightPositionWorld); + + _lookTarget.copy(camera.position); + + _lookTarget.add(this._cubeDirections[viewportIndex]); + + camera.up.copy(this._cubeUps[viewportIndex]); + camera.lookAt(_lookTarget); + camera.updateMatrixWorld(); + shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z); + + _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); + + this._frustum.setFromProjectionMatrix(_projScreenMatrix); + } + +} + +PointLightShadow.prototype.isPointLightShadow = true; + +class PointLight extends Light { + constructor(color, intensity, distance = 0, decay = 1) { + super(color, intensity); + this.type = 'PointLight'; + this.distance = distance; + this.decay = decay; // for physically correct lights, should be 2. + + this.shadow = new PointLightShadow(); + } + + get power() { + // compute the light's luminous power (in lumens) from its intensity (in candela) + // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd) + return this.intensity * 4 * Math.PI; + } + + set power(power) { + // set the light's intensity (in candela) from the desired luminous power (in lumens) + this.intensity = power / (4 * Math.PI); + } + + dispose() { + this.shadow.dispose(); + } + + copy(source) { + super.copy(source); + this.distance = source.distance; + this.decay = source.decay; + this.shadow = source.shadow.clone(); + return this; + } + +} + +PointLight.prototype.isPointLight = true; + +class DirectionalLightShadow extends LightShadow { + constructor() { + super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500)); + } + +} + +DirectionalLightShadow.prototype.isDirectionalLightShadow = true; + +class DirectionalLight extends Light { + constructor(color, intensity) { + super(color, intensity); + this.type = 'DirectionalLight'; + this.position.copy(Object3D.DefaultUp); + this.updateMatrix(); + this.target = new Object3D(); + this.shadow = new DirectionalLightShadow(); + } + + dispose() { + this.shadow.dispose(); + } + + copy(source) { + super.copy(source); + this.target = source.target.clone(); + this.shadow = source.shadow.clone(); + return this; + } + +} + +DirectionalLight.prototype.isDirectionalLight = true; + +class AmbientLight extends Light { + constructor(color, intensity) { + super(color, intensity); + this.type = 'AmbientLight'; + } + +} + +AmbientLight.prototype.isAmbientLight = true; + +class RectAreaLight extends Light { + constructor(color, intensity, width = 10, height = 10) { + super(color, intensity); + this.type = 'RectAreaLight'; + this.width = width; + this.height = height; + } + + get power() { + // compute the light's luminous power (in lumens) from its intensity (in nits) + return this.intensity * this.width * this.height * Math.PI; + } + + set power(power) { + // set the light's intensity (in nits) from the desired luminous power (in lumens) + this.intensity = power / (this.width * this.height * Math.PI); + } + + copy(source) { + super.copy(source); + this.width = source.width; + this.height = source.height; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.width = this.width; + data.object.height = this.height; + return data; + } + +} + +RectAreaLight.prototype.isRectAreaLight = true; + +/** + * Primary reference: + * https://graphics.stanford.edu/papers/envmap/envmap.pdf + * + * Secondary reference: + * https://www.ppsloan.org/publications/StupidSH36.pdf + */ +// 3-band SH defined by 9 coefficients + +class SphericalHarmonics3 { + constructor() { + this.coefficients = []; + + for (let i = 0; i < 9; i++) { + this.coefficients.push(new Vector3()); + } + } + + set(coefficients) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].copy(coefficients[i]); + } + + return this; + } + + zero() { + for (let i = 0; i < 9; i++) { + this.coefficients[i].set(0, 0, 0); + } + + return this; + } // get the radiance in the direction of the normal + // target is a Vector3 + + + getAt(normal, target) { + // normal is assumed to be unit length + const x = normal.x, + y = normal.y, + z = normal.z; + const coeff = this.coefficients; // band 0 + + target.copy(coeff[0]).multiplyScalar(0.282095); // band 1 + + target.addScaledVector(coeff[1], 0.488603 * y); + target.addScaledVector(coeff[2], 0.488603 * z); + target.addScaledVector(coeff[3], 0.488603 * x); // band 2 + + target.addScaledVector(coeff[4], 1.092548 * (x * y)); + target.addScaledVector(coeff[5], 1.092548 * (y * z)); + target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0)); + target.addScaledVector(coeff[7], 1.092548 * (x * z)); + target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y)); + return target; + } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal + // target is a Vector3 + // https://graphics.stanford.edu/papers/envmap/envmap.pdf + + + getIrradianceAt(normal, target) { + // normal is assumed to be unit length + const x = normal.x, + y = normal.y, + z = normal.z; + const coeff = this.coefficients; // band 0 + + target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095 + // band 1 + + target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603 + + target.addScaledVector(coeff[2], 2.0 * 0.511664 * z); + target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2 + + target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548 + + target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z); + target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3 + + target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z); + target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274 + + return target; + } + + add(sh) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].add(sh.coefficients[i]); + } + + return this; + } + + addScaledSH(sh, s) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].addScaledVector(sh.coefficients[i], s); + } + + return this; + } + + scale(s) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].multiplyScalar(s); + } + + return this; + } + + lerp(sh, alpha) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].lerp(sh.coefficients[i], alpha); + } + + return this; + } + + equals(sh) { + for (let i = 0; i < 9; i++) { + if (!this.coefficients[i].equals(sh.coefficients[i])) { + return false; + } + } + + return true; + } + + copy(sh) { + return this.set(sh.coefficients); + } + + clone() { + return new this.constructor().copy(this); + } + + fromArray(array, offset = 0) { + const coefficients = this.coefficients; + + for (let i = 0; i < 9; i++) { + coefficients[i].fromArray(array, offset + i * 3); + } + + return this; + } + + toArray(array = [], offset = 0) { + const coefficients = this.coefficients; + + for (let i = 0; i < 9; i++) { + coefficients[i].toArray(array, offset + i * 3); + } + + return array; + } // evaluate the basis functions + // shBasis is an Array[ 9 ] + + + static getBasisAt(normal, shBasis) { + // normal is assumed to be unit length + const x = normal.x, + y = normal.y, + z = normal.z; // band 0 + + shBasis[0] = 0.282095; // band 1 + + shBasis[1] = 0.488603 * y; + shBasis[2] = 0.488603 * z; + shBasis[3] = 0.488603 * x; // band 2 + + shBasis[4] = 1.092548 * x * y; + shBasis[5] = 1.092548 * y * z; + shBasis[6] = 0.315392 * (3 * z * z - 1); + shBasis[7] = 1.092548 * x * z; + shBasis[8] = 0.546274 * (x * x - y * y); + } + +} + +SphericalHarmonics3.prototype.isSphericalHarmonics3 = true; + +class LightProbe extends Light { + constructor(sh = new SphericalHarmonics3(), intensity = 1) { + super(undefined, intensity); + this.sh = sh; + } + + copy(source) { + super.copy(source); + this.sh.copy(source.sh); + return this; + } + + fromJSON(json) { + this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); + + this.sh.fromArray(json.sh); + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.sh = this.sh.toArray(); + return data; + } + +} + +LightProbe.prototype.isLightProbe = true; + +class MaterialLoader extends Loader { + constructor(manager) { + super(manager); + this.textures = {}; + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(scope.manager); + loader.setPath(scope.path); + loader.setRequestHeader(scope.requestHeader); + loader.setWithCredentials(scope.withCredentials); + loader.load(url, function (text) { + try { + onLoad(scope.parse(JSON.parse(text))); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + + parse(json) { + const textures = this.textures; + + function getTexture(name) { + if (textures[name] === undefined) { + console.warn('THREE.MaterialLoader: Undefined texture', name); + } + + return textures[name]; + } + + const material = new Materials[json.type](); + if (json.uuid !== undefined) material.uuid = json.uuid; + if (json.name !== undefined) material.name = json.name; + if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color); + if (json.roughness !== undefined) material.roughness = json.roughness; + if (json.metalness !== undefined) material.metalness = json.metalness; + if (json.sheen !== undefined) material.sheen = json.sheen; + if (json.sheenColor !== undefined) material.sheenColor = new Color().setHex(json.sheenColor); + if (json.sheenRoughness !== undefined) material.sheenRoughness = json.sheenRoughness; + if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive); + if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular); + if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity; + if (json.specularColor !== undefined && material.specularColor !== undefined) material.specularColor.setHex(json.specularColor); + if (json.shininess !== undefined) material.shininess = json.shininess; + if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat; + if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness; + if (json.transmission !== undefined) material.transmission = json.transmission; + if (json.thickness !== undefined) material.thickness = json.thickness; + if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance; + if (json.attenuationColor !== undefined && material.attenuationColor !== undefined) material.attenuationColor.setHex(json.attenuationColor); + if (json.fog !== undefined) material.fog = json.fog; + if (json.flatShading !== undefined) material.flatShading = json.flatShading; + if (json.blending !== undefined) material.blending = json.blending; + if (json.combine !== undefined) material.combine = json.combine; + if (json.side !== undefined) material.side = json.side; + if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide; + if (json.opacity !== undefined) material.opacity = json.opacity; + if (json.format !== undefined) material.format = json.format; + if (json.transparent !== undefined) material.transparent = json.transparent; + if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest; + if (json.depthTest !== undefined) material.depthTest = json.depthTest; + if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite; + if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite; + if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite; + if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask; + if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc; + if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef; + if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask; + if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail; + if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail; + if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass; + if (json.wireframe !== undefined) material.wireframe = json.wireframe; + if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth; + if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap; + if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin; + if (json.rotation !== undefined) material.rotation = json.rotation; + if (json.linewidth !== 1) material.linewidth = json.linewidth; + if (json.dashSize !== undefined) material.dashSize = json.dashSize; + if (json.gapSize !== undefined) material.gapSize = json.gapSize; + if (json.scale !== undefined) material.scale = json.scale; + if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset; + if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor; + if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits; + if (json.dithering !== undefined) material.dithering = json.dithering; + if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage; + if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha; + if (json.visible !== undefined) material.visible = json.visible; + if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped; + if (json.userData !== undefined) material.userData = json.userData; + + if (json.vertexColors !== undefined) { + if (typeof json.vertexColors === 'number') { + material.vertexColors = json.vertexColors > 0 ? true : false; + } else { + material.vertexColors = json.vertexColors; + } + } // Shader Material + + + if (json.uniforms !== undefined) { + for (const name in json.uniforms) { + const uniform = json.uniforms[name]; + material.uniforms[name] = {}; + + switch (uniform.type) { + case 't': + material.uniforms[name].value = getTexture(uniform.value); + break; + + case 'c': + material.uniforms[name].value = new Color().setHex(uniform.value); + break; + + case 'v2': + material.uniforms[name].value = new Vector2().fromArray(uniform.value); + break; + + case 'v3': + material.uniforms[name].value = new Vector3().fromArray(uniform.value); + break; + + case 'v4': + material.uniforms[name].value = new Vector4().fromArray(uniform.value); + break; + + case 'm3': + material.uniforms[name].value = new Matrix3().fromArray(uniform.value); + break; + + case 'm4': + material.uniforms[name].value = new Matrix4().fromArray(uniform.value); + break; + + default: + material.uniforms[name].value = uniform.value; + } + } + } + + if (json.defines !== undefined) material.defines = json.defines; + if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader; + if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader; + + if (json.extensions !== undefined) { + for (const key in json.extensions) { + material.extensions[key] = json.extensions[key]; + } + } // Deprecated + + + if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading + // for PointsMaterial + + if (json.size !== undefined) material.size = json.size; + if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps + + if (json.map !== undefined) material.map = getTexture(json.map); + if (json.matcap !== undefined) material.matcap = getTexture(json.matcap); + if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap); + if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap); + if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale; + if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap); + if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType; + + if (json.normalScale !== undefined) { + let normalScale = json.normalScale; + + if (Array.isArray(normalScale) === false) { + // Blender exporter used to export a scalar. See #7459 + normalScale = [normalScale, normalScale]; + } + + material.normalScale = new Vector2().fromArray(normalScale); + } + + if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap); + if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale; + if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias; + if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap); + if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap); + if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap); + if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity; + if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap); + if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap); + if (json.specularColorMap !== undefined) material.specularColorMap = getTexture(json.specularColorMap); + if (json.envMap !== undefined) material.envMap = getTexture(json.envMap); + if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity; + if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity; + if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio; + if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap); + if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity; + if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap); + if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity; + if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap); + if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap); + if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap); + if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap); + if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale); + if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap); + if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap); + if (json.sheenColorMap !== undefined) material.sheenColorMap = getTexture(json.sheenColorMap); + if (json.sheenRoughnessMap !== undefined) material.sheenRoughnessMap = getTexture(json.sheenRoughnessMap); + return material; + } + + setTextures(value) { + this.textures = value; + return this; + } + +} + +class LoaderUtils { + static decodeText(array) { + if (typeof TextDecoder !== 'undefined') { + return new TextDecoder().decode(array); + } // Avoid the String.fromCharCode.apply(null, array) shortcut, which + // throws a "maximum call stack size exceeded" error for large arrays. + + + let s = ''; + + for (let i = 0, il = array.length; i < il; i++) { + // Implicitly assumes little-endian. + s += String.fromCharCode(array[i]); + } + + try { + // merges multi-byte utf-8 characters. + return decodeURIComponent(escape(s)); + } catch (e) { + // see #16358 + return s; + } + } + + static extractUrlBase(url) { + const index = url.lastIndexOf('/'); + if (index === -1) return './'; + return url.substr(0, index + 1); + } + + static resolveURL(url, path) { + // Invalid URL + if (typeof url !== 'string' || url === '') return ''; // Host Relative URL + + if (/^https?:\/\//i.test(path) && /^\//.test(url)) { + path = path.replace(/(^https?:\/\/[^\/]+).*/i, '$1'); + } // Absolute URL http://,https://,// + + + if (/^(https?:)?\/\//i.test(url)) return url; // Data URI + + if (/^data:.*,.*$/i.test(url)) return url; // Blob URL + + if (/^blob:.*$/i.test(url)) return url; // Relative URL + + return path + url; + } + +} + +class InstancedBufferGeometry extends BufferGeometry { + constructor() { + super(); + this.type = 'InstancedBufferGeometry'; + this.instanceCount = Infinity; + } + + copy(source) { + super.copy(source); + this.instanceCount = source.instanceCount; + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + toJSON() { + const data = super.toJSON(this); + data.instanceCount = this.instanceCount; + data.isInstancedBufferGeometry = true; + return data; + } + +} + +InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true; + +class BufferGeometryLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(scope.manager); + loader.setPath(scope.path); + loader.setRequestHeader(scope.requestHeader); + loader.setWithCredentials(scope.withCredentials); + loader.load(url, function (text) { + try { + onLoad(scope.parse(JSON.parse(text))); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + + parse(json) { + const interleavedBufferMap = {}; + const arrayBufferMap = {}; + + function getInterleavedBuffer(json, uuid) { + if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid]; + const interleavedBuffers = json.interleavedBuffers; + const interleavedBuffer = interleavedBuffers[uuid]; + const buffer = getArrayBuffer(json, interleavedBuffer.buffer); + const array = getTypedArray(interleavedBuffer.type, buffer); + const ib = new InterleavedBuffer(array, interleavedBuffer.stride); + ib.uuid = interleavedBuffer.uuid; + interleavedBufferMap[uuid] = ib; + return ib; + } + + function getArrayBuffer(json, uuid) { + if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid]; + const arrayBuffers = json.arrayBuffers; + const arrayBuffer = arrayBuffers[uuid]; + const ab = new Uint32Array(arrayBuffer).buffer; + arrayBufferMap[uuid] = ab; + return ab; + } + + const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); + const index = json.data.index; + + if (index !== undefined) { + const typedArray = getTypedArray(index.type, index.array); + geometry.setIndex(new BufferAttribute(typedArray, 1)); + } + + const attributes = json.data.attributes; + + for (const key in attributes) { + const attribute = attributes[key]; + let bufferAttribute; + + if (attribute.isInterleavedBufferAttribute) { + const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); + bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); + } else { + const typedArray = getTypedArray(attribute.type, attribute.array); + const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; + bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized); + } + + if (attribute.name !== undefined) bufferAttribute.name = attribute.name; + if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage); + + if (attribute.updateRange !== undefined) { + bufferAttribute.updateRange.offset = attribute.updateRange.offset; + bufferAttribute.updateRange.count = attribute.updateRange.count; + } + + geometry.setAttribute(key, bufferAttribute); + } + + const morphAttributes = json.data.morphAttributes; + + if (morphAttributes) { + for (const key in morphAttributes) { + const attributeArray = morphAttributes[key]; + const array = []; + + for (let i = 0, il = attributeArray.length; i < il; i++) { + const attribute = attributeArray[i]; + let bufferAttribute; + + if (attribute.isInterleavedBufferAttribute) { + const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); + bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); + } else { + const typedArray = getTypedArray(attribute.type, attribute.array); + bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized); + } + + if (attribute.name !== undefined) bufferAttribute.name = attribute.name; + array.push(bufferAttribute); + } + + geometry.morphAttributes[key] = array; + } + } + + const morphTargetsRelative = json.data.morphTargetsRelative; + + if (morphTargetsRelative) { + geometry.morphTargetsRelative = true; + } + + const groups = json.data.groups || json.data.drawcalls || json.data.offsets; + + if (groups !== undefined) { + for (let i = 0, n = groups.length; i !== n; ++i) { + const group = groups[i]; + geometry.addGroup(group.start, group.count, group.materialIndex); + } + } + + const boundingSphere = json.data.boundingSphere; + + if (boundingSphere !== undefined) { + const center = new Vector3(); + + if (boundingSphere.center !== undefined) { + center.fromArray(boundingSphere.center); + } + + geometry.boundingSphere = new Sphere(center, boundingSphere.radius); + } + + if (json.name) geometry.name = json.name; + if (json.userData) geometry.userData = json.userData; + return geometry; + } + +} + +class ObjectLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path; + this.resourcePath = this.resourcePath || path; + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + loader.load(url, function (text) { + let json = null; + + try { + json = JSON.parse(text); + } catch (error) { + if (onError !== undefined) onError(error); + console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message); + return; + } + + const metadata = json.metadata; + + if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') { + console.error('THREE.ObjectLoader: Can\'t load ' + url); + return; + } + + scope.parse(json, onLoad); + }, onProgress, onError); + } + + async loadAsync(url, onProgress) { + const scope = this; + const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path; + this.resourcePath = this.resourcePath || path; + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + const text = await loader.loadAsync(url, onProgress); + const json = JSON.parse(text); + const metadata = json.metadata; + + if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') { + throw new Error('THREE.ObjectLoader: Can\'t load ' + url); + } + + return await scope.parseAsync(json); + } + + parse(json, onLoad) { + const animations = this.parseAnimations(json.animations); + const shapes = this.parseShapes(json.shapes); + const geometries = this.parseGeometries(json.geometries, shapes); + const images = this.parseImages(json.images, function () { + if (onLoad !== undefined) onLoad(object); + }); + const textures = this.parseTextures(json.textures, images); + const materials = this.parseMaterials(json.materials, textures); + const object = this.parseObject(json.object, geometries, materials, textures, animations); + const skeletons = this.parseSkeletons(json.skeletons, object); + this.bindSkeletons(object, skeletons); // + + if (onLoad !== undefined) { + let hasImages = false; + + for (const uuid in images) { + if (images[uuid] instanceof HTMLImageElement) { + hasImages = true; + break; + } + } + + if (hasImages === false) onLoad(object); + } + + return object; + } + + async parseAsync(json) { + const animations = this.parseAnimations(json.animations); + const shapes = this.parseShapes(json.shapes); + const geometries = this.parseGeometries(json.geometries, shapes); + const images = await this.parseImagesAsync(json.images); + const textures = this.parseTextures(json.textures, images); + const materials = this.parseMaterials(json.materials, textures); + const object = this.parseObject(json.object, geometries, materials, textures, animations); + const skeletons = this.parseSkeletons(json.skeletons, object); + this.bindSkeletons(object, skeletons); + return object; + } + + parseShapes(json) { + const shapes = {}; + + if (json !== undefined) { + for (let i = 0, l = json.length; i < l; i++) { + const shape = new Shape().fromJSON(json[i]); + shapes[shape.uuid] = shape; + } + } + + return shapes; + } + + parseSkeletons(json, object) { + const skeletons = {}; + const bones = {}; // generate bone lookup table + + object.traverse(function (child) { + if (child.isBone) bones[child.uuid] = child; + }); // create skeletons + + if (json !== undefined) { + for (let i = 0, l = json.length; i < l; i++) { + const skeleton = new Skeleton().fromJSON(json[i], bones); + skeletons[skeleton.uuid] = skeleton; + } + } + + return skeletons; + } + + parseGeometries(json, shapes) { + const geometries = {}; + + if (json !== undefined) { + const bufferGeometryLoader = new BufferGeometryLoader(); + + for (let i = 0, l = json.length; i < l; i++) { + let geometry; + const data = json[i]; + + switch (data.type) { + case 'BufferGeometry': + case 'InstancedBufferGeometry': + geometry = bufferGeometryLoader.parse(data); + break; + + case 'Geometry': + console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.'); + break; + + default: + if (data.type in Geometries) { + geometry = Geometries[data.type].fromJSON(data, shapes); + } else { + console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`); + } + + } + + geometry.uuid = data.uuid; + if (data.name !== undefined) geometry.name = data.name; + if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData; + geometries[data.uuid] = geometry; + } + } + + return geometries; + } + + parseMaterials(json, textures) { + const cache = {}; // MultiMaterial + + const materials = {}; + + if (json !== undefined) { + const loader = new MaterialLoader(); + loader.setTextures(textures); + + for (let i = 0, l = json.length; i < l; i++) { + const data = json[i]; + + if (data.type === 'MultiMaterial') { + // Deprecated + const array = []; + + for (let j = 0; j < data.materials.length; j++) { + const material = data.materials[j]; + + if (cache[material.uuid] === undefined) { + cache[material.uuid] = loader.parse(material); + } + + array.push(cache[material.uuid]); + } + + materials[data.uuid] = array; + } else { + if (cache[data.uuid] === undefined) { + cache[data.uuid] = loader.parse(data); + } + + materials[data.uuid] = cache[data.uuid]; + } + } + } + + return materials; + } + + parseAnimations(json) { + const animations = {}; + + if (json !== undefined) { + for (let i = 0; i < json.length; i++) { + const data = json[i]; + const clip = AnimationClip.parse(data); + animations[clip.uuid] = clip; + } + } + + return animations; + } + + parseImages(json, onLoad) { + const scope = this; + const images = {}; + let loader; + + function loadImage(url) { + scope.manager.itemStart(url); + return loader.load(url, function () { + scope.manager.itemEnd(url); + }, undefined, function () { + scope.manager.itemError(url); + scope.manager.itemEnd(url); + }); + } + + function deserializeImage(image) { + if (typeof image === 'string') { + const url = image; + const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url; + return loadImage(path); + } else { + if (image.data) { + return { + data: getTypedArray(image.type, image.data), + width: image.width, + height: image.height + }; + } else { + return null; + } + } + } + + if (json !== undefined && json.length > 0) { + const manager = new LoadingManager(onLoad); + loader = new ImageLoader(manager); + loader.setCrossOrigin(this.crossOrigin); + + for (let i = 0, il = json.length; i < il; i++) { + const image = json[i]; + const url = image.url; + + if (Array.isArray(url)) { + // load array of images e.g CubeTexture + images[image.uuid] = []; + + for (let j = 0, jl = url.length; j < jl; j++) { + const currentUrl = url[j]; + const deserializedImage = deserializeImage(currentUrl); + + if (deserializedImage !== null) { + if (deserializedImage instanceof HTMLImageElement) { + images[image.uuid].push(deserializedImage); + } else { + // special case: handle array of data textures for cube textures + images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)); + } + } + } + } else { + // load single image + const deserializedImage = deserializeImage(image.url); + + if (deserializedImage !== null) { + images[image.uuid] = deserializedImage; + } + } + } + } + + return images; + } + + async parseImagesAsync(json) { + const scope = this; + const images = {}; + let loader; + + async function deserializeImage(image) { + if (typeof image === 'string') { + const url = image; + const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url; + return await loader.loadAsync(path); + } else { + if (image.data) { + return { + data: getTypedArray(image.type, image.data), + width: image.width, + height: image.height + }; + } else { + return null; + } + } + } + + if (json !== undefined && json.length > 0) { + loader = new ImageLoader(this.manager); + loader.setCrossOrigin(this.crossOrigin); + + for (let i = 0, il = json.length; i < il; i++) { + const image = json[i]; + const url = image.url; + + if (Array.isArray(url)) { + // load array of images e.g CubeTexture + images[image.uuid] = []; + + for (let j = 0, jl = url.length; j < jl; j++) { + const currentUrl = url[j]; + const deserializedImage = await deserializeImage(currentUrl); + + if (deserializedImage !== null) { + if (deserializedImage instanceof HTMLImageElement) { + images[image.uuid].push(deserializedImage); + } else { + // special case: handle array of data textures for cube textures + images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)); + } + } + } + } else { + // load single image + const deserializedImage = await deserializeImage(image.url); + + if (deserializedImage !== null) { + images[image.uuid] = deserializedImage; + } + } + } + } + + return images; + } + + parseTextures(json, images) { + function parseConstant(value, type) { + if (typeof value === 'number') return value; + console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value); + return type[value]; + } + + const textures = {}; + + if (json !== undefined) { + for (let i = 0, l = json.length; i < l; i++) { + const data = json[i]; + + if (data.image === undefined) { + console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid); + } + + if (images[data.image] === undefined) { + console.warn('THREE.ObjectLoader: Undefined image', data.image); + } + + let texture; + const image = images[data.image]; + + if (Array.isArray(image)) { + texture = new CubeTexture(image); + if (image.length === 6) texture.needsUpdate = true; + } else { + if (image && image.data) { + texture = new DataTexture(image.data, image.width, image.height); + } else { + texture = new Texture(image); + } + + if (image) texture.needsUpdate = true; // textures can have undefined image data + } + + texture.uuid = data.uuid; + if (data.name !== undefined) texture.name = data.name; + if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING); + if (data.offset !== undefined) texture.offset.fromArray(data.offset); + if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat); + if (data.center !== undefined) texture.center.fromArray(data.center); + if (data.rotation !== undefined) texture.rotation = data.rotation; + + if (data.wrap !== undefined) { + texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING); + texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING); + } + + if (data.format !== undefined) texture.format = data.format; + if (data.type !== undefined) texture.type = data.type; + if (data.encoding !== undefined) texture.encoding = data.encoding; + if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER); + if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER); + if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy; + if (data.flipY !== undefined) texture.flipY = data.flipY; + if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha; + if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment; + if (data.userData !== undefined) texture.userData = data.userData; + textures[data.uuid] = texture; + } + } + + return textures; + } + + parseObject(data, geometries, materials, textures, animations) { + let object; + + function getGeometry(name) { + if (geometries[name] === undefined) { + console.warn('THREE.ObjectLoader: Undefined geometry', name); + } + + return geometries[name]; + } + + function getMaterial(name) { + if (name === undefined) return undefined; + + if (Array.isArray(name)) { + const array = []; + + for (let i = 0, l = name.length; i < l; i++) { + const uuid = name[i]; + + if (materials[uuid] === undefined) { + console.warn('THREE.ObjectLoader: Undefined material', uuid); + } + + array.push(materials[uuid]); + } + + return array; + } + + if (materials[name] === undefined) { + console.warn('THREE.ObjectLoader: Undefined material', name); + } + + return materials[name]; + } + + function getTexture(uuid) { + if (textures[uuid] === undefined) { + console.warn('THREE.ObjectLoader: Undefined texture', uuid); + } + + return textures[uuid]; + } + + let geometry, material; + + switch (data.type) { + case 'Scene': + object = new Scene(); + + if (data.background !== undefined) { + if (Number.isInteger(data.background)) { + object.background = new Color(data.background); + } else { + object.background = getTexture(data.background); + } + } + + if (data.environment !== undefined) { + object.environment = getTexture(data.environment); + } + + if (data.fog !== undefined) { + if (data.fog.type === 'Fog') { + object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far); + } else if (data.fog.type === 'FogExp2') { + object.fog = new FogExp2(data.fog.color, data.fog.density); + } + } + + break; + + case 'PerspectiveCamera': + object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far); + if (data.focus !== undefined) object.focus = data.focus; + if (data.zoom !== undefined) object.zoom = data.zoom; + if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge; + if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset; + if (data.view !== undefined) object.view = Object.assign({}, data.view); + break; + + case 'OrthographicCamera': + object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far); + if (data.zoom !== undefined) object.zoom = data.zoom; + if (data.view !== undefined) object.view = Object.assign({}, data.view); + break; + + case 'AmbientLight': + object = new AmbientLight(data.color, data.intensity); + break; + + case 'DirectionalLight': + object = new DirectionalLight(data.color, data.intensity); + break; + + case 'PointLight': + object = new PointLight(data.color, data.intensity, data.distance, data.decay); + break; + + case 'RectAreaLight': + object = new RectAreaLight(data.color, data.intensity, data.width, data.height); + break; + + case 'SpotLight': + object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay); + break; + + case 'HemisphereLight': + object = new HemisphereLight(data.color, data.groundColor, data.intensity); + break; + + case 'LightProbe': + object = new LightProbe().fromJSON(data); + break; + + case 'SkinnedMesh': + geometry = getGeometry(data.geometry); + material = getMaterial(data.material); + object = new SkinnedMesh(geometry, material); + if (data.bindMode !== undefined) object.bindMode = data.bindMode; + if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix); + if (data.skeleton !== undefined) object.skeleton = data.skeleton; + break; + + case 'Mesh': + geometry = getGeometry(data.geometry); + material = getMaterial(data.material); + object = new Mesh(geometry, material); + break; + + case 'InstancedMesh': + geometry = getGeometry(data.geometry); + material = getMaterial(data.material); + const count = data.count; + const instanceMatrix = data.instanceMatrix; + const instanceColor = data.instanceColor; + object = new InstancedMesh(geometry, material, count); + object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16); + if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize); + break; + + case 'LOD': + object = new LOD(); + break; + + case 'Line': + object = new Line(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'LineLoop': + object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'LineSegments': + object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'PointCloud': + case 'Points': + object = new Points(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'Sprite': + object = new Sprite(getMaterial(data.material)); + break; + + case 'Group': + object = new Group(); + break; + + case 'Bone': + object = new Bone(); + break; + + default: + object = new Object3D(); + } + + object.uuid = data.uuid; + if (data.name !== undefined) object.name = data.name; + + if (data.matrix !== undefined) { + object.matrix.fromArray(data.matrix); + if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate; + if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale); + } else { + if (data.position !== undefined) object.position.fromArray(data.position); + if (data.rotation !== undefined) object.rotation.fromArray(data.rotation); + if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion); + if (data.scale !== undefined) object.scale.fromArray(data.scale); + } + + if (data.castShadow !== undefined) object.castShadow = data.castShadow; + if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow; + + if (data.shadow) { + if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias; + if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias; + if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius; + if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize); + if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera); + } + + if (data.visible !== undefined) object.visible = data.visible; + if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled; + if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder; + if (data.userData !== undefined) object.userData = data.userData; + if (data.layers !== undefined) object.layers.mask = data.layers; + + if (data.children !== undefined) { + const children = data.children; + + for (let i = 0; i < children.length; i++) { + object.add(this.parseObject(children[i], geometries, materials, textures, animations)); + } + } + + if (data.animations !== undefined) { + const objectAnimations = data.animations; + + for (let i = 0; i < objectAnimations.length; i++) { + const uuid = objectAnimations[i]; + object.animations.push(animations[uuid]); + } + } + + if (data.type === 'LOD') { + if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate; + const levels = data.levels; + + for (let l = 0; l < levels.length; l++) { + const level = levels[l]; + const child = object.getObjectByProperty('uuid', level.object); + + if (child !== undefined) { + object.addLevel(child, level.distance); + } + } + } + + return object; + } + + bindSkeletons(object, skeletons) { + if (Object.keys(skeletons).length === 0) return; + object.traverse(function (child) { + if (child.isSkinnedMesh === true && child.skeleton !== undefined) { + const skeleton = skeletons[child.skeleton]; + + if (skeleton === undefined) { + console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton); + } else { + child.bind(skeleton, child.bindMatrix); + } + } + }); + } + /* DEPRECATED */ + + + setTexturePath(value) { + console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().'); + return this.setResourcePath(value); + } + +} + +const TEXTURE_MAPPING = { + UVMapping: UVMapping, + CubeReflectionMapping: CubeReflectionMapping, + CubeRefractionMapping: CubeRefractionMapping, + EquirectangularReflectionMapping: EquirectangularReflectionMapping, + EquirectangularRefractionMapping: EquirectangularRefractionMapping, + CubeUVReflectionMapping: CubeUVReflectionMapping, + CubeUVRefractionMapping: CubeUVRefractionMapping +}; +const TEXTURE_WRAPPING = { + RepeatWrapping: RepeatWrapping, + ClampToEdgeWrapping: ClampToEdgeWrapping, + MirroredRepeatWrapping: MirroredRepeatWrapping +}; +const TEXTURE_FILTER = { + NearestFilter: NearestFilter, + NearestMipmapNearestFilter: NearestMipmapNearestFilter, + NearestMipmapLinearFilter: NearestMipmapLinearFilter, + LinearFilter: LinearFilter, + LinearMipmapNearestFilter: LinearMipmapNearestFilter, + LinearMipmapLinearFilter: LinearMipmapLinearFilter +}; + +class ImageBitmapLoader extends Loader { + constructor(manager) { + super(manager); + + if (typeof createImageBitmap === 'undefined') { + console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.'); + } + + if (typeof fetch === 'undefined') { + console.warn('THREE.ImageBitmapLoader: fetch() not supported.'); + } + + this.options = { + premultiplyAlpha: 'none' + }; + } + + setOptions(options) { + this.options = options; + return this; + } + + load(url, onLoad, onProgress, onError) { + if (url === undefined) url = ''; + if (this.path !== undefined) url = this.path + url; + url = this.manager.resolveURL(url); + const scope = this; + const cached = Cache.get(url); + + if (cached !== undefined) { + scope.manager.itemStart(url); + setTimeout(function () { + if (onLoad) onLoad(cached); + scope.manager.itemEnd(url); + }, 0); + return cached; + } + + const fetchOptions = {}; + fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include'; + fetchOptions.headers = this.requestHeader; + fetch(url, fetchOptions).then(function (res) { + return res.blob(); + }).then(function (blob) { + return createImageBitmap(blob, Object.assign(scope.options, { + colorSpaceConversion: 'none' + })); + }).then(function (imageBitmap) { + Cache.add(url, imageBitmap); + if (onLoad) onLoad(imageBitmap); + scope.manager.itemEnd(url); + }).catch(function (e) { + if (onError) onError(e); + scope.manager.itemError(url); + scope.manager.itemEnd(url); + }); + scope.manager.itemStart(url); + } + +} + +ImageBitmapLoader.prototype.isImageBitmapLoader = true; + +let _context; + +const AudioContext = { + getContext: function () { + if (_context === undefined) { + _context = new (window.AudioContext || window.webkitAudioContext)(); + } + + return _context; + }, + setContext: function (value) { + _context = value; + } +}; + +class AudioLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(this.manager); + loader.setResponseType('arraybuffer'); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + loader.load(url, function (buffer) { + try { + // Create a copy of the buffer. The `decodeAudioData` method + // detaches the buffer when complete, preventing reuse. + const bufferCopy = buffer.slice(0); + const context = AudioContext.getContext(); + context.decodeAudioData(bufferCopy, function (audioBuffer) { + onLoad(audioBuffer); + }); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + +} + +class HemisphereLightProbe extends LightProbe { + constructor(skyColor, groundColor, intensity = 1) { + super(undefined, intensity); + const color1 = new Color().set(skyColor); + const color2 = new Color().set(groundColor); + const sky = new Vector3(color1.r, color1.g, color1.b); + const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI ); + + const c0 = Math.sqrt(Math.PI); + const c1 = c0 * Math.sqrt(0.75); + this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0); + this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1); + } + +} + +HemisphereLightProbe.prototype.isHemisphereLightProbe = true; + +class AmbientLightProbe extends LightProbe { + constructor(color, intensity = 1) { + super(undefined, intensity); + const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI ); + + this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI)); + } + +} + +AmbientLightProbe.prototype.isAmbientLightProbe = true; + +const _eyeRight = /*@__PURE__*/new Matrix4(); + +const _eyeLeft = /*@__PURE__*/new Matrix4(); + +const _projectionMatrix = /*@__PURE__*/new Matrix4(); + +class StereoCamera { + constructor() { + this.type = 'StereoCamera'; + this.aspect = 1; + this.eyeSep = 0.064; + this.cameraL = new PerspectiveCamera(); + this.cameraL.layers.enable(1); + this.cameraL.matrixAutoUpdate = false; + this.cameraR = new PerspectiveCamera(); + this.cameraR.layers.enable(2); + this.cameraR.matrixAutoUpdate = false; + this._cache = { + focus: null, + fov: null, + aspect: null, + near: null, + far: null, + zoom: null, + eyeSep: null + }; + } + + update(camera) { + const cache = this._cache; + const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; + + if (needsUpdate) { + cache.focus = camera.focus; + cache.fov = camera.fov; + cache.aspect = camera.aspect * this.aspect; + cache.near = camera.near; + cache.far = camera.far; + cache.zoom = camera.zoom; + cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on + // http://paulbourke.net/stereographics/stereorender/ + + _projectionMatrix.copy(camera.projectionMatrix); + + const eyeSepHalf = cache.eyeSep / 2; + const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; + const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom; + let xmin, xmax; // translate xOffset + + _eyeLeft.elements[12] = -eyeSepHalf; + _eyeRight.elements[12] = eyeSepHalf; // for left eye + + xmin = -ymax * cache.aspect + eyeSepOnProjection; + xmax = ymax * cache.aspect + eyeSepOnProjection; + _projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); + _projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); + this.cameraL.projectionMatrix.copy(_projectionMatrix); // for right eye + + xmin = -ymax * cache.aspect - eyeSepOnProjection; + xmax = ymax * cache.aspect - eyeSepOnProjection; + _projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); + _projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); + this.cameraR.projectionMatrix.copy(_projectionMatrix); + } + + this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft); + this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight); + } + +} + +class Clock { + constructor(autoStart = true) { + this.autoStart = autoStart; + this.startTime = 0; + this.oldTime = 0; + this.elapsedTime = 0; + this.running = false; + } + + start() { + this.startTime = now(); + this.oldTime = this.startTime; + this.elapsedTime = 0; + this.running = true; + } + + stop() { + this.getElapsedTime(); + this.running = false; + this.autoStart = false; + } + + getElapsedTime() { + this.getDelta(); + return this.elapsedTime; + } + + getDelta() { + let diff = 0; + + if (this.autoStart && !this.running) { + this.start(); + return 0; + } + + if (this.running) { + const newTime = now(); + diff = (newTime - this.oldTime) / 1000; + this.oldTime = newTime; + this.elapsedTime += diff; + } + + return diff; + } + +} + +function now() { + return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732 +} + +const _position$1 = /*@__PURE__*/new Vector3(); + +const _quaternion$1 = /*@__PURE__*/new Quaternion(); + +const _scale$1 = /*@__PURE__*/new Vector3(); + +const _orientation$1 = /*@__PURE__*/new Vector3(); + +class AudioListener extends Object3D { + constructor() { + super(); + this.type = 'AudioListener'; + this.context = AudioContext.getContext(); + this.gain = this.context.createGain(); + this.gain.connect(this.context.destination); + this.filter = null; + this.timeDelta = 0; // private + + this._clock = new Clock(); + } + + getInput() { + return this.gain; + } + + removeFilter() { + if (this.filter !== null) { + this.gain.disconnect(this.filter); + this.filter.disconnect(this.context.destination); + this.gain.connect(this.context.destination); + this.filter = null; + } + + return this; + } + + getFilter() { + return this.filter; + } + + setFilter(value) { + if (this.filter !== null) { + this.gain.disconnect(this.filter); + this.filter.disconnect(this.context.destination); + } else { + this.gain.disconnect(this.context.destination); + } + + this.filter = value; + this.gain.connect(this.filter); + this.filter.connect(this.context.destination); + return this; + } + + getMasterVolume() { + return this.gain.gain.value; + } + + setMasterVolume(value) { + this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); + return this; + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + const listener = this.context.listener; + const up = this.up; + this.timeDelta = this._clock.getDelta(); + this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1); + + _orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1); + + if (listener.positionX) { + // code path for Chrome (see #14393) + const endTime = this.context.currentTime + this.timeDelta; + listener.positionX.linearRampToValueAtTime(_position$1.x, endTime); + listener.positionY.linearRampToValueAtTime(_position$1.y, endTime); + listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime); + listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime); + listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime); + listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime); + listener.upX.linearRampToValueAtTime(up.x, endTime); + listener.upY.linearRampToValueAtTime(up.y, endTime); + listener.upZ.linearRampToValueAtTime(up.z, endTime); + } else { + listener.setPosition(_position$1.x, _position$1.y, _position$1.z); + listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z); + } + } + +} + +class Audio extends Object3D { + constructor(listener) { + super(); + this.type = 'Audio'; + this.listener = listener; + this.context = listener.context; + this.gain = this.context.createGain(); + this.gain.connect(listener.getInput()); + this.autoplay = false; + this.buffer = null; + this.detune = 0; + this.loop = false; + this.loopStart = 0; + this.loopEnd = 0; + this.offset = 0; + this.duration = undefined; + this.playbackRate = 1; + this.isPlaying = false; + this.hasPlaybackControl = true; + this.source = null; + this.sourceType = 'empty'; + this._startedAt = 0; + this._progress = 0; + this._connected = false; + this.filters = []; + } + + getOutput() { + return this.gain; + } + + setNodeSource(audioNode) { + this.hasPlaybackControl = false; + this.sourceType = 'audioNode'; + this.source = audioNode; + this.connect(); + return this; + } + + setMediaElementSource(mediaElement) { + this.hasPlaybackControl = false; + this.sourceType = 'mediaNode'; + this.source = this.context.createMediaElementSource(mediaElement); + this.connect(); + return this; + } + + setMediaStreamSource(mediaStream) { + this.hasPlaybackControl = false; + this.sourceType = 'mediaStreamNode'; + this.source = this.context.createMediaStreamSource(mediaStream); + this.connect(); + return this; + } + + setBuffer(audioBuffer) { + this.buffer = audioBuffer; + this.sourceType = 'buffer'; + if (this.autoplay) this.play(); + return this; + } + + play(delay = 0) { + if (this.isPlaying === true) { + console.warn('THREE.Audio: Audio is already playing.'); + return; + } + + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this._startedAt = this.context.currentTime + delay; + const source = this.context.createBufferSource(); + source.buffer = this.buffer; + source.loop = this.loop; + source.loopStart = this.loopStart; + source.loopEnd = this.loopEnd; + source.onended = this.onEnded.bind(this); + source.start(this._startedAt, this._progress + this.offset, this.duration); + this.isPlaying = true; + this.source = source; + this.setDetune(this.detune); + this.setPlaybackRate(this.playbackRate); + return this.connect(); + } + + pause() { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + if (this.isPlaying === true) { + // update current progress + this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate; + + if (this.loop === true) { + // ensure _progress does not exceed duration with looped audios + this._progress = this._progress % (this.duration || this.buffer.duration); + } + + this.source.stop(); + this.source.onended = null; + this.isPlaying = false; + } + + return this; + } + + stop() { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this._progress = 0; + this.source.stop(); + this.source.onended = null; + this.isPlaying = false; + return this; + } + + connect() { + if (this.filters.length > 0) { + this.source.connect(this.filters[0]); + + for (let i = 1, l = this.filters.length; i < l; i++) { + this.filters[i - 1].connect(this.filters[i]); + } + + this.filters[this.filters.length - 1].connect(this.getOutput()); + } else { + this.source.connect(this.getOutput()); + } + + this._connected = true; + return this; + } + + disconnect() { + if (this.filters.length > 0) { + this.source.disconnect(this.filters[0]); + + for (let i = 1, l = this.filters.length; i < l; i++) { + this.filters[i - 1].disconnect(this.filters[i]); + } + + this.filters[this.filters.length - 1].disconnect(this.getOutput()); + } else { + this.source.disconnect(this.getOutput()); + } + + this._connected = false; + return this; + } + + getFilters() { + return this.filters; + } + + setFilters(value) { + if (!value) value = []; + + if (this._connected === true) { + this.disconnect(); + this.filters = value.slice(); + this.connect(); + } else { + this.filters = value.slice(); + } + + return this; + } + + setDetune(value) { + this.detune = value; + if (this.source.detune === undefined) return; // only set detune when available + + if (this.isPlaying === true) { + this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01); + } + + return this; + } + + getDetune() { + return this.detune; + } + + getFilter() { + return this.getFilters()[0]; + } + + setFilter(filter) { + return this.setFilters(filter ? [filter] : []); + } + + setPlaybackRate(value) { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this.playbackRate = value; + + if (this.isPlaying === true) { + this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01); + } + + return this; + } + + getPlaybackRate() { + return this.playbackRate; + } + + onEnded() { + this.isPlaying = false; + } + + getLoop() { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return false; + } + + return this.loop; + } + + setLoop(value) { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this.loop = value; + + if (this.isPlaying === true) { + this.source.loop = this.loop; + } + + return this; + } + + setLoopStart(value) { + this.loopStart = value; + return this; + } + + setLoopEnd(value) { + this.loopEnd = value; + return this; + } + + getVolume() { + return this.gain.gain.value; + } + + setVolume(value) { + this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); + return this; + } + +} + +const _position = /*@__PURE__*/new Vector3(); + +const _quaternion = /*@__PURE__*/new Quaternion(); + +const _scale = /*@__PURE__*/new Vector3(); + +const _orientation = /*@__PURE__*/new Vector3(); + +class PositionalAudio extends Audio { + constructor(listener) { + super(listener); + this.panner = this.context.createPanner(); + this.panner.panningModel = 'HRTF'; + this.panner.connect(this.gain); + } + + getOutput() { + return this.panner; + } + + getRefDistance() { + return this.panner.refDistance; + } + + setRefDistance(value) { + this.panner.refDistance = value; + return this; + } + + getRolloffFactor() { + return this.panner.rolloffFactor; + } + + setRolloffFactor(value) { + this.panner.rolloffFactor = value; + return this; + } + + getDistanceModel() { + return this.panner.distanceModel; + } + + setDistanceModel(value) { + this.panner.distanceModel = value; + return this; + } + + getMaxDistance() { + return this.panner.maxDistance; + } + + setMaxDistance(value) { + this.panner.maxDistance = value; + return this; + } + + setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) { + this.panner.coneInnerAngle = coneInnerAngle; + this.panner.coneOuterAngle = coneOuterAngle; + this.panner.coneOuterGain = coneOuterGain; + return this; + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + if (this.hasPlaybackControl === true && this.isPlaying === false) return; + this.matrixWorld.decompose(_position, _quaternion, _scale); + + _orientation.set(0, 0, 1).applyQuaternion(_quaternion); + + const panner = this.panner; + + if (panner.positionX) { + // code path for Chrome and Firefox (see #14393) + const endTime = this.context.currentTime + this.listener.timeDelta; + panner.positionX.linearRampToValueAtTime(_position.x, endTime); + panner.positionY.linearRampToValueAtTime(_position.y, endTime); + panner.positionZ.linearRampToValueAtTime(_position.z, endTime); + panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime); + panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime); + panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime); + } else { + panner.setPosition(_position.x, _position.y, _position.z); + panner.setOrientation(_orientation.x, _orientation.y, _orientation.z); + } + } + +} + +class AudioAnalyser { + constructor(audio, fftSize = 2048) { + this.analyser = audio.context.createAnalyser(); + this.analyser.fftSize = fftSize; + this.data = new Uint8Array(this.analyser.frequencyBinCount); + audio.getOutput().connect(this.analyser); + } + + getFrequencyData() { + this.analyser.getByteFrequencyData(this.data); + return this.data; + } + + getAverageFrequency() { + let value = 0; + const data = this.getFrequencyData(); + + for (let i = 0; i < data.length; i++) { + value += data[i]; + } + + return value / data.length; + } + +} + +class PropertyMixer { + constructor(binding, typeName, valueSize) { + this.binding = binding; + this.valueSize = valueSize; + let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] + // + // interpolators can use .buffer as their .result + // the data then goes to 'incoming' + // + // 'accu0' and 'accu1' are used frame-interleaved for + // the cumulative result and are compared to detect + // changes + // + // 'orig' stores the original state of the property + // + // 'add' is used for additive cumulative results + // + // 'work' is optional and is only present for quaternion types. It is used + // to store intermediate quaternion multiplication results + + switch (typeName) { + case 'quaternion': + mixFunction = this._slerp; + mixFunctionAdditive = this._slerpAdditive; + setIdentity = this._setAdditiveIdentityQuaternion; + this.buffer = new Float64Array(valueSize * 6); + this._workIndex = 5; + break; + + case 'string': + case 'bool': + mixFunction = this._select; // Use the regular mix function and for additive on these types, + // additive is not relevant for non-numeric types + + mixFunctionAdditive = this._select; + setIdentity = this._setAdditiveIdentityOther; + this.buffer = new Array(valueSize * 5); + break; + + default: + mixFunction = this._lerp; + mixFunctionAdditive = this._lerpAdditive; + setIdentity = this._setAdditiveIdentityNumeric; + this.buffer = new Float64Array(valueSize * 5); + } + + this._mixBufferRegion = mixFunction; + this._mixBufferRegionAdditive = mixFunctionAdditive; + this._setIdentity = setIdentity; + this._origIndex = 3; + this._addIndex = 4; + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + this.useCount = 0; + this.referenceCount = 0; + } // accumulate data in the 'incoming' region into 'accu' + + + accumulate(accuIndex, weight) { + // note: happily accumulating nothing when weight = 0, the caller knows + // the weight and shouldn't have made the call in the first place + const buffer = this.buffer, + stride = this.valueSize, + offset = accuIndex * stride + stride; + let currentWeight = this.cumulativeWeight; + + if (currentWeight === 0) { + // accuN := incoming * weight + for (let i = 0; i !== stride; ++i) { + buffer[offset + i] = buffer[i]; + } + + currentWeight = weight; + } else { + // accuN := accuN + incoming * weight + currentWeight += weight; + const mix = weight / currentWeight; + + this._mixBufferRegion(buffer, offset, 0, mix, stride); + } + + this.cumulativeWeight = currentWeight; + } // accumulate data in the 'incoming' region into 'add' + + + accumulateAdditive(weight) { + const buffer = this.buffer, + stride = this.valueSize, + offset = stride * this._addIndex; + + if (this.cumulativeWeightAdditive === 0) { + // add = identity + this._setIdentity(); + } // add := add + incoming * weight + + + this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride); + + this.cumulativeWeightAdditive += weight; + } // apply the state of 'accu' to the binding when accus differ + + + apply(accuIndex) { + const stride = this.valueSize, + buffer = this.buffer, + offset = accuIndex * stride + stride, + weight = this.cumulativeWeight, + weightAdditive = this.cumulativeWeightAdditive, + binding = this.binding; + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + + if (weight < 1) { + // accuN := accuN + original * ( 1 - cumulativeWeight ) + const originalValueOffset = stride * this._origIndex; + + this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride); + } + + if (weightAdditive > 0) { + // accuN := accuN + additive accuN + this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride); + } + + for (let i = stride, e = stride + stride; i !== e; ++i) { + if (buffer[i] !== buffer[i + stride]) { + // value has changed -> update scene graph + binding.setValue(buffer, offset); + break; + } + } + } // remember the state of the bound property and copy it to both accus + + + saveOriginalState() { + const binding = this.binding; + const buffer = this.buffer, + stride = this.valueSize, + originalValueOffset = stride * this._origIndex; + binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original + + for (let i = stride, e = originalValueOffset; i !== e; ++i) { + buffer[i] = buffer[originalValueOffset + i % stride]; + } // Add to identity for additive + + + this._setIdentity(); + + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + } // apply the state previously taken via 'saveOriginalState' to the binding + + + restoreOriginalState() { + const originalValueOffset = this.valueSize * 3; + this.binding.setValue(this.buffer, originalValueOffset); + } + + _setAdditiveIdentityNumeric() { + const startIndex = this._addIndex * this.valueSize; + const endIndex = startIndex + this.valueSize; + + for (let i = startIndex; i < endIndex; i++) { + this.buffer[i] = 0; + } + } + + _setAdditiveIdentityQuaternion() { + this._setAdditiveIdentityNumeric(); + + this.buffer[this._addIndex * this.valueSize + 3] = 1; + } + + _setAdditiveIdentityOther() { + const startIndex = this._origIndex * this.valueSize; + const targetIndex = this._addIndex * this.valueSize; + + for (let i = 0; i < this.valueSize; i++) { + this.buffer[targetIndex + i] = this.buffer[startIndex + i]; + } + } // mix functions + + + _select(buffer, dstOffset, srcOffset, t, stride) { + if (t >= 0.5) { + for (let i = 0; i !== stride; ++i) { + buffer[dstOffset + i] = buffer[srcOffset + i]; + } + } + } + + _slerp(buffer, dstOffset, srcOffset, t) { + Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t); + } + + _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) { + const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset + + Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result + + Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t); + } + + _lerp(buffer, dstOffset, srcOffset, t, stride) { + const s = 1 - t; + + for (let i = 0; i !== stride; ++i) { + const j = dstOffset + i; + buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t; + } + } + + _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) { + for (let i = 0; i !== stride; ++i) { + const j = dstOffset + i; + buffer[j] = buffer[j] + buffer[srcOffset + i] * t; + } + } + +} + +// Characters [].:/ are reserved for track binding syntax. +const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; + +const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches +// only latin characters, and the unicode \p{L} is not yet supported. So +// instead, we exclude reserved characters and match everything else. + + +const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; + +const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must +// be matched to parse the rest of the track name. + + +const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. + + +const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved +// characters. Accessor may contain any character except closing bracket. + + +const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may +// contain any non-bracket characters. + + +const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar); + +const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$'); + +const _supportedObjectNames = ['material', 'materials', 'bones']; + +class Composite { + constructor(targetGroup, path, optionalParsedPath) { + const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path); + this._targetGroup = targetGroup; + this._bindings = targetGroup.subscribe_(path, parsedPath); + } + + getValue(array, offset) { + this.bind(); // bind all binding + + const firstValidIndex = this._targetGroup.nCachedObjects_, + binding = this._bindings[firstValidIndex]; // and only call .getValue on the first + + if (binding !== undefined) binding.getValue(array, offset); + } + + setValue(array, offset) { + const bindings = this._bindings; + + for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { + bindings[i].setValue(array, offset); + } + } + + bind() { + const bindings = this._bindings; + + for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { + bindings[i].bind(); + } + } + + unbind() { + const bindings = this._bindings; + + for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { + bindings[i].unbind(); + } + } + +} // Note: This class uses a State pattern on a per-method basis: +// 'bind' sets 'this.getValue' / 'setValue' and shadows the +// prototype version of these methods with one that represents +// the bound state. When the property is not found, the methods +// become no-ops. + + +class PropertyBinding { + constructor(rootNode, path, parsedPath) { + this.path = path; + this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path); + this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode; + this.rootNode = rootNode; // initial state of these methods that calls 'bind' + + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + } + + static create(root, path, parsedPath) { + if (!(root && root.isAnimationObjectGroup)) { + return new PropertyBinding(root, path, parsedPath); + } else { + return new PropertyBinding.Composite(root, path, parsedPath); + } + } + /** + * Replaces spaces with underscores and removes unsupported characters from + * node names, to ensure compatibility with parseTrackName(). + * + * @param {string} name Node name to be sanitized. + * @return {string} + */ + + + static sanitizeNodeName(name) { + return name.replace(/\s/g, '_').replace(_reservedRe, ''); + } + + static parseTrackName(trackName) { + const matches = _trackRe.exec(trackName); + + if (!matches) { + throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName); + } + + const results = { + // directoryName: matches[ 1 ], // (tschw) currently unused + nodeName: matches[2], + objectName: matches[3], + objectIndex: matches[4], + propertyName: matches[5], + // required + propertyIndex: matches[6] + }; + const lastDot = results.nodeName && results.nodeName.lastIndexOf('.'); + + if (lastDot !== undefined && lastDot !== -1) { + const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there + // is no way to parse 'foo.bar.baz': 'baz' must be a property, but + // 'bar' could be the objectName, or part of a nodeName (which can + // include '.' characters). + + if (_supportedObjectNames.indexOf(objectName) !== -1) { + results.nodeName = results.nodeName.substring(0, lastDot); + results.objectName = objectName; + } + } + + if (results.propertyName === null || results.propertyName.length === 0) { + throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName); + } + + return results; + } + + static findNode(root, nodeName) { + if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) { + return root; + } // search into skeleton bones. + + + if (root.skeleton) { + const bone = root.skeleton.getBoneByName(nodeName); + + if (bone !== undefined) { + return bone; + } + } // search into node subtree. + + + if (root.children) { + const searchNodeSubtree = function (children) { + for (let i = 0; i < children.length; i++) { + const childNode = children[i]; + + if (childNode.name === nodeName || childNode.uuid === nodeName) { + return childNode; + } + + const result = searchNodeSubtree(childNode.children); + if (result) return result; + } + + return null; + }; + + const subTreeNode = searchNodeSubtree(root.children); + + if (subTreeNode) { + return subTreeNode; + } + } + + return null; + } // these are used to "bind" a nonexistent property + + + _getValue_unavailable() {} + + _setValue_unavailable() {} // Getters + + + _getValue_direct(buffer, offset) { + buffer[offset] = this.targetObject[this.propertyName]; + } + + _getValue_array(buffer, offset) { + const source = this.resolvedProperty; + + for (let i = 0, n = source.length; i !== n; ++i) { + buffer[offset++] = source[i]; + } + } + + _getValue_arrayElement(buffer, offset) { + buffer[offset] = this.resolvedProperty[this.propertyIndex]; + } + + _getValue_toArray(buffer, offset) { + this.resolvedProperty.toArray(buffer, offset); + } // Direct + + + _setValue_direct(buffer, offset) { + this.targetObject[this.propertyName] = buffer[offset]; + } + + _setValue_direct_setNeedsUpdate(buffer, offset) { + this.targetObject[this.propertyName] = buffer[offset]; + this.targetObject.needsUpdate = true; + } + + _setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) { + this.targetObject[this.propertyName] = buffer[offset]; + this.targetObject.matrixWorldNeedsUpdate = true; + } // EntireArray + + + _setValue_array(buffer, offset) { + const dest = this.resolvedProperty; + + for (let i = 0, n = dest.length; i !== n; ++i) { + dest[i] = buffer[offset++]; + } + } + + _setValue_array_setNeedsUpdate(buffer, offset) { + const dest = this.resolvedProperty; + + for (let i = 0, n = dest.length; i !== n; ++i) { + dest[i] = buffer[offset++]; + } + + this.targetObject.needsUpdate = true; + } + + _setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) { + const dest = this.resolvedProperty; + + for (let i = 0, n = dest.length; i !== n; ++i) { + dest[i] = buffer[offset++]; + } + + this.targetObject.matrixWorldNeedsUpdate = true; + } // ArrayElement + + + _setValue_arrayElement(buffer, offset) { + this.resolvedProperty[this.propertyIndex] = buffer[offset]; + } + + _setValue_arrayElement_setNeedsUpdate(buffer, offset) { + this.resolvedProperty[this.propertyIndex] = buffer[offset]; + this.targetObject.needsUpdate = true; + } + + _setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) { + this.resolvedProperty[this.propertyIndex] = buffer[offset]; + this.targetObject.matrixWorldNeedsUpdate = true; + } // HasToFromArray + + + _setValue_fromArray(buffer, offset) { + this.resolvedProperty.fromArray(buffer, offset); + } + + _setValue_fromArray_setNeedsUpdate(buffer, offset) { + this.resolvedProperty.fromArray(buffer, offset); + this.targetObject.needsUpdate = true; + } + + _setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) { + this.resolvedProperty.fromArray(buffer, offset); + this.targetObject.matrixWorldNeedsUpdate = true; + } + + _getValue_unbound(targetArray, offset) { + this.bind(); + this.getValue(targetArray, offset); + } + + _setValue_unbound(sourceArray, offset) { + this.bind(); + this.setValue(sourceArray, offset); + } // create getter / setter pair for a property in the scene graph + + + bind() { + let targetObject = this.node; + const parsedPath = this.parsedPath; + const objectName = parsedPath.objectName; + const propertyName = parsedPath.propertyName; + let propertyIndex = parsedPath.propertyIndex; + + if (!targetObject) { + targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode; + this.node = targetObject; + } // set fail state so we can just 'return' on error + + + this.getValue = this._getValue_unavailable; + this.setValue = this._setValue_unavailable; // ensure there is a value node + + if (!targetObject) { + console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.'); + return; + } + + if (objectName) { + let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... + + switch (objectName) { + case 'materials': + if (!targetObject.material) { + console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this); + return; + } + + if (!targetObject.material.materials) { + console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this); + return; + } + + targetObject = targetObject.material.materials; + break; + + case 'bones': + if (!targetObject.skeleton) { + console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this); + return; + } // potential future optimization: skip this if propertyIndex is already an integer + // and convert the integer string to a true integer. + + + targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. + + for (let i = 0; i < targetObject.length; i++) { + if (targetObject[i].name === objectIndex) { + objectIndex = i; + break; + } + } + + break; + + default: + if (targetObject[objectName] === undefined) { + console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this); + return; + } + + targetObject = targetObject[objectName]; + } + + if (objectIndex !== undefined) { + if (targetObject[objectIndex] === undefined) { + console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject); + return; + } + + targetObject = targetObject[objectIndex]; + } + } // resolve property + + + const nodeProperty = targetObject[propertyName]; + + if (nodeProperty === undefined) { + const nodeName = parsedPath.nodeName; + console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject); + return; + } // determine versioning scheme + + + let versioning = this.Versioning.None; + this.targetObject = targetObject; + + if (targetObject.needsUpdate !== undefined) { + // material + versioning = this.Versioning.NeedsUpdate; + } else if (targetObject.matrixWorldNeedsUpdate !== undefined) { + // node transform + versioning = this.Versioning.MatrixWorldNeedsUpdate; + } // determine how the property gets bound + + + let bindingType = this.BindingType.Direct; + + if (propertyIndex !== undefined) { + // access a sub element of the property array (only primitives are supported right now) + if (propertyName === 'morphTargetInfluences') { + // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. + // support resolving morphTarget names into indices. + if (!targetObject.geometry) { + console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this); + return; + } + + if (targetObject.geometry.isBufferGeometry) { + if (!targetObject.geometry.morphAttributes) { + console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this); + return; + } + + if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) { + propertyIndex = targetObject.morphTargetDictionary[propertyIndex]; + } + } else { + console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this); + return; + } + } + + bindingType = this.BindingType.ArrayElement; + this.resolvedProperty = nodeProperty; + this.propertyIndex = propertyIndex; + } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) { + // must use copy for Object3D.Euler/Quaternion + bindingType = this.BindingType.HasFromToArray; + this.resolvedProperty = nodeProperty; + } else if (Array.isArray(nodeProperty)) { + bindingType = this.BindingType.EntireArray; + this.resolvedProperty = nodeProperty; + } else { + this.propertyName = propertyName; + } // select getter / setter + + + this.getValue = this.GetterByBindingType[bindingType]; + this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning]; + } + + unbind() { + this.node = null; // back to the prototype version of getValue / setValue + // note: avoiding to mutate the shape of 'this' via 'delete' + + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + } + +} + +PropertyBinding.Composite = Composite; +PropertyBinding.prototype.BindingType = { + Direct: 0, + EntireArray: 1, + ArrayElement: 2, + HasFromToArray: 3 +}; +PropertyBinding.prototype.Versioning = { + None: 0, + NeedsUpdate: 1, + MatrixWorldNeedsUpdate: 2 +}; +PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray]; +PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct +PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray +PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement +PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray +PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]]; + +/** + * + * A group of objects that receives a shared animation state. + * + * Usage: + * + * - Add objects you would otherwise pass as 'root' to the + * constructor or the .clipAction method of AnimationMixer. + * + * - Instead pass this object as 'root'. + * + * - You can also add and remove objects later when the mixer + * is running. + * + * Note: + * + * Objects of this class appear as one object to the mixer, + * so cache control of the individual objects must be done + * on the group. + * + * Limitation: + * + * - The animated properties must be compatible among the + * all objects in the group. + * + * - A single property can either be controlled through a + * target group or directly, but not both. + */ + +class AnimationObjectGroup { + constructor() { + this.uuid = generateUUID(); // cached objects followed by the active ones + + this._objects = Array.prototype.slice.call(arguments); + this.nCachedObjects_ = 0; // threshold + // note: read by PropertyBinding.Composite + + const indices = {}; + this._indicesByUUID = indices; // for bookkeeping + + for (let i = 0, n = arguments.length; i !== n; ++i) { + indices[arguments[i].uuid] = i; + } + + this._paths = []; // inside: string + + this._parsedPaths = []; // inside: { we don't care, here } + + this._bindings = []; // inside: Array< PropertyBinding > + + this._bindingsIndicesByPath = {}; // inside: indices in these arrays + + const scope = this; + this.stats = { + objects: { + get total() { + return scope._objects.length; + }, + + get inUse() { + return this.total - scope.nCachedObjects_; + } + + }, + + get bindingsPerObject() { + return scope._bindings.length; + } + + }; + } + + add() { + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + nBindings = bindings.length; + let knownObject = undefined, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_; + + for (let i = 0, n = arguments.length; i !== n; ++i) { + const object = arguments[i], + uuid = object.uuid; + let index = indicesByUUID[uuid]; + + if (index === undefined) { + // unknown object -> add it to the ACTIVE region + index = nObjects++; + indicesByUUID[uuid] = index; + objects.push(object); // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j])); + } + } else if (index < nCachedObjects) { + knownObject = objects[index]; // move existing object to the ACTIVE region + + const firstActiveIndex = --nCachedObjects, + lastCachedObject = objects[firstActiveIndex]; + indicesByUUID[lastCachedObject.uuid] = index; + objects[index] = lastCachedObject; + indicesByUUID[uuid] = firstActiveIndex; + objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j], + lastCached = bindingsForPath[firstActiveIndex]; + let binding = bindingsForPath[index]; + bindingsForPath[index] = lastCached; + + if (binding === undefined) { + // since we do not bother to create new bindings + // for objects that are cached, the binding may + // or may not exist + binding = new PropertyBinding(object, paths[j], parsedPaths[j]); + } + + bindingsForPath[firstActiveIndex] = binding; + } + } else if (objects[index] !== knownObject) { + console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.'); + } // else the object is already where we want it to be + + } // for arguments + + + this.nCachedObjects_ = nCachedObjects; + } + + remove() { + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + let nCachedObjects = this.nCachedObjects_; + + for (let i = 0, n = arguments.length; i !== n; ++i) { + const object = arguments[i], + uuid = object.uuid, + index = indicesByUUID[uuid]; + + if (index !== undefined && index >= nCachedObjects) { + // move existing object into the CACHED region + const lastCachedIndex = nCachedObjects++, + firstActiveObject = objects[lastCachedIndex]; + indicesByUUID[firstActiveObject.uuid] = index; + objects[index] = firstActiveObject; + indicesByUUID[uuid] = lastCachedIndex; + objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j], + firstActive = bindingsForPath[lastCachedIndex], + binding = bindingsForPath[index]; + bindingsForPath[index] = firstActive; + bindingsForPath[lastCachedIndex] = binding; + } + } + } // for arguments + + + this.nCachedObjects_ = nCachedObjects; + } // remove & forget + + + uncache() { + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + let nCachedObjects = this.nCachedObjects_, + nObjects = objects.length; + + for (let i = 0, n = arguments.length; i !== n; ++i) { + const object = arguments[i], + uuid = object.uuid, + index = indicesByUUID[uuid]; + + if (index !== undefined) { + delete indicesByUUID[uuid]; + + if (index < nCachedObjects) { + // object is cached, shrink the CACHED region + const firstActiveIndex = --nCachedObjects, + lastCachedObject = objects[firstActiveIndex], + lastIndex = --nObjects, + lastObject = objects[lastIndex]; // last cached object takes this object's place + + indicesByUUID[lastCachedObject.uuid] = index; + objects[index] = lastCachedObject; // last object goes to the activated slot and pop + + indicesByUUID[lastObject.uuid] = firstActiveIndex; + objects[firstActiveIndex] = lastObject; + objects.pop(); // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j], + lastCached = bindingsForPath[firstActiveIndex], + last = bindingsForPath[lastIndex]; + bindingsForPath[index] = lastCached; + bindingsForPath[firstActiveIndex] = last; + bindingsForPath.pop(); + } + } else { + // object is active, just swap with the last and pop + const lastIndex = --nObjects, + lastObject = objects[lastIndex]; + + if (lastIndex > 0) { + indicesByUUID[lastObject.uuid] = index; + } + + objects[index] = lastObject; + objects.pop(); // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j]; + bindingsForPath[index] = bindingsForPath[lastIndex]; + bindingsForPath.pop(); + } + } // cached or active + + } // if object is known + + } // for arguments + + + this.nCachedObjects_ = nCachedObjects; + } // Internal interface used by befriended PropertyBinding.Composite: + + + subscribe_(path, parsedPath) { + // returns an array of bindings for the given path that is changed + // according to the contained objects in the group + const indicesByPath = this._bindingsIndicesByPath; + let index = indicesByPath[path]; + const bindings = this._bindings; + if (index !== undefined) return bindings[index]; + const paths = this._paths, + parsedPaths = this._parsedPaths, + objects = this._objects, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_, + bindingsForPath = new Array(nObjects); + index = bindings.length; + indicesByPath[path] = index; + paths.push(path); + parsedPaths.push(parsedPath); + bindings.push(bindingsForPath); + + for (let i = nCachedObjects, n = objects.length; i !== n; ++i) { + const object = objects[i]; + bindingsForPath[i] = new PropertyBinding(object, path, parsedPath); + } + + return bindingsForPath; + } + + unsubscribe_(path) { + // tells the group to forget about a property path and no longer + // update the array previously obtained with 'subscribe_' + const indicesByPath = this._bindingsIndicesByPath, + index = indicesByPath[path]; + + if (index !== undefined) { + const paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + lastBindingsIndex = bindings.length - 1, + lastBindings = bindings[lastBindingsIndex], + lastBindingsPath = path[lastBindingsIndex]; + indicesByPath[lastBindingsPath] = index; + bindings[index] = lastBindings; + bindings.pop(); + parsedPaths[index] = parsedPaths[lastBindingsIndex]; + parsedPaths.pop(); + paths[index] = paths[lastBindingsIndex]; + paths.pop(); + } + } + +} + +AnimationObjectGroup.prototype.isAnimationObjectGroup = true; + +class AnimationAction { + constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) { + this._mixer = mixer; + this._clip = clip; + this._localRoot = localRoot; + this.blendMode = blendMode; + const tracks = clip.tracks, + nTracks = tracks.length, + interpolants = new Array(nTracks); + const interpolantSettings = { + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + }; + + for (let i = 0; i !== nTracks; ++i) { + const interpolant = tracks[i].createInterpolant(null); + interpolants[i] = interpolant; + interpolant.settings = interpolantSettings; + } + + this._interpolantSettings = interpolantSettings; + this._interpolants = interpolants; // bound by the mixer + // inside: PropertyMixer (managed by the mixer) + + this._propertyBindings = new Array(nTracks); + this._cacheIndex = null; // for the memory manager + + this._byClipCacheIndex = null; // for the memory manager + + this._timeScaleInterpolant = null; + this._weightInterpolant = null; + this.loop = LoopRepeat; + this._loopCount = -1; // global mixer time when the action is to be started + // it's set back to 'null' upon start of the action + + this._startTime = null; // scaled local time of the action + // gets clamped or wrapped to 0..clip.duration according to loop + + this.time = 0; + this.timeScale = 1; + this._effectiveTimeScale = 1; + this.weight = 1; + this._effectiveWeight = 1; + this.repetitions = Infinity; // no. of repetitions when looping + + this.paused = false; // true -> zero effective time scale + + this.enabled = true; // false -> zero effective weight + + this.clampWhenFinished = false; // keep feeding the last frame? + + this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate + + this.zeroSlopeAtEnd = true; // clips for start, loop and end + } // State & Scheduling + + + play() { + this._mixer._activateAction(this); + + return this; + } + + stop() { + this._mixer._deactivateAction(this); + + return this.reset(); + } + + reset() { + this.paused = false; + this.enabled = true; + this.time = 0; // restart clip + + this._loopCount = -1; // forget previous loops + + this._startTime = null; // forget scheduling + + return this.stopFading().stopWarping(); + } + + isRunning() { + return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this); + } // return true when play has been called + + + isScheduled() { + return this._mixer._isActiveAction(this); + } + + startAt(time) { + this._startTime = time; + return this; + } + + setLoop(mode, repetitions) { + this.loop = mode; + this.repetitions = repetitions; + return this; + } // Weight + // set the weight stopping any scheduled fading + // although .enabled = false yields an effective weight of zero, this + // method does *not* change .enabled, because it would be confusing + + + setEffectiveWeight(weight) { + this.weight = weight; // note: same logic as when updated at runtime + + this._effectiveWeight = this.enabled ? weight : 0; + return this.stopFading(); + } // return the weight considering fading and .enabled + + + getEffectiveWeight() { + return this._effectiveWeight; + } + + fadeIn(duration) { + return this._scheduleFading(duration, 0, 1); + } + + fadeOut(duration) { + return this._scheduleFading(duration, 1, 0); + } + + crossFadeFrom(fadeOutAction, duration, warp) { + fadeOutAction.fadeOut(duration); + this.fadeIn(duration); + + if (warp) { + const fadeInDuration = this._clip.duration, + fadeOutDuration = fadeOutAction._clip.duration, + startEndRatio = fadeOutDuration / fadeInDuration, + endStartRatio = fadeInDuration / fadeOutDuration; + fadeOutAction.warp(1.0, startEndRatio, duration); + this.warp(endStartRatio, 1.0, duration); + } + + return this; + } + + crossFadeTo(fadeInAction, duration, warp) { + return fadeInAction.crossFadeFrom(this, duration, warp); + } + + stopFading() { + const weightInterpolant = this._weightInterpolant; + + if (weightInterpolant !== null) { + this._weightInterpolant = null; + + this._mixer._takeBackControlInterpolant(weightInterpolant); + } + + return this; + } // Time Scale Control + // set the time scale stopping any scheduled warping + // although .paused = true yields an effective time scale of zero, this + // method does *not* change .paused, because it would be confusing + + + setEffectiveTimeScale(timeScale) { + this.timeScale = timeScale; + this._effectiveTimeScale = this.paused ? 0 : timeScale; + return this.stopWarping(); + } // return the time scale considering warping and .paused + + + getEffectiveTimeScale() { + return this._effectiveTimeScale; + } + + setDuration(duration) { + this.timeScale = this._clip.duration / duration; + return this.stopWarping(); + } + + syncWith(action) { + this.time = action.time; + this.timeScale = action.timeScale; + return this.stopWarping(); + } + + halt(duration) { + return this.warp(this._effectiveTimeScale, 0, duration); + } + + warp(startTimeScale, endTimeScale, duration) { + const mixer = this._mixer, + now = mixer.time, + timeScale = this.timeScale; + let interpolant = this._timeScaleInterpolant; + + if (interpolant === null) { + interpolant = mixer._lendControlInterpolant(); + this._timeScaleInterpolant = interpolant; + } + + const times = interpolant.parameterPositions, + values = interpolant.sampleValues; + times[0] = now; + times[1] = now + duration; + values[0] = startTimeScale / timeScale; + values[1] = endTimeScale / timeScale; + return this; + } + + stopWarping() { + const timeScaleInterpolant = this._timeScaleInterpolant; + + if (timeScaleInterpolant !== null) { + this._timeScaleInterpolant = null; + + this._mixer._takeBackControlInterpolant(timeScaleInterpolant); + } + + return this; + } // Object Accessors + + + getMixer() { + return this._mixer; + } + + getClip() { + return this._clip; + } + + getRoot() { + return this._localRoot || this._mixer._root; + } // Interna + + + _update(time, deltaTime, timeDirection, accuIndex) { + // called by the mixer + if (!this.enabled) { + // call ._updateWeight() to update ._effectiveWeight + this._updateWeight(time); + + return; + } + + const startTime = this._startTime; + + if (startTime !== null) { + // check for scheduled start of action + const timeRunning = (time - startTime) * timeDirection; + + if (timeRunning < 0 || timeDirection === 0) { + return; // yet to come / don't decide when delta = 0 + } // start + + + this._startTime = null; // unschedule + + deltaTime = timeDirection * timeRunning; + } // apply time scale and advance time + + + deltaTime *= this._updateTimeScale(time); + + const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in + // an effective weight of 0 + + + const weight = this._updateWeight(time); + + if (weight > 0) { + const interpolants = this._interpolants; + const propertyMixers = this._propertyBindings; + + switch (this.blendMode) { + case AdditiveAnimationBlendMode: + for (let j = 0, m = interpolants.length; j !== m; ++j) { + interpolants[j].evaluate(clipTime); + propertyMixers[j].accumulateAdditive(weight); + } + + break; + + case NormalAnimationBlendMode: + default: + for (let j = 0, m = interpolants.length; j !== m; ++j) { + interpolants[j].evaluate(clipTime); + propertyMixers[j].accumulate(accuIndex, weight); + } + + } + } + } + + _updateWeight(time) { + let weight = 0; + + if (this.enabled) { + weight = this.weight; + const interpolant = this._weightInterpolant; + + if (interpolant !== null) { + const interpolantValue = interpolant.evaluate(time)[0]; + weight *= interpolantValue; + + if (time > interpolant.parameterPositions[1]) { + this.stopFading(); + + if (interpolantValue === 0) { + // faded out, disable + this.enabled = false; + } + } + } + } + + this._effectiveWeight = weight; + return weight; + } + + _updateTimeScale(time) { + let timeScale = 0; + + if (!this.paused) { + timeScale = this.timeScale; + const interpolant = this._timeScaleInterpolant; + + if (interpolant !== null) { + const interpolantValue = interpolant.evaluate(time)[0]; + timeScale *= interpolantValue; + + if (time > interpolant.parameterPositions[1]) { + this.stopWarping(); + + if (timeScale === 0) { + // motion has halted, pause + this.paused = true; + } else { + // warp done - apply final time scale + this.timeScale = timeScale; + } + } + } + } + + this._effectiveTimeScale = timeScale; + return timeScale; + } + + _updateTime(deltaTime) { + const duration = this._clip.duration; + const loop = this.loop; + let time = this.time + deltaTime; + let loopCount = this._loopCount; + const pingPong = loop === LoopPingPong; + + if (deltaTime === 0) { + if (loopCount === -1) return time; + return pingPong && (loopCount & 1) === 1 ? duration - time : time; + } + + if (loop === LoopOnce) { + if (loopCount === -1) { + // just started + this._loopCount = 0; + + this._setEndings(true, true, false); + } + + handle_stop: { + if (time >= duration) { + time = duration; + } else if (time < 0) { + time = 0; + } else { + this.time = time; + break handle_stop; + } + + if (this.clampWhenFinished) this.paused = true;else this.enabled = false; + this.time = time; + + this._mixer.dispatchEvent({ + type: 'finished', + action: this, + direction: deltaTime < 0 ? -1 : 1 + }); + } + } else { + // repetitive Repeat or PingPong + if (loopCount === -1) { + // just started + if (deltaTime >= 0) { + loopCount = 0; + + this._setEndings(true, this.repetitions === 0, pingPong); + } else { + // when looping in reverse direction, the initial + // transition through zero counts as a repetition, + // so leave loopCount at -1 + this._setEndings(this.repetitions === 0, true, pingPong); + } + } + + if (time >= duration || time < 0) { + // wrap around + const loopDelta = Math.floor(time / duration); // signed + + time -= duration * loopDelta; + loopCount += Math.abs(loopDelta); + const pending = this.repetitions - loopCount; + + if (pending <= 0) { + // have to stop (switch state, clamp time, fire event) + if (this.clampWhenFinished) this.paused = true;else this.enabled = false; + time = deltaTime > 0 ? duration : 0; + this.time = time; + + this._mixer.dispatchEvent({ + type: 'finished', + action: this, + direction: deltaTime > 0 ? 1 : -1 + }); + } else { + // keep running + if (pending === 1) { + // entering the last round + const atStart = deltaTime < 0; + + this._setEndings(atStart, !atStart, pingPong); + } else { + this._setEndings(false, false, pingPong); + } + + this._loopCount = loopCount; + this.time = time; + + this._mixer.dispatchEvent({ + type: 'loop', + action: this, + loopDelta: loopDelta + }); + } + } else { + this.time = time; + } + + if (pingPong && (loopCount & 1) === 1) { + // invert time for the "pong round" + return duration - time; + } + } + + return time; + } + + _setEndings(atStart, atEnd, pingPong) { + const settings = this._interpolantSettings; + + if (pingPong) { + settings.endingStart = ZeroSlopeEnding; + settings.endingEnd = ZeroSlopeEnding; + } else { + // assuming for LoopOnce atStart == atEnd == true + if (atStart) { + settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; + } else { + settings.endingStart = WrapAroundEnding; + } + + if (atEnd) { + settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; + } else { + settings.endingEnd = WrapAroundEnding; + } + } + } + + _scheduleFading(duration, weightNow, weightThen) { + const mixer = this._mixer, + now = mixer.time; + let interpolant = this._weightInterpolant; + + if (interpolant === null) { + interpolant = mixer._lendControlInterpolant(); + this._weightInterpolant = interpolant; + } + + const times = interpolant.parameterPositions, + values = interpolant.sampleValues; + times[0] = now; + values[0] = weightNow; + times[1] = now + duration; + values[1] = weightThen; + return this; + } + +} + +class AnimationMixer extends EventDispatcher { + constructor(root) { + super(); + this._root = root; + + this._initMemoryManager(); + + this._accuIndex = 0; + this.time = 0; + this.timeScale = 1.0; + } + + _bindAction(action, prototypeAction) { + const root = action._localRoot || this._root, + tracks = action._clip.tracks, + nTracks = tracks.length, + bindings = action._propertyBindings, + interpolants = action._interpolants, + rootUuid = root.uuid, + bindingsByRoot = this._bindingsByRootAndName; + let bindingsByName = bindingsByRoot[rootUuid]; + + if (bindingsByName === undefined) { + bindingsByName = {}; + bindingsByRoot[rootUuid] = bindingsByName; + } + + for (let i = 0; i !== nTracks; ++i) { + const track = tracks[i], + trackName = track.name; + let binding = bindingsByName[trackName]; + + if (binding !== undefined) { + bindings[i] = binding; + } else { + binding = bindings[i]; + + if (binding !== undefined) { + // existing binding, make sure the cache knows + if (binding._cacheIndex === null) { + ++binding.referenceCount; + + this._addInactiveBinding(binding, rootUuid, trackName); + } + + continue; + } + + const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath; + binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize()); + ++binding.referenceCount; + + this._addInactiveBinding(binding, rootUuid, trackName); + + bindings[i] = binding; + } + + interpolants[i].resultBuffer = binding.buffer; + } + } + + _activateAction(action) { + if (!this._isActiveAction(action)) { + if (action._cacheIndex === null) { + // this action has been forgotten by the cache, but the user + // appears to be still using it -> rebind + const rootUuid = (action._localRoot || this._root).uuid, + clipUuid = action._clip.uuid, + actionsForClip = this._actionsByClip[clipUuid]; + + this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]); + + this._addInactiveAction(action, clipUuid, rootUuid); + } + + const bindings = action._propertyBindings; // increment reference counts / sort out state + + for (let i = 0, n = bindings.length; i !== n; ++i) { + const binding = bindings[i]; + + if (binding.useCount++ === 0) { + this._lendBinding(binding); + + binding.saveOriginalState(); + } + } + + this._lendAction(action); + } + } + + _deactivateAction(action) { + if (this._isActiveAction(action)) { + const bindings = action._propertyBindings; // decrement reference counts / sort out state + + for (let i = 0, n = bindings.length; i !== n; ++i) { + const binding = bindings[i]; + + if (--binding.useCount === 0) { + binding.restoreOriginalState(); + + this._takeBackBinding(binding); + } + } + + this._takeBackAction(action); + } + } // Memory manager + + + _initMemoryManager() { + this._actions = []; // 'nActiveActions' followed by inactive ones + + this._nActiveActions = 0; + this._actionsByClip = {}; // inside: + // { + // knownActions: Array< AnimationAction > - used as prototypes + // actionByRoot: AnimationAction - lookup + // } + + this._bindings = []; // 'nActiveBindings' followed by inactive ones + + this._nActiveBindings = 0; + this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > + + this._controlInterpolants = []; // same game as above + + this._nActiveControlInterpolants = 0; + const scope = this; + this.stats = { + actions: { + get total() { + return scope._actions.length; + }, + + get inUse() { + return scope._nActiveActions; + } + + }, + bindings: { + get total() { + return scope._bindings.length; + }, + + get inUse() { + return scope._nActiveBindings; + } + + }, + controlInterpolants: { + get total() { + return scope._controlInterpolants.length; + }, + + get inUse() { + return scope._nActiveControlInterpolants; + } + + } + }; + } // Memory management for AnimationAction objects + + + _isActiveAction(action) { + const index = action._cacheIndex; + return index !== null && index < this._nActiveActions; + } + + _addInactiveAction(action, clipUuid, rootUuid) { + const actions = this._actions, + actionsByClip = this._actionsByClip; + let actionsForClip = actionsByClip[clipUuid]; + + if (actionsForClip === undefined) { + actionsForClip = { + knownActions: [action], + actionByRoot: {} + }; + action._byClipCacheIndex = 0; + actionsByClip[clipUuid] = actionsForClip; + } else { + const knownActions = actionsForClip.knownActions; + action._byClipCacheIndex = knownActions.length; + knownActions.push(action); + } + + action._cacheIndex = actions.length; + actions.push(action); + actionsForClip.actionByRoot[rootUuid] = action; + } + + _removeInactiveAction(action) { + const actions = this._actions, + lastInactiveAction = actions[actions.length - 1], + cacheIndex = action._cacheIndex; + lastInactiveAction._cacheIndex = cacheIndex; + actions[cacheIndex] = lastInactiveAction; + actions.pop(); + action._cacheIndex = null; + const clipUuid = action._clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[clipUuid], + knownActionsForClip = actionsForClip.knownActions, + lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1], + byClipCacheIndex = action._byClipCacheIndex; + lastKnownAction._byClipCacheIndex = byClipCacheIndex; + knownActionsForClip[byClipCacheIndex] = lastKnownAction; + knownActionsForClip.pop(); + action._byClipCacheIndex = null; + const actionByRoot = actionsForClip.actionByRoot, + rootUuid = (action._localRoot || this._root).uuid; + delete actionByRoot[rootUuid]; + + if (knownActionsForClip.length === 0) { + delete actionsByClip[clipUuid]; + } + + this._removeInactiveBindingsForAction(action); + } + + _removeInactiveBindingsForAction(action) { + const bindings = action._propertyBindings; + + for (let i = 0, n = bindings.length; i !== n; ++i) { + const binding = bindings[i]; + + if (--binding.referenceCount === 0) { + this._removeInactiveBinding(binding); + } + } + } + + _lendAction(action) { + // [ active actions | inactive actions ] + // [ active actions >| inactive actions ] + // s a + // <-swap-> + // a s + const actions = this._actions, + prevIndex = action._cacheIndex, + lastActiveIndex = this._nActiveActions++, + firstInactiveAction = actions[lastActiveIndex]; + action._cacheIndex = lastActiveIndex; + actions[lastActiveIndex] = action; + firstInactiveAction._cacheIndex = prevIndex; + actions[prevIndex] = firstInactiveAction; + } + + _takeBackAction(action) { + // [ active actions | inactive actions ] + // [ active actions |< inactive actions ] + // a s + // <-swap-> + // s a + const actions = this._actions, + prevIndex = action._cacheIndex, + firstInactiveIndex = --this._nActiveActions, + lastActiveAction = actions[firstInactiveIndex]; + action._cacheIndex = firstInactiveIndex; + actions[firstInactiveIndex] = action; + lastActiveAction._cacheIndex = prevIndex; + actions[prevIndex] = lastActiveAction; + } // Memory management for PropertyMixer objects + + + _addInactiveBinding(binding, rootUuid, trackName) { + const bindingsByRoot = this._bindingsByRootAndName, + bindings = this._bindings; + let bindingByName = bindingsByRoot[rootUuid]; + + if (bindingByName === undefined) { + bindingByName = {}; + bindingsByRoot[rootUuid] = bindingByName; + } + + bindingByName[trackName] = binding; + binding._cacheIndex = bindings.length; + bindings.push(binding); + } + + _removeInactiveBinding(binding) { + const bindings = this._bindings, + propBinding = binding.binding, + rootUuid = propBinding.rootNode.uuid, + trackName = propBinding.path, + bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[rootUuid], + lastInactiveBinding = bindings[bindings.length - 1], + cacheIndex = binding._cacheIndex; + lastInactiveBinding._cacheIndex = cacheIndex; + bindings[cacheIndex] = lastInactiveBinding; + bindings.pop(); + delete bindingByName[trackName]; + + if (Object.keys(bindingByName).length === 0) { + delete bindingsByRoot[rootUuid]; + } + } + + _lendBinding(binding) { + const bindings = this._bindings, + prevIndex = binding._cacheIndex, + lastActiveIndex = this._nActiveBindings++, + firstInactiveBinding = bindings[lastActiveIndex]; + binding._cacheIndex = lastActiveIndex; + bindings[lastActiveIndex] = binding; + firstInactiveBinding._cacheIndex = prevIndex; + bindings[prevIndex] = firstInactiveBinding; + } + + _takeBackBinding(binding) { + const bindings = this._bindings, + prevIndex = binding._cacheIndex, + firstInactiveIndex = --this._nActiveBindings, + lastActiveBinding = bindings[firstInactiveIndex]; + binding._cacheIndex = firstInactiveIndex; + bindings[firstInactiveIndex] = binding; + lastActiveBinding._cacheIndex = prevIndex; + bindings[prevIndex] = lastActiveBinding; + } // Memory management of Interpolants for weight and time scale + + + _lendControlInterpolant() { + const interpolants = this._controlInterpolants, + lastActiveIndex = this._nActiveControlInterpolants++; + let interpolant = interpolants[lastActiveIndex]; + + if (interpolant === undefined) { + interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer); + interpolant.__cacheIndex = lastActiveIndex; + interpolants[lastActiveIndex] = interpolant; + } + + return interpolant; + } + + _takeBackControlInterpolant(interpolant) { + const interpolants = this._controlInterpolants, + prevIndex = interpolant.__cacheIndex, + firstInactiveIndex = --this._nActiveControlInterpolants, + lastActiveInterpolant = interpolants[firstInactiveIndex]; + interpolant.__cacheIndex = firstInactiveIndex; + interpolants[firstInactiveIndex] = interpolant; + lastActiveInterpolant.__cacheIndex = prevIndex; + interpolants[prevIndex] = lastActiveInterpolant; + } // return an action for a clip optionally using a custom root target + // object (this method allocates a lot of dynamic memory in case a + // previously unknown clip/root combination is specified) + + + clipAction(clip, optionalRoot, blendMode) { + const root = optionalRoot || this._root, + rootUuid = root.uuid; + let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip; + const clipUuid = clipObject !== null ? clipObject.uuid : clip; + const actionsForClip = this._actionsByClip[clipUuid]; + let prototypeAction = null; + + if (blendMode === undefined) { + if (clipObject !== null) { + blendMode = clipObject.blendMode; + } else { + blendMode = NormalAnimationBlendMode; + } + } + + if (actionsForClip !== undefined) { + const existingAction = actionsForClip.actionByRoot[rootUuid]; + + if (existingAction !== undefined && existingAction.blendMode === blendMode) { + return existingAction; + } // we know the clip, so we don't have to parse all + // the bindings again but can just copy + + + prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action + + if (clipObject === null) clipObject = prototypeAction._clip; + } // clip must be known when specified via string + + + if (clipObject === null) return null; // allocate all resources required to run it + + const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode); + + this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager + + + this._addInactiveAction(newAction, clipUuid, rootUuid); + + return newAction; + } // get an existing action + + + existingAction(clip, optionalRoot) { + const root = optionalRoot || this._root, + rootUuid = root.uuid, + clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip, + clipUuid = clipObject ? clipObject.uuid : clip, + actionsForClip = this._actionsByClip[clipUuid]; + + if (actionsForClip !== undefined) { + return actionsForClip.actionByRoot[rootUuid] || null; + } + + return null; + } // deactivates all previously scheduled actions + + + stopAllAction() { + const actions = this._actions, + nActions = this._nActiveActions; + + for (let i = nActions - 1; i >= 0; --i) { + actions[i].stop(); + } + + return this; + } // advance the time and update apply the animation + + + update(deltaTime) { + deltaTime *= this.timeScale; + const actions = this._actions, + nActions = this._nActiveActions, + time = this.time += deltaTime, + timeDirection = Math.sign(deltaTime), + accuIndex = this._accuIndex ^= 1; // run active actions + + for (let i = 0; i !== nActions; ++i) { + const action = actions[i]; + + action._update(time, deltaTime, timeDirection, accuIndex); + } // update scene graph + + + const bindings = this._bindings, + nBindings = this._nActiveBindings; + + for (let i = 0; i !== nBindings; ++i) { + bindings[i].apply(accuIndex); + } + + return this; + } // Allows you to seek to a specific time in an animation. + + + setTime(timeInSeconds) { + this.time = 0; // Zero out time attribute for AnimationMixer object; + + for (let i = 0; i < this._actions.length; i++) { + this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects. + } + + return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object. + } // return this mixer's root target object + + + getRoot() { + return this._root; + } // free all resources specific to a particular clip + + + uncacheClip(clip) { + const actions = this._actions, + clipUuid = clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[clipUuid]; + + if (actionsForClip !== undefined) { + // note: just calling _removeInactiveAction would mess up the + // iteration state and also require updating the state we can + // just throw away + const actionsToRemove = actionsForClip.knownActions; + + for (let i = 0, n = actionsToRemove.length; i !== n; ++i) { + const action = actionsToRemove[i]; + + this._deactivateAction(action); + + const cacheIndex = action._cacheIndex, + lastInactiveAction = actions[actions.length - 1]; + action._cacheIndex = null; + action._byClipCacheIndex = null; + lastInactiveAction._cacheIndex = cacheIndex; + actions[cacheIndex] = lastInactiveAction; + actions.pop(); + + this._removeInactiveBindingsForAction(action); + } + + delete actionsByClip[clipUuid]; + } + } // free all resources specific to a particular root target object + + + uncacheRoot(root) { + const rootUuid = root.uuid, + actionsByClip = this._actionsByClip; + + for (const clipUuid in actionsByClip) { + const actionByRoot = actionsByClip[clipUuid].actionByRoot, + action = actionByRoot[rootUuid]; + + if (action !== undefined) { + this._deactivateAction(action); + + this._removeInactiveAction(action); + } + } + + const bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[rootUuid]; + + if (bindingByName !== undefined) { + for (const trackName in bindingByName) { + const binding = bindingByName[trackName]; + binding.restoreOriginalState(); + + this._removeInactiveBinding(binding); + } + } + } // remove a targeted clip from the cache + + + uncacheAction(clip, optionalRoot) { + const action = this.existingAction(clip, optionalRoot); + + if (action !== null) { + this._deactivateAction(action); + + this._removeInactiveAction(action); + } + } + +} + +AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1); + +class Uniform { + constructor(value) { + if (typeof value === 'string') { + console.warn('THREE.Uniform: Type parameter is no longer needed.'); + value = arguments[1]; + } + + this.value = value; + } + + clone() { + return new Uniform(this.value.clone === undefined ? this.value : this.value.clone()); + } + +} + +class InstancedInterleavedBuffer extends InterleavedBuffer { + constructor(array, stride, meshPerAttribute = 1) { + super(array, stride); + this.meshPerAttribute = meshPerAttribute; + } + + copy(source) { + super.copy(source); + this.meshPerAttribute = source.meshPerAttribute; + return this; + } + + clone(data) { + const ib = super.clone(data); + ib.meshPerAttribute = this.meshPerAttribute; + return ib; + } + + toJSON(data) { + const json = super.toJSON(data); + json.isInstancedInterleavedBuffer = true; + json.meshPerAttribute = this.meshPerAttribute; + return json; + } + +} + +InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true; + +class GLBufferAttribute { + constructor(buffer, type, itemSize, elementSize, count) { + this.buffer = buffer; + this.type = type; + this.itemSize = itemSize; + this.elementSize = elementSize; + this.count = count; + this.version = 0; + } + + set needsUpdate(value) { + if (value === true) this.version++; + } + + setBuffer(buffer) { + this.buffer = buffer; + return this; + } + + setType(type, elementSize) { + this.type = type; + this.elementSize = elementSize; + return this; + } + + setItemSize(itemSize) { + this.itemSize = itemSize; + return this; + } + + setCount(count) { + this.count = count; + return this; + } + +} + +GLBufferAttribute.prototype.isGLBufferAttribute = true; + +class Raycaster { + constructor(origin, direction, near = 0, far = Infinity) { + this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations) + + this.near = near; + this.far = far; + this.camera = null; + this.layers = new Layers(); + this.params = { + Mesh: {}, + Line: { + threshold: 1 + }, + LOD: {}, + Points: { + threshold: 1 + }, + Sprite: {} + }; + } + + set(origin, direction) { + // direction is assumed to be normalized (for accurate distance calculations) + this.ray.set(origin, direction); + } + + setFromCamera(coords, camera) { + if (camera && camera.isPerspectiveCamera) { + this.ray.origin.setFromMatrixPosition(camera.matrixWorld); + this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize(); + this.camera = camera; + } else if (camera && camera.isOrthographicCamera) { + this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera + + this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld); + this.camera = camera; + } else { + console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type); + } + } + + intersectObject(object, recursive = true, intersects = []) { + intersectObject(object, this, intersects, recursive); + intersects.sort(ascSort); + return intersects; + } + + intersectObjects(objects, recursive = true, intersects = []) { + for (let i = 0, l = objects.length; i < l; i++) { + intersectObject(objects[i], this, intersects, recursive); + } + + intersects.sort(ascSort); + return intersects; + } + +} + +function ascSort(a, b) { + return a.distance - b.distance; +} + +function intersectObject(object, raycaster, intersects, recursive) { + if (object.layers.test(raycaster.layers)) { + object.raycast(raycaster, intersects); + } + + if (recursive === true) { + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + intersectObject(children[i], raycaster, intersects, true); + } + } +} + +/** + * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system + * + * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. + * The azimuthal angle (theta) is measured from the positive z-axis. + */ + +class Spherical { + constructor(radius = 1, phi = 0, theta = 0) { + this.radius = radius; + this.phi = phi; // polar angle + + this.theta = theta; // azimuthal angle + + return this; + } + + set(radius, phi, theta) { + this.radius = radius; + this.phi = phi; + this.theta = theta; + return this; + } + + copy(other) { + this.radius = other.radius; + this.phi = other.phi; + this.theta = other.theta; + return this; + } // restrict phi to be betwee EPS and PI-EPS + + + makeSafe() { + const EPS = 0.000001; + this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi)); + return this; + } + + setFromVector3(v) { + return this.setFromCartesianCoords(v.x, v.y, v.z); + } + + setFromCartesianCoords(x, y, z) { + this.radius = Math.sqrt(x * x + y * y + z * z); + + if (this.radius === 0) { + this.theta = 0; + this.phi = 0; + } else { + this.theta = Math.atan2(x, z); + this.phi = Math.acos(clamp(y / this.radius, -1, 1)); + } + + return this; + } + + clone() { + return new this.constructor().copy(this); + } + +} + +/** + * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system + */ +class Cylindrical { + constructor(radius = 1, theta = 0, y = 0) { + this.radius = radius; // distance from the origin to a point in the x-z plane + + this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis + + this.y = y; // height above the x-z plane + + return this; + } + + set(radius, theta, y) { + this.radius = radius; + this.theta = theta; + this.y = y; + return this; + } + + copy(other) { + this.radius = other.radius; + this.theta = other.theta; + this.y = other.y; + return this; + } + + setFromVector3(v) { + return this.setFromCartesianCoords(v.x, v.y, v.z); + } + + setFromCartesianCoords(x, y, z) { + this.radius = Math.sqrt(x * x + z * z); + this.theta = Math.atan2(x, z); + this.y = y; + return this; + } + + clone() { + return new this.constructor().copy(this); + } + +} + +const _vector$4 = /*@__PURE__*/new Vector2(); + +class Box2 { + constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) { + this.min = min; + this.max = max; + } + + set(min, max) { + this.min.copy(min); + this.max.copy(max); + return this; + } + + setFromPoints(points) { + this.makeEmpty(); + + for (let i = 0, il = points.length; i < il; i++) { + this.expandByPoint(points[i]); + } + + return this; + } + + setFromCenterAndSize(center, size) { + const halfSize = _vector$4.copy(size).multiplyScalar(0.5); + + this.min.copy(center).sub(halfSize); + this.max.copy(center).add(halfSize); + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(box) { + this.min.copy(box.min); + this.max.copy(box.max); + return this; + } + + makeEmpty() { + this.min.x = this.min.y = +Infinity; + this.max.x = this.max.y = -Infinity; + return this; + } + + isEmpty() { + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + return this.max.x < this.min.x || this.max.y < this.min.y; + } + + getCenter(target) { + return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); + } + + getSize(target) { + return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min); + } + + expandByPoint(point) { + this.min.min(point); + this.max.max(point); + return this; + } + + expandByVector(vector) { + this.min.sub(vector); + this.max.add(vector); + return this; + } + + expandByScalar(scalar) { + this.min.addScalar(-scalar); + this.max.addScalar(scalar); + return this; + } + + containsPoint(point) { + return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true; + } + + containsBox(box) { + return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; + } + + getParameter(point, target) { + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y)); + } + + intersectsBox(box) { + // using 4 splitting planes to rule out intersections + return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true; + } + + clampPoint(point, target) { + return target.copy(point).clamp(this.min, this.max); + } + + distanceToPoint(point) { + const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max); + + return clampedPoint.sub(point).length(); + } + + intersect(box) { + this.min.max(box.min); + this.max.min(box.max); + return this; + } + + union(box) { + this.min.min(box.min); + this.max.max(box.max); + return this; + } + + translate(offset) { + this.min.add(offset); + this.max.add(offset); + return this; + } + + equals(box) { + return box.min.equals(this.min) && box.max.equals(this.max); + } + +} + +Box2.prototype.isBox2 = true; + +const _startP = /*@__PURE__*/new Vector3(); + +const _startEnd = /*@__PURE__*/new Vector3(); + +class Line3 { + constructor(start = new Vector3(), end = new Vector3()) { + this.start = start; + this.end = end; + } + + set(start, end) { + this.start.copy(start); + this.end.copy(end); + return this; + } + + copy(line) { + this.start.copy(line.start); + this.end.copy(line.end); + return this; + } + + getCenter(target) { + return target.addVectors(this.start, this.end).multiplyScalar(0.5); + } + + delta(target) { + return target.subVectors(this.end, this.start); + } + + distanceSq() { + return this.start.distanceToSquared(this.end); + } + + distance() { + return this.start.distanceTo(this.end); + } + + at(t, target) { + return this.delta(target).multiplyScalar(t).add(this.start); + } + + closestPointToPointParameter(point, clampToLine) { + _startP.subVectors(point, this.start); + + _startEnd.subVectors(this.end, this.start); + + const startEnd2 = _startEnd.dot(_startEnd); + + const startEnd_startP = _startEnd.dot(_startP); + + let t = startEnd_startP / startEnd2; + + if (clampToLine) { + t = clamp(t, 0, 1); + } + + return t; + } + + closestPointToPoint(point, clampToLine, target) { + const t = this.closestPointToPointParameter(point, clampToLine); + return this.delta(target).multiplyScalar(t).add(this.start); + } + + applyMatrix4(matrix) { + this.start.applyMatrix4(matrix); + this.end.applyMatrix4(matrix); + return this; + } + + equals(line) { + return line.start.equals(this.start) && line.end.equals(this.end); + } + + clone() { + return new this.constructor().copy(this); + } + +} + +const _vector$3 = /*@__PURE__*/new Vector3(); + +class SpotLightHelper extends Object3D { + constructor(light, color) { + super(); + this.light = light; + this.light.updateMatrixWorld(); + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + this.color = color; + const geometry = new BufferGeometry(); + const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1]; + + for (let i = 0, j = 1, l = 32; i < l; i++, j++) { + const p1 = i / l * Math.PI * 2; + const p2 = j / l * Math.PI * 2; + positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1); + } + + geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); + const material = new LineBasicMaterial({ + fog: false, + toneMapped: false + }); + this.cone = new LineSegments(geometry, material); + this.add(this.cone); + this.update(); + } + + dispose() { + this.cone.geometry.dispose(); + this.cone.material.dispose(); + } + + update() { + this.light.updateMatrixWorld(); + const coneLength = this.light.distance ? this.light.distance : 1000; + const coneWidth = coneLength * Math.tan(this.light.angle); + this.cone.scale.set(coneWidth, coneWidth, coneLength); + + _vector$3.setFromMatrixPosition(this.light.target.matrixWorld); + + this.cone.lookAt(_vector$3); + + if (this.color !== undefined) { + this.cone.material.color.set(this.color); + } else { + this.cone.material.color.copy(this.light.color); + } + } + +} + +const _vector$2 = /*@__PURE__*/new Vector3(); + +const _boneMatrix = /*@__PURE__*/new Matrix4(); + +const _matrixWorldInv = /*@__PURE__*/new Matrix4(); + +class SkeletonHelper extends LineSegments { + constructor(object) { + const bones = getBoneList(object); + const geometry = new BufferGeometry(); + const vertices = []; + const colors = []; + const color1 = new Color(0, 0, 1); + const color2 = new Color(0, 1, 0); + + for (let i = 0; i < bones.length; i++) { + const bone = bones[i]; + + if (bone.parent && bone.parent.isBone) { + vertices.push(0, 0, 0); + vertices.push(0, 0, 0); + colors.push(color1.r, color1.g, color1.b); + colors.push(color2.r, color2.g, color2.b); + } + } + + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + depthTest: false, + depthWrite: false, + toneMapped: false, + transparent: true + }); + super(geometry, material); + this.type = 'SkeletonHelper'; + this.isSkeletonHelper = true; + this.root = object; + this.bones = bones; + this.matrix = object.matrixWorld; + this.matrixAutoUpdate = false; + } + + updateMatrixWorld(force) { + const bones = this.bones; + const geometry = this.geometry; + const position = geometry.getAttribute('position'); + + _matrixWorldInv.copy(this.root.matrixWorld).invert(); + + for (let i = 0, j = 0; i < bones.length; i++) { + const bone = bones[i]; + + if (bone.parent && bone.parent.isBone) { + _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld); + + _vector$2.setFromMatrixPosition(_boneMatrix); + + position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z); + + _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld); + + _vector$2.setFromMatrixPosition(_boneMatrix); + + position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z); + j += 2; + } + } + + geometry.getAttribute('position').needsUpdate = true; + super.updateMatrixWorld(force); + } + +} + +function getBoneList(object) { + const boneList = []; + + if (object && object.isBone) { + boneList.push(object); + } + + for (let i = 0; i < object.children.length; i++) { + boneList.push.apply(boneList, getBoneList(object.children[i])); + } + + return boneList; +} + +class PointLightHelper extends Mesh { + constructor(light, sphereSize, color) { + const geometry = new SphereGeometry(sphereSize, 4, 2); + const material = new MeshBasicMaterial({ + wireframe: true, + fog: false, + toneMapped: false + }); + super(geometry, material); + this.light = light; + this.light.updateMatrixWorld(); + this.color = color; + this.type = 'PointLightHelper'; + this.matrix = this.light.matrixWorld; + this.matrixAutoUpdate = false; + this.update(); + /* + // TODO: delete this comment? + const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 ); + const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); + this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); + this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); + const d = light.distance; + if ( d === 0.0 ) { + this.lightDistance.visible = false; + } else { + this.lightDistance.scale.set( d, d, d ); + } + this.add( this.lightDistance ); + */ + } + + dispose() { + this.geometry.dispose(); + this.material.dispose(); + } + + update() { + if (this.color !== undefined) { + this.material.color.set(this.color); + } else { + this.material.color.copy(this.light.color); + } + /* + const d = this.light.distance; + if ( d === 0.0 ) { + this.lightDistance.visible = false; + } else { + this.lightDistance.visible = true; + this.lightDistance.scale.set( d, d, d ); + } + */ + + } + +} + +const _vector$1 = /*@__PURE__*/new Vector3(); + +const _color1 = /*@__PURE__*/new Color(); + +const _color2 = /*@__PURE__*/new Color(); + +class HemisphereLightHelper extends Object3D { + constructor(light, size, color) { + super(); + this.light = light; + this.light.updateMatrixWorld(); + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + this.color = color; + const geometry = new OctahedronGeometry(size); + geometry.rotateY(Math.PI * 0.5); + this.material = new MeshBasicMaterial({ + wireframe: true, + fog: false, + toneMapped: false + }); + if (this.color === undefined) this.material.vertexColors = true; + const position = geometry.getAttribute('position'); + const colors = new Float32Array(position.count * 3); + geometry.setAttribute('color', new BufferAttribute(colors, 3)); + this.add(new Mesh(geometry, this.material)); + this.update(); + } + + dispose() { + this.children[0].geometry.dispose(); + this.children[0].material.dispose(); + } + + update() { + const mesh = this.children[0]; + + if (this.color !== undefined) { + this.material.color.set(this.color); + } else { + const colors = mesh.geometry.getAttribute('color'); + + _color1.copy(this.light.color); + + _color2.copy(this.light.groundColor); + + for (let i = 0, l = colors.count; i < l; i++) { + const color = i < l / 2 ? _color1 : _color2; + colors.setXYZ(i, color.r, color.g, color.b); + } + + colors.needsUpdate = true; + } + + mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate()); + } + +} + +class GridHelper extends LineSegments { + constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) { + color1 = new Color(color1); + color2 = new Color(color2); + const center = divisions / 2; + const step = size / divisions; + const halfSize = size / 2; + const vertices = [], + colors = []; + + for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) { + vertices.push(-halfSize, 0, k, halfSize, 0, k); + vertices.push(k, 0, -halfSize, k, 0, halfSize); + const color = i === center ? color1 : color2; + color.toArray(colors, j); + j += 3; + color.toArray(colors, j); + j += 3; + color.toArray(colors, j); + j += 3; + color.toArray(colors, j); + j += 3; + } + + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + toneMapped: false + }); + super(geometry, material); + this.type = 'GridHelper'; + } + +} + +class PolarGridHelper extends LineSegments { + constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) { + color1 = new Color(color1); + color2 = new Color(color2); + const vertices = []; + const colors = []; // create the radials + + for (let i = 0; i <= radials; i++) { + const v = i / radials * (Math.PI * 2); + const x = Math.sin(v) * radius; + const z = Math.cos(v) * radius; + vertices.push(0, 0, 0); + vertices.push(x, 0, z); + const color = i & 1 ? color1 : color2; + colors.push(color.r, color.g, color.b); + colors.push(color.r, color.g, color.b); + } // create the circles + + + for (let i = 0; i <= circles; i++) { + const color = i & 1 ? color1 : color2; + const r = radius - radius / circles * i; + + for (let j = 0; j < divisions; j++) { + // first vertex + let v = j / divisions * (Math.PI * 2); + let x = Math.sin(v) * r; + let z = Math.cos(v) * r; + vertices.push(x, 0, z); + colors.push(color.r, color.g, color.b); // second vertex + + v = (j + 1) / divisions * (Math.PI * 2); + x = Math.sin(v) * r; + z = Math.cos(v) * r; + vertices.push(x, 0, z); + colors.push(color.r, color.g, color.b); + } + } + + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + toneMapped: false + }); + super(geometry, material); + this.type = 'PolarGridHelper'; + } + +} + +const _v1 = /*@__PURE__*/new Vector3(); + +const _v2 = /*@__PURE__*/new Vector3(); + +const _v3 = /*@__PURE__*/new Vector3(); + +class DirectionalLightHelper extends Object3D { + constructor(light, size, color) { + super(); + this.light = light; + this.light.updateMatrixWorld(); + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + this.color = color; + if (size === undefined) size = 1; + let geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3)); + const material = new LineBasicMaterial({ + fog: false, + toneMapped: false + }); + this.lightPlane = new Line(geometry, material); + this.add(this.lightPlane); + geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3)); + this.targetLine = new Line(geometry, material); + this.add(this.targetLine); + this.update(); + } + + dispose() { + this.lightPlane.geometry.dispose(); + this.lightPlane.material.dispose(); + this.targetLine.geometry.dispose(); + this.targetLine.material.dispose(); + } + + update() { + _v1.setFromMatrixPosition(this.light.matrixWorld); + + _v2.setFromMatrixPosition(this.light.target.matrixWorld); + + _v3.subVectors(_v2, _v1); + + this.lightPlane.lookAt(_v2); + + if (this.color !== undefined) { + this.lightPlane.material.color.set(this.color); + this.targetLine.material.color.set(this.color); + } else { + this.lightPlane.material.color.copy(this.light.color); + this.targetLine.material.color.copy(this.light.color); + } + + this.targetLine.lookAt(_v2); + this.targetLine.scale.z = _v3.length(); + } + +} + +const _vector = /*@__PURE__*/new Vector3(); + +const _camera = /*@__PURE__*/new Camera(); +/** + * - shows frustum, line of sight and up of the camera + * - suitable for fast updates + * - based on frustum visualization in lightgl.js shadowmap example + * https://github.com/evanw/lightgl.js/blob/master/tests/shadowmap.html + */ + + +class CameraHelper extends LineSegments { + constructor(camera) { + const geometry = new BufferGeometry(); + const material = new LineBasicMaterial({ + color: 0xffffff, + vertexColors: true, + toneMapped: false + }); + const vertices = []; + const colors = []; + const pointMap = {}; // colors + + const colorFrustum = new Color(0xffaa00); + const colorCone = new Color(0xff0000); + const colorUp = new Color(0x00aaff); + const colorTarget = new Color(0xffffff); + const colorCross = new Color(0x333333); // near + + addLine('n1', 'n2', colorFrustum); + addLine('n2', 'n4', colorFrustum); + addLine('n4', 'n3', colorFrustum); + addLine('n3', 'n1', colorFrustum); // far + + addLine('f1', 'f2', colorFrustum); + addLine('f2', 'f4', colorFrustum); + addLine('f4', 'f3', colorFrustum); + addLine('f3', 'f1', colorFrustum); // sides + + addLine('n1', 'f1', colorFrustum); + addLine('n2', 'f2', colorFrustum); + addLine('n3', 'f3', colorFrustum); + addLine('n4', 'f4', colorFrustum); // cone + + addLine('p', 'n1', colorCone); + addLine('p', 'n2', colorCone); + addLine('p', 'n3', colorCone); + addLine('p', 'n4', colorCone); // up + + addLine('u1', 'u2', colorUp); + addLine('u2', 'u3', colorUp); + addLine('u3', 'u1', colorUp); // target + + addLine('c', 't', colorTarget); + addLine('p', 'c', colorCross); // cross + + addLine('cn1', 'cn2', colorCross); + addLine('cn3', 'cn4', colorCross); + addLine('cf1', 'cf2', colorCross); + addLine('cf3', 'cf4', colorCross); + + function addLine(a, b, color) { + addPoint(a, color); + addPoint(b, color); + } + + function addPoint(id, color) { + vertices.push(0, 0, 0); + colors.push(color.r, color.g, color.b); + + if (pointMap[id] === undefined) { + pointMap[id] = []; + } + + pointMap[id].push(vertices.length / 3 - 1); + } + + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + super(geometry, material); + this.type = 'CameraHelper'; + this.camera = camera; + if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix(); + this.matrix = camera.matrixWorld; + this.matrixAutoUpdate = false; + this.pointMap = pointMap; + this.update(); + } + + update() { + const geometry = this.geometry; + const pointMap = this.pointMap; + const w = 1, + h = 1; // we need just camera projection matrix inverse + // world matrix must be identity + + _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target + + + setPoint('c', pointMap, geometry, _camera, 0, 0, -1); + setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near + + setPoint('n1', pointMap, geometry, _camera, -w, -h, -1); + setPoint('n2', pointMap, geometry, _camera, w, -h, -1); + setPoint('n3', pointMap, geometry, _camera, -w, h, -1); + setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far + + setPoint('f1', pointMap, geometry, _camera, -w, -h, 1); + setPoint('f2', pointMap, geometry, _camera, w, -h, 1); + setPoint('f3', pointMap, geometry, _camera, -w, h, 1); + setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up + + setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1); + setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1); + setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross + + setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1); + setPoint('cf2', pointMap, geometry, _camera, w, 0, 1); + setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1); + setPoint('cf4', pointMap, geometry, _camera, 0, h, 1); + setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1); + setPoint('cn2', pointMap, geometry, _camera, w, 0, -1); + setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1); + setPoint('cn4', pointMap, geometry, _camera, 0, h, -1); + geometry.getAttribute('position').needsUpdate = true; + } + + dispose() { + this.geometry.dispose(); + this.material.dispose(); + } + +} + +function setPoint(point, pointMap, geometry, camera, x, y, z) { + _vector.set(x, y, z).unproject(camera); + + const points = pointMap[point]; + + if (points !== undefined) { + const position = geometry.getAttribute('position'); + + for (let i = 0, l = points.length; i < l; i++) { + position.setXYZ(points[i], _vector.x, _vector.y, _vector.z); + } + } +} + +const _box = /*@__PURE__*/new Box3(); + +class BoxHelper extends LineSegments { + constructor(object, color = 0xffff00) { + const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); + const positions = new Float32Array(8 * 3); + const geometry = new BufferGeometry(); + geometry.setIndex(new BufferAttribute(indices, 1)); + geometry.setAttribute('position', new BufferAttribute(positions, 3)); + super(geometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.object = object; + this.type = 'BoxHelper'; + this.matrixAutoUpdate = false; + this.update(); + } + + update(object) { + if (object !== undefined) { + console.warn('THREE.BoxHelper: .update() has no longer arguments.'); + } + + if (this.object !== undefined) { + _box.setFromObject(this.object); + } + + if (_box.isEmpty()) return; + const min = _box.min; + const max = _box.max; + /* + 5____4 + 1/___0/| + | 6__|_7 + 2/___3/ + 0: max.x, max.y, max.z + 1: min.x, max.y, max.z + 2: min.x, min.y, max.z + 3: max.x, min.y, max.z + 4: max.x, max.y, min.z + 5: min.x, max.y, min.z + 6: min.x, min.y, min.z + 7: max.x, min.y, min.z + */ + + const position = this.geometry.attributes.position; + const array = position.array; + array[0] = max.x; + array[1] = max.y; + array[2] = max.z; + array[3] = min.x; + array[4] = max.y; + array[5] = max.z; + array[6] = min.x; + array[7] = min.y; + array[8] = max.z; + array[9] = max.x; + array[10] = min.y; + array[11] = max.z; + array[12] = max.x; + array[13] = max.y; + array[14] = min.z; + array[15] = min.x; + array[16] = max.y; + array[17] = min.z; + array[18] = min.x; + array[19] = min.y; + array[20] = min.z; + array[21] = max.x; + array[22] = min.y; + array[23] = min.z; + position.needsUpdate = true; + this.geometry.computeBoundingSphere(); + } + + setFromObject(object) { + this.object = object; + this.update(); + return this; + } + + copy(source) { + LineSegments.prototype.copy.call(this, source); + this.object = source.object; + return this; + } + +} + +class Box3Helper extends LineSegments { + constructor(box, color = 0xffff00) { + const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); + const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1]; + const geometry = new BufferGeometry(); + geometry.setIndex(new BufferAttribute(indices, 1)); + geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); + super(geometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.box = box; + this.type = 'Box3Helper'; + this.geometry.computeBoundingSphere(); + } + + updateMatrixWorld(force) { + const box = this.box; + if (box.isEmpty()) return; + box.getCenter(this.position); + box.getSize(this.scale); + this.scale.multiplyScalar(0.5); + super.updateMatrixWorld(force); + } + +} + +class PlaneHelper extends Line { + constructor(plane, size = 1, hex = 0xffff00) { + const color = hex; + const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0]; + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); + geometry.computeBoundingSphere(); + super(geometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.type = 'PlaneHelper'; + this.plane = plane; + this.size = size; + const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1]; + const geometry2 = new BufferGeometry(); + geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3)); + geometry2.computeBoundingSphere(); + this.add(new Mesh(geometry2, new MeshBasicMaterial({ + color: color, + opacity: 0.2, + transparent: true, + depthWrite: false, + toneMapped: false + }))); + } + + updateMatrixWorld(force) { + let scale = -this.plane.constant; + if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter + + this.scale.set(0.5 * this.size, 0.5 * this.size, scale); + this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here + + this.lookAt(this.plane.normal); + super.updateMatrixWorld(force); + } + +} + +const _axis = /*@__PURE__*/new Vector3(); + +let _lineGeometry, _coneGeometry; + +class ArrowHelper extends Object3D { + // dir is assumed to be normalized + constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) { + super(); + this.type = 'ArrowHelper'; + + if (_lineGeometry === undefined) { + _lineGeometry = new BufferGeometry(); + + _lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3)); + + _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1); + + _coneGeometry.translate(0, -0.5, 0); + } + + this.position.copy(origin); + this.line = new Line(_lineGeometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.line.matrixAutoUpdate = false; + this.add(this.line); + this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({ + color: color, + toneMapped: false + })); + this.cone.matrixAutoUpdate = false; + this.add(this.cone); + this.setDirection(dir); + this.setLength(length, headLength, headWidth); + } + + setDirection(dir) { + // dir is assumed to be normalized + if (dir.y > 0.99999) { + this.quaternion.set(0, 0, 0, 1); + } else if (dir.y < -0.99999) { + this.quaternion.set(1, 0, 0, 0); + } else { + _axis.set(dir.z, 0, -dir.x).normalize(); + + const radians = Math.acos(dir.y); + this.quaternion.setFromAxisAngle(_axis, radians); + } + } + + setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) { + this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458 + + this.line.updateMatrix(); + this.cone.scale.set(headWidth, headLength, headWidth); + this.cone.position.y = length; + this.cone.updateMatrix(); + } + + setColor(color) { + this.line.material.color.set(color); + this.cone.material.color.set(color); + } + + copy(source) { + super.copy(source, false); + this.line.copy(source.line); + this.cone.copy(source.cone); + return this; + } + +} + +class AxesHelper extends LineSegments { + constructor(size = 1) { + const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size]; + const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1]; + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + toneMapped: false + }); + super(geometry, material); + this.type = 'AxesHelper'; + } + + setColors(xAxisColor, yAxisColor, zAxisColor) { + const color = new Color(); + const array = this.geometry.attributes.color.array; + color.set(xAxisColor); + color.toArray(array, 0); + color.toArray(array, 3); + color.set(yAxisColor); + color.toArray(array, 6); + color.toArray(array, 9); + color.set(zAxisColor); + color.toArray(array, 12); + color.toArray(array, 15); + this.geometry.attributes.color.needsUpdate = true; + return this; + } + + dispose() { + this.geometry.dispose(); + this.material.dispose(); + } + +} + +class ShapePath { + constructor() { + this.type = 'ShapePath'; + this.color = new Color(); + this.subPaths = []; + this.currentPath = null; + } + + moveTo(x, y) { + this.currentPath = new Path(); + this.subPaths.push(this.currentPath); + this.currentPath.moveTo(x, y); + return this; + } + + lineTo(x, y) { + this.currentPath.lineTo(x, y); + return this; + } + + quadraticCurveTo(aCPx, aCPy, aX, aY) { + this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY); + return this; + } + + bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { + this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY); + return this; + } + + splineThru(pts) { + this.currentPath.splineThru(pts); + return this; + } + + toShapes(isCCW, noHoles) { + function toShapesNoHoles(inSubpaths) { + const shapes = []; + + for (let i = 0, l = inSubpaths.length; i < l; i++) { + const tmpPath = inSubpaths[i]; + const tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + shapes.push(tmpShape); + } + + return shapes; + } + + function isPointInsidePolygon(inPt, inPolygon) { + const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or + // toggling of inside/outside at every single! intersection point of an edge + // with the horizontal line through inPt, left of inPt + // not counting lowerY endpoints of edges and whole edges on that line + + let inside = false; + + for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) { + let edgeLowPt = inPolygon[p]; + let edgeHighPt = inPolygon[q]; + let edgeDx = edgeHighPt.x - edgeLowPt.x; + let edgeDy = edgeHighPt.y - edgeLowPt.y; + + if (Math.abs(edgeDy) > Number.EPSILON) { + // not parallel + if (edgeDy < 0) { + edgeLowPt = inPolygon[q]; + edgeDx = -edgeDx; + edgeHighPt = inPolygon[p]; + edgeDy = -edgeDy; + } + + if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue; + + if (inPt.y === edgeLowPt.y) { + if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ? + // continue; // no intersection or edgeLowPt => doesn't count !!! + } else { + const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y); + if (perpEdge === 0) return true; // inPt is on contour ? + + if (perpEdge < 0) continue; + inside = !inside; // true intersection left of inPt + } + } else { + // parallel or collinear + if (inPt.y !== edgeLowPt.y) continue; // parallel + // edge lies on the same horizontal line as inPt + + if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour ! + // continue; + } + } + + return inside; + } + + const isClockWise = ShapeUtils.isClockWise; + const subPaths = this.subPaths; + if (subPaths.length === 0) return []; + if (noHoles === true) return toShapesNoHoles(subPaths); + let solid, tmpPath, tmpShape; + const shapes = []; + + if (subPaths.length === 1) { + tmpPath = subPaths[0]; + tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + shapes.push(tmpShape); + return shapes; + } + + let holesFirst = !isClockWise(subPaths[0].getPoints()); + holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst); + + const betterShapeHoles = []; + const newShapes = []; + let newShapeHoles = []; + let mainIdx = 0; + let tmpPoints; + newShapes[mainIdx] = undefined; + newShapeHoles[mainIdx] = []; + + for (let i = 0, l = subPaths.length; i < l; i++) { + tmpPath = subPaths[i]; + tmpPoints = tmpPath.getPoints(); + solid = isClockWise(tmpPoints); + solid = isCCW ? !solid : solid; + + if (solid) { + if (!holesFirst && newShapes[mainIdx]) mainIdx++; + newShapes[mainIdx] = { + s: new Shape(), + p: tmpPoints + }; + newShapes[mainIdx].s.curves = tmpPath.curves; + if (holesFirst) mainIdx++; + newShapeHoles[mainIdx] = []; //console.log('cw', i); + } else { + newShapeHoles[mainIdx].push({ + h: tmpPath, + p: tmpPoints[0] + }); //console.log('ccw', i); + } + } // only Holes? -> probably all Shapes with wrong orientation + + + if (!newShapes[0]) return toShapesNoHoles(subPaths); + + if (newShapes.length > 1) { + let ambiguous = false; + const toChange = []; + + for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { + betterShapeHoles[sIdx] = []; + } + + for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { + const sho = newShapeHoles[sIdx]; + + for (let hIdx = 0; hIdx < sho.length; hIdx++) { + const ho = sho[hIdx]; + let hole_unassigned = true; + + for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) { + if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) { + if (sIdx !== s2Idx) toChange.push({ + froms: sIdx, + tos: s2Idx, + hole: hIdx + }); + + if (hole_unassigned) { + hole_unassigned = false; + betterShapeHoles[s2Idx].push(ho); + } else { + ambiguous = true; + } + } + } + + if (hole_unassigned) { + betterShapeHoles[sIdx].push(ho); + } + } + } // console.log("ambiguous: ", ambiguous); + + + if (toChange.length > 0) { + // console.log("to change: ", toChange); + if (!ambiguous) newShapeHoles = betterShapeHoles; + } + } + + let tmpHoles; + + for (let i = 0, il = newShapes.length; i < il; i++) { + tmpShape = newShapes[i].s; + shapes.push(tmpShape); + tmpHoles = newShapeHoles[i]; + + for (let j = 0, jl = tmpHoles.length; j < jl; j++) { + tmpShape.holes.push(tmpHoles[j].h); + } + } //console.log("shape", shapes); + + + return shapes; + } + +} + +const _floatView = new Float32Array(1); + +const _int32View = new Int32Array(_floatView.buffer); + +class DataUtils { + // Converts float32 to float16 (stored as uint16 value). + static toHalfFloat(val) { + if (val > 65504) { + console.warn('THREE.DataUtils.toHalfFloat(): value exceeds 65504.'); + val = 65504; // maximum representable value in float16 + } // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410 + + /* This method is faster than the OpenEXR implementation (very often + * used, eg. in Ogre), with the additional benefit of rounding, inspired + * by James Tursa?s half-precision code. */ + + + _floatView[0] = val; + const x = _int32View[0]; + let bits = x >> 16 & 0x8000; + /* Get the sign */ + + let m = x >> 12 & 0x07ff; + /* Keep one extra bit for rounding */ + + const e = x >> 23 & 0xff; + /* Using int is faster here */ + + /* If zero, or denormal, or exponent underflows too much for a denormal + * half, return signed zero. */ + + if (e < 103) return bits; + /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */ + + if (e > 142) { + bits |= 0x7c00; + /* If exponent was 0xff and one mantissa bit was set, it means NaN, + * not Inf, so make sure we set one mantissa bit too. */ + + bits |= (e == 255 ? 0 : 1) && x & 0x007fffff; + return bits; + } + /* If exponent underflows but not too much, return a denormal */ + + + if (e < 113) { + m |= 0x0800; + /* Extra rounding may overflow and set mantissa to 0 and exponent + * to 1, which is OK. */ + + bits |= (m >> 114 - e) + (m >> 113 - e & 1); + return bits; + } + + bits |= e - 112 << 10 | m >> 1; + /* Extra rounding. An overflow will set mantissa to 0 and increment + * the exponent, which is OK. */ + + bits += m & 1; + return bits; + } + +} + +const LineStrip = 0; +const LinePieces = 1; +const NoColors = 0; +const FaceColors = 1; +const VertexColors = 2; +function MeshFaceMaterial(materials) { + console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.'); + return materials; +} +function MultiMaterial(materials = []) { + console.warn('THREE.MultiMaterial has been removed. Use an Array instead.'); + materials.isMultiMaterial = true; + materials.materials = materials; + + materials.clone = function () { + return materials.slice(); + }; + + return materials; +} +function PointCloud(geometry, material) { + console.warn('THREE.PointCloud has been renamed to THREE.Points.'); + return new Points(geometry, material); +} +function Particle(material) { + console.warn('THREE.Particle has been renamed to THREE.Sprite.'); + return new Sprite(material); +} +function ParticleSystem(geometry, material) { + console.warn('THREE.ParticleSystem has been renamed to THREE.Points.'); + return new Points(geometry, material); +} +function PointCloudMaterial(parameters) { + console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.'); + return new PointsMaterial(parameters); +} +function ParticleBasicMaterial(parameters) { + console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.'); + return new PointsMaterial(parameters); +} +function ParticleSystemMaterial(parameters) { + console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.'); + return new PointsMaterial(parameters); +} +function Vertex(x, y, z) { + console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.'); + return new Vector3(x, y, z); +} // + +function DynamicBufferAttribute(array, itemSize) { + console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.'); + return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage); +} +function Int8Attribute(array, itemSize) { + console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.'); + return new Int8BufferAttribute(array, itemSize); +} +function Uint8Attribute(array, itemSize) { + console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.'); + return new Uint8BufferAttribute(array, itemSize); +} +function Uint8ClampedAttribute(array, itemSize) { + console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.'); + return new Uint8ClampedBufferAttribute(array, itemSize); +} +function Int16Attribute(array, itemSize) { + console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.'); + return new Int16BufferAttribute(array, itemSize); +} +function Uint16Attribute(array, itemSize) { + console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.'); + return new Uint16BufferAttribute(array, itemSize); +} +function Int32Attribute(array, itemSize) { + console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.'); + return new Int32BufferAttribute(array, itemSize); +} +function Uint32Attribute(array, itemSize) { + console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.'); + return new Uint32BufferAttribute(array, itemSize); +} +function Float32Attribute(array, itemSize) { + console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.'); + return new Float32BufferAttribute(array, itemSize); +} +function Float64Attribute(array, itemSize) { + console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.'); + return new Float64BufferAttribute(array, itemSize); +} // + +Curve.create = function (construct, getPoint) { + console.log('THREE.Curve.create() has been deprecated'); + construct.prototype = Object.create(Curve.prototype); + construct.prototype.constructor = construct; + construct.prototype.getPoint = getPoint; + return construct; +}; // + + +Path.prototype.fromPoints = function (points) { + console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().'); + return this.setFromPoints(points); +}; // + + +function AxisHelper(size) { + console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.'); + return new AxesHelper(size); +} +function BoundingBoxHelper(object, color) { + console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.'); + return new BoxHelper(object, color); +} +function EdgesHelper(object, hex) { + console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.'); + return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({ + color: hex !== undefined ? hex : 0xffffff + })); +} + +GridHelper.prototype.setColors = function () { + console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.'); +}; + +SkeletonHelper.prototype.update = function () { + console.error('THREE.SkeletonHelper: update() no longer needs to be called.'); +}; + +function WireframeHelper(object, hex) { + console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.'); + return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({ + color: hex !== undefined ? hex : 0xffffff + })); +} // + +Loader.prototype.extractUrlBase = function (url) { + console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.'); + return LoaderUtils.extractUrlBase(url); +}; + +Loader.Handlers = { + add: function + /* regex, loader */ + () { + console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.'); + }, + get: function + /* file */ + () { + console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.'); + } +}; +function XHRLoader(manager) { + console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.'); + return new FileLoader(manager); +} +function BinaryTextureLoader(manager) { + console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.'); + return new DataTextureLoader(manager); +} // + +Box2.prototype.center = function (optionalTarget) { + console.warn('THREE.Box2: .center() has been renamed to .getCenter().'); + return this.getCenter(optionalTarget); +}; + +Box2.prototype.empty = function () { + console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().'); + return this.isEmpty(); +}; + +Box2.prototype.isIntersectionBox = function (box) { + console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().'); + return this.intersectsBox(box); +}; + +Box2.prototype.size = function (optionalTarget) { + console.warn('THREE.Box2: .size() has been renamed to .getSize().'); + return this.getSize(optionalTarget); +}; // + + +Box3.prototype.center = function (optionalTarget) { + console.warn('THREE.Box3: .center() has been renamed to .getCenter().'); + return this.getCenter(optionalTarget); +}; + +Box3.prototype.empty = function () { + console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().'); + return this.isEmpty(); +}; + +Box3.prototype.isIntersectionBox = function (box) { + console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().'); + return this.intersectsBox(box); +}; + +Box3.prototype.isIntersectionSphere = function (sphere) { + console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().'); + return this.intersectsSphere(sphere); +}; + +Box3.prototype.size = function (optionalTarget) { + console.warn('THREE.Box3: .size() has been renamed to .getSize().'); + return this.getSize(optionalTarget); +}; // + + +Sphere.prototype.empty = function () { + console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().'); + return this.isEmpty(); +}; // + + +Frustum.prototype.setFromMatrix = function (m) { + console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().'); + return this.setFromProjectionMatrix(m); +}; // + + +Line3.prototype.center = function (optionalTarget) { + console.warn('THREE.Line3: .center() has been renamed to .getCenter().'); + return this.getCenter(optionalTarget); +}; // + + +Matrix3.prototype.flattenToArrayOffset = function (array, offset) { + console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.'); + return this.toArray(array, offset); +}; + +Matrix3.prototype.multiplyVector3 = function (vector) { + console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.'); + return vector.applyMatrix3(this); +}; + +Matrix3.prototype.multiplyVector3Array = function + /* a */ +() { + console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.'); +}; + +Matrix3.prototype.applyToBufferAttribute = function (attribute) { + console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.'); + return attribute.applyMatrix3(this); +}; + +Matrix3.prototype.applyToVector3Array = function + /* array, offset, length */ +() { + console.error('THREE.Matrix3: .applyToVector3Array() has been removed.'); +}; + +Matrix3.prototype.getInverse = function (matrix) { + console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.'); + return this.copy(matrix).invert(); +}; // + + +Matrix4.prototype.extractPosition = function (m) { + console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().'); + return this.copyPosition(m); +}; + +Matrix4.prototype.flattenToArrayOffset = function (array, offset) { + console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.'); + return this.toArray(array, offset); +}; + +Matrix4.prototype.getPosition = function () { + console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.'); + return new Vector3().setFromMatrixColumn(this, 3); +}; + +Matrix4.prototype.setRotationFromQuaternion = function (q) { + console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().'); + return this.makeRotationFromQuaternion(q); +}; + +Matrix4.prototype.multiplyToArray = function () { + console.warn('THREE.Matrix4: .multiplyToArray() has been removed.'); +}; + +Matrix4.prototype.multiplyVector3 = function (vector) { + console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.'); + return vector.applyMatrix4(this); +}; + +Matrix4.prototype.multiplyVector4 = function (vector) { + console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.'); + return vector.applyMatrix4(this); +}; + +Matrix4.prototype.multiplyVector3Array = function + /* a */ +() { + console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.'); +}; + +Matrix4.prototype.rotateAxis = function (v) { + console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.'); + v.transformDirection(this); +}; + +Matrix4.prototype.crossVector = function (vector) { + console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.'); + return vector.applyMatrix4(this); +}; + +Matrix4.prototype.translate = function () { + console.error('THREE.Matrix4: .translate() has been removed.'); +}; + +Matrix4.prototype.rotateX = function () { + console.error('THREE.Matrix4: .rotateX() has been removed.'); +}; + +Matrix4.prototype.rotateY = function () { + console.error('THREE.Matrix4: .rotateY() has been removed.'); +}; + +Matrix4.prototype.rotateZ = function () { + console.error('THREE.Matrix4: .rotateZ() has been removed.'); +}; + +Matrix4.prototype.rotateByAxis = function () { + console.error('THREE.Matrix4: .rotateByAxis() has been removed.'); +}; + +Matrix4.prototype.applyToBufferAttribute = function (attribute) { + console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.'); + return attribute.applyMatrix4(this); +}; + +Matrix4.prototype.applyToVector3Array = function + /* array, offset, length */ +() { + console.error('THREE.Matrix4: .applyToVector3Array() has been removed.'); +}; + +Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) { + console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.'); + return this.makePerspective(left, right, top, bottom, near, far); +}; + +Matrix4.prototype.getInverse = function (matrix) { + console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.'); + return this.copy(matrix).invert(); +}; // + + +Plane.prototype.isIntersectionLine = function (line) { + console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().'); + return this.intersectsLine(line); +}; // + + +Quaternion.prototype.multiplyVector3 = function (vector) { + console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.'); + return vector.applyQuaternion(this); +}; + +Quaternion.prototype.inverse = function () { + console.warn('THREE.Quaternion: .inverse() has been renamed to invert().'); + return this.invert(); +}; // + + +Ray.prototype.isIntersectionBox = function (box) { + console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().'); + return this.intersectsBox(box); +}; + +Ray.prototype.isIntersectionPlane = function (plane) { + console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().'); + return this.intersectsPlane(plane); +}; + +Ray.prototype.isIntersectionSphere = function (sphere) { + console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().'); + return this.intersectsSphere(sphere); +}; // + + +Triangle.prototype.area = function () { + console.warn('THREE.Triangle: .area() has been renamed to .getArea().'); + return this.getArea(); +}; + +Triangle.prototype.barycoordFromPoint = function (point, target) { + console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().'); + return this.getBarycoord(point, target); +}; + +Triangle.prototype.midpoint = function (target) { + console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().'); + return this.getMidpoint(target); +}; + +Triangle.prototypenormal = function (target) { + console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().'); + return this.getNormal(target); +}; + +Triangle.prototype.plane = function (target) { + console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().'); + return this.getPlane(target); +}; + +Triangle.barycoordFromPoint = function (point, a, b, c, target) { + console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().'); + return Triangle.getBarycoord(point, a, b, c, target); +}; + +Triangle.normal = function (a, b, c, target) { + console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().'); + return Triangle.getNormal(a, b, c, target); +}; // + + +Shape.prototype.extractAllPoints = function (divisions) { + console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.'); + return this.extractPoints(divisions); +}; + +Shape.prototype.extrude = function (options) { + console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.'); + return new ExtrudeGeometry(this, options); +}; + +Shape.prototype.makeGeometry = function (options) { + console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.'); + return new ShapeGeometry(this, options); +}; // + + +Vector2.prototype.fromAttribute = function (attribute, index, offset) { + console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().'); + return this.fromBufferAttribute(attribute, index, offset); +}; + +Vector2.prototype.distanceToManhattan = function (v) { + console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().'); + return this.manhattanDistanceTo(v); +}; + +Vector2.prototype.lengthManhattan = function () { + console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().'); + return this.manhattanLength(); +}; // + + +Vector3.prototype.setEulerFromRotationMatrix = function () { + console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.'); +}; + +Vector3.prototype.setEulerFromQuaternion = function () { + console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.'); +}; + +Vector3.prototype.getPositionFromMatrix = function (m) { + console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().'); + return this.setFromMatrixPosition(m); +}; + +Vector3.prototype.getScaleFromMatrix = function (m) { + console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().'); + return this.setFromMatrixScale(m); +}; + +Vector3.prototype.getColumnFromMatrix = function (index, matrix) { + console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().'); + return this.setFromMatrixColumn(matrix, index); +}; + +Vector3.prototype.applyProjection = function (m) { + console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.'); + return this.applyMatrix4(m); +}; + +Vector3.prototype.fromAttribute = function (attribute, index, offset) { + console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().'); + return this.fromBufferAttribute(attribute, index, offset); +}; + +Vector3.prototype.distanceToManhattan = function (v) { + console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().'); + return this.manhattanDistanceTo(v); +}; + +Vector3.prototype.lengthManhattan = function () { + console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().'); + return this.manhattanLength(); +}; // + + +Vector4.prototype.fromAttribute = function (attribute, index, offset) { + console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().'); + return this.fromBufferAttribute(attribute, index, offset); +}; + +Vector4.prototype.lengthManhattan = function () { + console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().'); + return this.manhattanLength(); +}; // + + +Object3D.prototype.getChildByName = function (name) { + console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().'); + return this.getObjectByName(name); +}; + +Object3D.prototype.renderDepth = function () { + console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.'); +}; + +Object3D.prototype.translate = function (distance, axis) { + console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.'); + return this.translateOnAxis(axis, distance); +}; + +Object3D.prototype.getWorldRotation = function () { + console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.'); +}; + +Object3D.prototype.applyMatrix = function (matrix) { + console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().'); + return this.applyMatrix4(matrix); +}; + +Object.defineProperties(Object3D.prototype, { + eulerOrder: { + get: function () { + console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.'); + return this.rotation.order; + }, + set: function (value) { + console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.'); + this.rotation.order = value; + } + }, + useQuaternion: { + get: function () { + console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.'); + }, + set: function () { + console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.'); + } + } +}); + +Mesh.prototype.setDrawMode = function () { + console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.'); +}; + +Object.defineProperties(Mesh.prototype, { + drawMode: { + get: function () { + console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.'); + return TrianglesDrawMode; + }, + set: function () { + console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.'); + } + } +}); + +SkinnedMesh.prototype.initBones = function () { + console.error('THREE.SkinnedMesh: initBones() has been removed.'); +}; // + + +PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) { + console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.'); + if (filmGauge !== undefined) this.filmGauge = filmGauge; + this.setFocalLength(focalLength); +}; // + + +Object.defineProperties(Light.prototype, { + onlyShadow: { + set: function () { + console.warn('THREE.Light: .onlyShadow has been removed.'); + } + }, + shadowCameraFov: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.'); + this.shadow.camera.fov = value; + } + }, + shadowCameraLeft: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.'); + this.shadow.camera.left = value; + } + }, + shadowCameraRight: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.'); + this.shadow.camera.right = value; + } + }, + shadowCameraTop: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.'); + this.shadow.camera.top = value; + } + }, + shadowCameraBottom: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.'); + this.shadow.camera.bottom = value; + } + }, + shadowCameraNear: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.'); + this.shadow.camera.near = value; + } + }, + shadowCameraFar: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.'); + this.shadow.camera.far = value; + } + }, + shadowCameraVisible: { + set: function () { + console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.'); + } + }, + shadowBias: { + set: function (value) { + console.warn('THREE.Light: .shadowBias is now .shadow.bias.'); + this.shadow.bias = value; + } + }, + shadowDarkness: { + set: function () { + console.warn('THREE.Light: .shadowDarkness has been removed.'); + } + }, + shadowMapWidth: { + set: function (value) { + console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.'); + this.shadow.mapSize.width = value; + } + }, + shadowMapHeight: { + set: function (value) { + console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.'); + this.shadow.mapSize.height = value; + } + } +}); // + +Object.defineProperties(BufferAttribute.prototype, { + length: { + get: function () { + console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.'); + return this.array.length; + } + }, + dynamic: { + get: function () { + console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); + return this.usage === DynamicDrawUsage; + }, + set: function + /* value */ + () { + console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); + this.setUsage(DynamicDrawUsage); + } + } +}); + +BufferAttribute.prototype.setDynamic = function (value) { + console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.'); + this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage); + return this; +}; + +BufferAttribute.prototype.copyIndicesArray = function + /* indices */ +() { + console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.'); +}, BufferAttribute.prototype.setArray = function + /* array */ +() { + console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); +}; // + +BufferGeometry.prototype.addIndex = function (index) { + console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().'); + this.setIndex(index); +}; + +BufferGeometry.prototype.addAttribute = function (name, attribute) { + console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().'); + + if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) { + console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).'); + return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2])); + } + + if (name === 'index') { + console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.'); + this.setIndex(attribute); + return this; + } + + return this.setAttribute(name, attribute); +}; + +BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) { + if (indexOffset !== undefined) { + console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.'); + } + + console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().'); + this.addGroup(start, count); +}; + +BufferGeometry.prototype.clearDrawCalls = function () { + console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().'); + this.clearGroups(); +}; + +BufferGeometry.prototype.computeOffsets = function () { + console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.'); +}; + +BufferGeometry.prototype.removeAttribute = function (name) { + console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().'); + return this.deleteAttribute(name); +}; + +BufferGeometry.prototype.applyMatrix = function (matrix) { + console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().'); + return this.applyMatrix4(matrix); +}; + +Object.defineProperties(BufferGeometry.prototype, { + drawcalls: { + get: function () { + console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.'); + return this.groups; + } + }, + offsets: { + get: function () { + console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.'); + return this.groups; + } + } +}); + +InterleavedBuffer.prototype.setDynamic = function (value) { + console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.'); + this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage); + return this; +}; + +InterleavedBuffer.prototype.setArray = function + /* array */ +() { + console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); +}; // + + +ExtrudeGeometry.prototype.getArrays = function () { + console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.'); +}; + +ExtrudeGeometry.prototype.addShapeList = function () { + console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.'); +}; + +ExtrudeGeometry.prototype.addShape = function () { + console.error('THREE.ExtrudeGeometry: .addShape() has been removed.'); +}; // + + +Scene.prototype.dispose = function () { + console.error('THREE.Scene: .dispose() has been removed.'); +}; // + + +Uniform.prototype.onUpdate = function () { + console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.'); + return this; +}; // + + +Object.defineProperties(Material.prototype, { + wrapAround: { + get: function () { + console.warn('THREE.Material: .wrapAround has been removed.'); + }, + set: function () { + console.warn('THREE.Material: .wrapAround has been removed.'); + } + }, + overdraw: { + get: function () { + console.warn('THREE.Material: .overdraw has been removed.'); + }, + set: function () { + console.warn('THREE.Material: .overdraw has been removed.'); + } + }, + wrapRGB: { + get: function () { + console.warn('THREE.Material: .wrapRGB has been removed.'); + return new Color(); + } + }, + shading: { + get: function () { + console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); + }, + set: function (value) { + console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); + this.flatShading = value === FlatShading; + } + }, + stencilMask: { + get: function () { + console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.'); + return this.stencilFuncMask; + }, + set: function (value) { + console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.'); + this.stencilFuncMask = value; + } + }, + vertexTangents: { + get: function () { + console.warn('THREE.' + this.type + ': .vertexTangents has been removed.'); + }, + set: function () { + console.warn('THREE.' + this.type + ': .vertexTangents has been removed.'); + } + } +}); +Object.defineProperties(ShaderMaterial.prototype, { + derivatives: { + get: function () { + console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.'); + return this.extensions.derivatives; + }, + set: function (value) { + console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.'); + this.extensions.derivatives = value; + } + } +}); // + +WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) { + console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.'); + this.setRenderTarget(renderTarget); + this.clear(color, depth, stencil); +}; + +WebGLRenderer.prototype.animate = function (callback) { + console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().'); + this.setAnimationLoop(callback); +}; + +WebGLRenderer.prototype.getCurrentRenderTarget = function () { + console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().'); + return this.getRenderTarget(); +}; + +WebGLRenderer.prototype.getMaxAnisotropy = function () { + console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().'); + return this.capabilities.getMaxAnisotropy(); +}; + +WebGLRenderer.prototype.getPrecision = function () { + console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.'); + return this.capabilities.precision; +}; + +WebGLRenderer.prototype.resetGLState = function () { + console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().'); + return this.state.reset(); +}; + +WebGLRenderer.prototype.supportsFloatTextures = function () { + console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).'); + return this.extensions.get('OES_texture_float'); +}; + +WebGLRenderer.prototype.supportsHalfFloatTextures = function () { + console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).'); + return this.extensions.get('OES_texture_half_float'); +}; + +WebGLRenderer.prototype.supportsStandardDerivatives = function () { + console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).'); + return this.extensions.get('OES_standard_derivatives'); +}; + +WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () { + console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).'); + return this.extensions.get('WEBGL_compressed_texture_s3tc'); +}; + +WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () { + console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).'); + return this.extensions.get('WEBGL_compressed_texture_pvrtc'); +}; + +WebGLRenderer.prototype.supportsBlendMinMax = function () { + console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).'); + return this.extensions.get('EXT_blend_minmax'); +}; + +WebGLRenderer.prototype.supportsVertexTextures = function () { + console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.'); + return this.capabilities.vertexTextures; +}; + +WebGLRenderer.prototype.supportsInstancedArrays = function () { + console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).'); + return this.extensions.get('ANGLE_instanced_arrays'); +}; + +WebGLRenderer.prototype.enableScissorTest = function (boolean) { + console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().'); + this.setScissorTest(boolean); +}; + +WebGLRenderer.prototype.initMaterial = function () { + console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.'); +}; + +WebGLRenderer.prototype.addPrePlugin = function () { + console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.'); +}; + +WebGLRenderer.prototype.addPostPlugin = function () { + console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.'); +}; + +WebGLRenderer.prototype.updateShadowMap = function () { + console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.'); +}; + +WebGLRenderer.prototype.setFaceCulling = function () { + console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.'); +}; + +WebGLRenderer.prototype.allocTextureUnit = function () { + console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.'); +}; + +WebGLRenderer.prototype.setTexture = function () { + console.warn('THREE.WebGLRenderer: .setTexture() has been removed.'); +}; + +WebGLRenderer.prototype.setTexture2D = function () { + console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.'); +}; + +WebGLRenderer.prototype.setTextureCube = function () { + console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.'); +}; + +WebGLRenderer.prototype.getActiveMipMapLevel = function () { + console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().'); + return this.getActiveMipmapLevel(); +}; + +Object.defineProperties(WebGLRenderer.prototype, { + shadowMapEnabled: { + get: function () { + return this.shadowMap.enabled; + }, + set: function (value) { + console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.'); + this.shadowMap.enabled = value; + } + }, + shadowMapType: { + get: function () { + return this.shadowMap.type; + }, + set: function (value) { + console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.'); + this.shadowMap.type = value; + } + }, + shadowMapCullFace: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function + /* value */ + () { + console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); + } + }, + context: { + get: function () { + console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.'); + return this.getContext(); + } + }, + vr: { + get: function () { + console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr'); + return this.xr; + } + }, + gammaInput: { + get: function () { + console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.'); + return false; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.'); + } + }, + gammaOutput: { + get: function () { + console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.'); + return false; + }, + set: function (value) { + console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.'); + this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding; + } + }, + toneMappingWhitePoint: { + get: function () { + console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.'); + return 1.0; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.'); + } + }, + gammaFactor: { + get: function () { + console.warn('THREE.WebGLRenderer: .gammaFactor has been removed.'); + return 2; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .gammaFactor has been removed.'); + } + } +}); +Object.defineProperties(WebGLShadowMap.prototype, { + cullFace: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function + /* cullFace */ + () { + console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); + } + }, + renderReverseSided: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.'); + } + }, + renderSingleSided: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.'); + } + } +}); +function WebGLRenderTargetCube(width, height, options) { + console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).'); + return new WebGLCubeRenderTarget(width, options); +} // + +Object.defineProperties(WebGLRenderTarget.prototype, { + wrapS: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.'); + return this.texture.wrapS; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.'); + this.texture.wrapS = value; + } + }, + wrapT: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.'); + return this.texture.wrapT; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.'); + this.texture.wrapT = value; + } + }, + magFilter: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.'); + return this.texture.magFilter; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.'); + this.texture.magFilter = value; + } + }, + minFilter: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.'); + return this.texture.minFilter; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.'); + this.texture.minFilter = value; + } + }, + anisotropy: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.'); + return this.texture.anisotropy; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.'); + this.texture.anisotropy = value; + } + }, + offset: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.'); + return this.texture.offset; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.'); + this.texture.offset = value; + } + }, + repeat: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.'); + return this.texture.repeat; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.'); + this.texture.repeat = value; + } + }, + format: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.'); + return this.texture.format; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.'); + this.texture.format = value; + } + }, + type: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.'); + return this.texture.type; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.'); + this.texture.type = value; + } + }, + generateMipmaps: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.'); + return this.texture.generateMipmaps; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.'); + this.texture.generateMipmaps = value; + } + } +}); // + +Audio.prototype.load = function (file) { + console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.'); + const scope = this; + const audioLoader = new AudioLoader(); + audioLoader.load(file, function (buffer) { + scope.setBuffer(buffer); + }); + return this; +}; + +AudioAnalyser.prototype.getData = function () { + console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().'); + return this.getFrequencyData(); +}; // + + +CubeCamera.prototype.updateCubeMap = function (renderer, scene) { + console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().'); + return this.update(renderer, scene); +}; + +CubeCamera.prototype.clear = function (renderer, color, depth, stencil) { + console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().'); + return this.renderTarget.clear(renderer, color, depth, stencil); +}; + +ImageUtils.crossOrigin = undefined; + +ImageUtils.loadTexture = function (url, mapping, onLoad, onError) { + console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.'); + const loader = new TextureLoader(); + loader.setCrossOrigin(this.crossOrigin); + const texture = loader.load(url, onLoad, undefined, onError); + if (mapping) texture.mapping = mapping; + return texture; +}; + +ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) { + console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.'); + const loader = new CubeTextureLoader(); + loader.setCrossOrigin(this.crossOrigin); + const texture = loader.load(urls, onLoad, undefined, onError); + if (mapping) texture.mapping = mapping; + return texture; +}; + +ImageUtils.loadCompressedTexture = function () { + console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.'); +}; + +ImageUtils.loadCompressedTextureCube = function () { + console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.'); +}; // + + +function CanvasRenderer() { + console.error('THREE.CanvasRenderer has been removed'); +} // + +function JSONLoader() { + console.error('THREE.JSONLoader has been removed.'); +} // + +const SceneUtils = { + createMultiMaterialObject: function + /* geometry, materials */ + () { + console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); + }, + detach: function + /* child, parent, scene */ + () { + console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); + }, + attach: function + /* child, scene, parent */ + () { + console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); + } +}; // + +function LensFlare() { + console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js'); +} // + +function ParametricGeometry() { + console.error('THREE.ParametricGeometry has been moved to /examples/jsm/geometries/ParametricGeometry.js'); + return new BufferGeometry(); +} +function TextGeometry() { + console.error('THREE.TextGeometry has been moved to /examples/jsm/geometries/TextGeometry.js'); + return new BufferGeometry(); +} +function FontLoader() { + console.error('THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js'); +} +function Font() { + console.error('THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js'); +} +function ImmediateRenderObject() { + console.error('THREE.ImmediateRenderObject has been removed.'); +} + +if (typeof __THREE_DEVTOOLS__ !== 'undefined') { + __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', { + detail: { + revision: REVISION + } + })); +} + +if (typeof window !== 'undefined') { + if (window.__THREE__) { + console.warn('WARNING: Multiple instances of Three.js being imported.'); + } else { + window.__THREE__ = REVISION; + } +} + +exports.ACESFilmicToneMapping = ACESFilmicToneMapping; +exports.AddEquation = AddEquation; +exports.AddOperation = AddOperation; +exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode; +exports.AdditiveBlending = AdditiveBlending; +exports.AlphaFormat = AlphaFormat; +exports.AlwaysDepth = AlwaysDepth; +exports.AlwaysStencilFunc = AlwaysStencilFunc; +exports.AmbientLight = AmbientLight; +exports.AmbientLightProbe = AmbientLightProbe; +exports.AnimationClip = AnimationClip; +exports.AnimationLoader = AnimationLoader; +exports.AnimationMixer = AnimationMixer; +exports.AnimationObjectGroup = AnimationObjectGroup; +exports.AnimationUtils = AnimationUtils; +exports.ArcCurve = ArcCurve; +exports.ArrayCamera = ArrayCamera; +exports.ArrowHelper = ArrowHelper; +exports.Audio = Audio; +exports.AudioAnalyser = AudioAnalyser; +exports.AudioContext = AudioContext; +exports.AudioListener = AudioListener; +exports.AudioLoader = AudioLoader; +exports.AxesHelper = AxesHelper; +exports.AxisHelper = AxisHelper; +exports.BackSide = BackSide; +exports.BasicDepthPacking = BasicDepthPacking; +exports.BasicShadowMap = BasicShadowMap; +exports.BinaryTextureLoader = BinaryTextureLoader; +exports.Bone = Bone; +exports.BooleanKeyframeTrack = BooleanKeyframeTrack; +exports.BoundingBoxHelper = BoundingBoxHelper; +exports.Box2 = Box2; +exports.Box3 = Box3; +exports.Box3Helper = Box3Helper; +exports.BoxBufferGeometry = BoxGeometry; +exports.BoxGeometry = BoxGeometry; +exports.BoxHelper = BoxHelper; +exports.BufferAttribute = BufferAttribute; +exports.BufferGeometry = BufferGeometry; +exports.BufferGeometryLoader = BufferGeometryLoader; +exports.ByteType = ByteType; +exports.Cache = Cache; +exports.Camera = Camera; +exports.CameraHelper = CameraHelper; +exports.CanvasRenderer = CanvasRenderer; +exports.CanvasTexture = CanvasTexture; +exports.CatmullRomCurve3 = CatmullRomCurve3; +exports.CineonToneMapping = CineonToneMapping; +exports.CircleBufferGeometry = CircleGeometry; +exports.CircleGeometry = CircleGeometry; +exports.ClampToEdgeWrapping = ClampToEdgeWrapping; +exports.Clock = Clock; +exports.Color = Color; +exports.ColorKeyframeTrack = ColorKeyframeTrack; +exports.CompressedTexture = CompressedTexture; +exports.CompressedTextureLoader = CompressedTextureLoader; +exports.ConeBufferGeometry = ConeGeometry; +exports.ConeGeometry = ConeGeometry; +exports.CubeCamera = CubeCamera; +exports.CubeReflectionMapping = CubeReflectionMapping; +exports.CubeRefractionMapping = CubeRefractionMapping; +exports.CubeTexture = CubeTexture; +exports.CubeTextureLoader = CubeTextureLoader; +exports.CubeUVReflectionMapping = CubeUVReflectionMapping; +exports.CubeUVRefractionMapping = CubeUVRefractionMapping; +exports.CubicBezierCurve = CubicBezierCurve; +exports.CubicBezierCurve3 = CubicBezierCurve3; +exports.CubicInterpolant = CubicInterpolant; +exports.CullFaceBack = CullFaceBack; +exports.CullFaceFront = CullFaceFront; +exports.CullFaceFrontBack = CullFaceFrontBack; +exports.CullFaceNone = CullFaceNone; +exports.Curve = Curve; +exports.CurvePath = CurvePath; +exports.CustomBlending = CustomBlending; +exports.CustomToneMapping = CustomToneMapping; +exports.CylinderBufferGeometry = CylinderGeometry; +exports.CylinderGeometry = CylinderGeometry; +exports.Cylindrical = Cylindrical; +exports.DataTexture = DataTexture; +exports.DataTexture2DArray = DataTexture2DArray; +exports.DataTexture3D = DataTexture3D; +exports.DataTextureLoader = DataTextureLoader; +exports.DataUtils = DataUtils; +exports.DecrementStencilOp = DecrementStencilOp; +exports.DecrementWrapStencilOp = DecrementWrapStencilOp; +exports.DefaultLoadingManager = DefaultLoadingManager; +exports.DepthFormat = DepthFormat; +exports.DepthStencilFormat = DepthStencilFormat; +exports.DepthTexture = DepthTexture; +exports.DirectionalLight = DirectionalLight; +exports.DirectionalLightHelper = DirectionalLightHelper; +exports.DiscreteInterpolant = DiscreteInterpolant; +exports.DodecahedronBufferGeometry = DodecahedronGeometry; +exports.DodecahedronGeometry = DodecahedronGeometry; +exports.DoubleSide = DoubleSide; +exports.DstAlphaFactor = DstAlphaFactor; +exports.DstColorFactor = DstColorFactor; +exports.DynamicBufferAttribute = DynamicBufferAttribute; +exports.DynamicCopyUsage = DynamicCopyUsage; +exports.DynamicDrawUsage = DynamicDrawUsage; +exports.DynamicReadUsage = DynamicReadUsage; +exports.EdgesGeometry = EdgesGeometry; +exports.EdgesHelper = EdgesHelper; +exports.EllipseCurve = EllipseCurve; +exports.EqualDepth = EqualDepth; +exports.EqualStencilFunc = EqualStencilFunc; +exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping; +exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping; +exports.Euler = Euler; +exports.EventDispatcher = EventDispatcher; +exports.ExtrudeBufferGeometry = ExtrudeGeometry; +exports.ExtrudeGeometry = ExtrudeGeometry; +exports.FaceColors = FaceColors; +exports.FileLoader = FileLoader; +exports.FlatShading = FlatShading; +exports.Float16BufferAttribute = Float16BufferAttribute; +exports.Float32Attribute = Float32Attribute; +exports.Float32BufferAttribute = Float32BufferAttribute; +exports.Float64Attribute = Float64Attribute; +exports.Float64BufferAttribute = Float64BufferAttribute; +exports.FloatType = FloatType; +exports.Fog = Fog; +exports.FogExp2 = FogExp2; +exports.Font = Font; +exports.FontLoader = FontLoader; +exports.FramebufferTexture = FramebufferTexture; +exports.FrontSide = FrontSide; +exports.Frustum = Frustum; +exports.GLBufferAttribute = GLBufferAttribute; +exports.GLSL1 = GLSL1; +exports.GLSL3 = GLSL3; +exports.GreaterDepth = GreaterDepth; +exports.GreaterEqualDepth = GreaterEqualDepth; +exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc; +exports.GreaterStencilFunc = GreaterStencilFunc; +exports.GridHelper = GridHelper; +exports.Group = Group; +exports.HalfFloatType = HalfFloatType; +exports.HemisphereLight = HemisphereLight; +exports.HemisphereLightHelper = HemisphereLightHelper; +exports.HemisphereLightProbe = HemisphereLightProbe; +exports.IcosahedronBufferGeometry = IcosahedronGeometry; +exports.IcosahedronGeometry = IcosahedronGeometry; +exports.ImageBitmapLoader = ImageBitmapLoader; +exports.ImageLoader = ImageLoader; +exports.ImageUtils = ImageUtils; +exports.ImmediateRenderObject = ImmediateRenderObject; +exports.IncrementStencilOp = IncrementStencilOp; +exports.IncrementWrapStencilOp = IncrementWrapStencilOp; +exports.InstancedBufferAttribute = InstancedBufferAttribute; +exports.InstancedBufferGeometry = InstancedBufferGeometry; +exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer; +exports.InstancedMesh = InstancedMesh; +exports.Int16Attribute = Int16Attribute; +exports.Int16BufferAttribute = Int16BufferAttribute; +exports.Int32Attribute = Int32Attribute; +exports.Int32BufferAttribute = Int32BufferAttribute; +exports.Int8Attribute = Int8Attribute; +exports.Int8BufferAttribute = Int8BufferAttribute; +exports.IntType = IntType; +exports.InterleavedBuffer = InterleavedBuffer; +exports.InterleavedBufferAttribute = InterleavedBufferAttribute; +exports.Interpolant = Interpolant; +exports.InterpolateDiscrete = InterpolateDiscrete; +exports.InterpolateLinear = InterpolateLinear; +exports.InterpolateSmooth = InterpolateSmooth; +exports.InvertStencilOp = InvertStencilOp; +exports.JSONLoader = JSONLoader; +exports.KeepStencilOp = KeepStencilOp; +exports.KeyframeTrack = KeyframeTrack; +exports.LOD = LOD; +exports.LatheBufferGeometry = LatheGeometry; +exports.LatheGeometry = LatheGeometry; +exports.Layers = Layers; +exports.LensFlare = LensFlare; +exports.LessDepth = LessDepth; +exports.LessEqualDepth = LessEqualDepth; +exports.LessEqualStencilFunc = LessEqualStencilFunc; +exports.LessStencilFunc = LessStencilFunc; +exports.Light = Light; +exports.LightProbe = LightProbe; +exports.Line = Line; +exports.Line3 = Line3; +exports.LineBasicMaterial = LineBasicMaterial; +exports.LineCurve = LineCurve; +exports.LineCurve3 = LineCurve3; +exports.LineDashedMaterial = LineDashedMaterial; +exports.LineLoop = LineLoop; +exports.LinePieces = LinePieces; +exports.LineSegments = LineSegments; +exports.LineStrip = LineStrip; +exports.LinearEncoding = LinearEncoding; +exports.LinearFilter = LinearFilter; +exports.LinearInterpolant = LinearInterpolant; +exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter; +exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter; +exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter; +exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter; +exports.LinearToneMapping = LinearToneMapping; +exports.Loader = Loader; +exports.LoaderUtils = LoaderUtils; +exports.LoadingManager = LoadingManager; +exports.LoopOnce = LoopOnce; +exports.LoopPingPong = LoopPingPong; +exports.LoopRepeat = LoopRepeat; +exports.LuminanceAlphaFormat = LuminanceAlphaFormat; +exports.LuminanceFormat = LuminanceFormat; +exports.MOUSE = MOUSE; +exports.Material = Material; +exports.MaterialLoader = MaterialLoader; +exports.Math = MathUtils; +exports.MathUtils = MathUtils; +exports.Matrix3 = Matrix3; +exports.Matrix4 = Matrix4; +exports.MaxEquation = MaxEquation; +exports.Mesh = Mesh; +exports.MeshBasicMaterial = MeshBasicMaterial; +exports.MeshDepthMaterial = MeshDepthMaterial; +exports.MeshDistanceMaterial = MeshDistanceMaterial; +exports.MeshFaceMaterial = MeshFaceMaterial; +exports.MeshLambertMaterial = MeshLambertMaterial; +exports.MeshMatcapMaterial = MeshMatcapMaterial; +exports.MeshNormalMaterial = MeshNormalMaterial; +exports.MeshPhongMaterial = MeshPhongMaterial; +exports.MeshPhysicalMaterial = MeshPhysicalMaterial; +exports.MeshStandardMaterial = MeshStandardMaterial; +exports.MeshToonMaterial = MeshToonMaterial; +exports.MinEquation = MinEquation; +exports.MirroredRepeatWrapping = MirroredRepeatWrapping; +exports.MixOperation = MixOperation; +exports.MultiMaterial = MultiMaterial; +exports.MultiplyBlending = MultiplyBlending; +exports.MultiplyOperation = MultiplyOperation; +exports.NearestFilter = NearestFilter; +exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter; +exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter; +exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter; +exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter; +exports.NeverDepth = NeverDepth; +exports.NeverStencilFunc = NeverStencilFunc; +exports.NoBlending = NoBlending; +exports.NoColors = NoColors; +exports.NoToneMapping = NoToneMapping; +exports.NormalAnimationBlendMode = NormalAnimationBlendMode; +exports.NormalBlending = NormalBlending; +exports.NotEqualDepth = NotEqualDepth; +exports.NotEqualStencilFunc = NotEqualStencilFunc; +exports.NumberKeyframeTrack = NumberKeyframeTrack; +exports.Object3D = Object3D; +exports.ObjectLoader = ObjectLoader; +exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap; +exports.OctahedronBufferGeometry = OctahedronGeometry; +exports.OctahedronGeometry = OctahedronGeometry; +exports.OneFactor = OneFactor; +exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor; +exports.OneMinusDstColorFactor = OneMinusDstColorFactor; +exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor; +exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor; +exports.OrthographicCamera = OrthographicCamera; +exports.PCFShadowMap = PCFShadowMap; +exports.PCFSoftShadowMap = PCFSoftShadowMap; +exports.PMREMGenerator = PMREMGenerator; +exports.ParametricGeometry = ParametricGeometry; +exports.Particle = Particle; +exports.ParticleBasicMaterial = ParticleBasicMaterial; +exports.ParticleSystem = ParticleSystem; +exports.ParticleSystemMaterial = ParticleSystemMaterial; +exports.Path = Path; +exports.PerspectiveCamera = PerspectiveCamera; +exports.Plane = Plane; +exports.PlaneBufferGeometry = PlaneGeometry; +exports.PlaneGeometry = PlaneGeometry; +exports.PlaneHelper = PlaneHelper; +exports.PointCloud = PointCloud; +exports.PointCloudMaterial = PointCloudMaterial; +exports.PointLight = PointLight; +exports.PointLightHelper = PointLightHelper; +exports.Points = Points; +exports.PointsMaterial = PointsMaterial; +exports.PolarGridHelper = PolarGridHelper; +exports.PolyhedronBufferGeometry = PolyhedronGeometry; +exports.PolyhedronGeometry = PolyhedronGeometry; +exports.PositionalAudio = PositionalAudio; +exports.PropertyBinding = PropertyBinding; +exports.PropertyMixer = PropertyMixer; +exports.QuadraticBezierCurve = QuadraticBezierCurve; +exports.QuadraticBezierCurve3 = QuadraticBezierCurve3; +exports.Quaternion = Quaternion; +exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack; +exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant; +exports.REVISION = REVISION; +exports.RGBADepthPacking = RGBADepthPacking; +exports.RGBAFormat = RGBAFormat; +exports.RGBAIntegerFormat = RGBAIntegerFormat; +exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format; +exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format; +exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format; +exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format; +exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format; +exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format; +exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format; +exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format; +exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format; +exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format; +exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format; +exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format; +exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format; +exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format; +exports.RGBA_BPTC_Format = RGBA_BPTC_Format; +exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format; +exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format; +exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format; +exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format; +exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format; +exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format; +exports.RGBFormat = RGBFormat; +exports.RGBIntegerFormat = RGBIntegerFormat; +exports.RGB_ETC1_Format = RGB_ETC1_Format; +exports.RGB_ETC2_Format = RGB_ETC2_Format; +exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format; +exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format; +exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format; +exports.RGFormat = RGFormat; +exports.RGIntegerFormat = RGIntegerFormat; +exports.RawShaderMaterial = RawShaderMaterial; +exports.Ray = Ray; +exports.Raycaster = Raycaster; +exports.RectAreaLight = RectAreaLight; +exports.RedFormat = RedFormat; +exports.RedIntegerFormat = RedIntegerFormat; +exports.ReinhardToneMapping = ReinhardToneMapping; +exports.RepeatWrapping = RepeatWrapping; +exports.ReplaceStencilOp = ReplaceStencilOp; +exports.ReverseSubtractEquation = ReverseSubtractEquation; +exports.RingBufferGeometry = RingGeometry; +exports.RingGeometry = RingGeometry; +exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format; +exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format; +exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format; +exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format; +exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format; +exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format; +exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format; +exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format; +exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format; +exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format; +exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format; +exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format; +exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format; +exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format; +exports.Scene = Scene; +exports.SceneUtils = SceneUtils; +exports.ShaderChunk = ShaderChunk; +exports.ShaderLib = ShaderLib; +exports.ShaderMaterial = ShaderMaterial; +exports.ShadowMaterial = ShadowMaterial; +exports.Shape = Shape; +exports.ShapeBufferGeometry = ShapeGeometry; +exports.ShapeGeometry = ShapeGeometry; +exports.ShapePath = ShapePath; +exports.ShapeUtils = ShapeUtils; +exports.ShortType = ShortType; +exports.Skeleton = Skeleton; +exports.SkeletonHelper = SkeletonHelper; +exports.SkinnedMesh = SkinnedMesh; +exports.SmoothShading = SmoothShading; +exports.Sphere = Sphere; +exports.SphereBufferGeometry = SphereGeometry; +exports.SphereGeometry = SphereGeometry; +exports.Spherical = Spherical; +exports.SphericalHarmonics3 = SphericalHarmonics3; +exports.SplineCurve = SplineCurve; +exports.SpotLight = SpotLight; +exports.SpotLightHelper = SpotLightHelper; +exports.Sprite = Sprite; +exports.SpriteMaterial = SpriteMaterial; +exports.SrcAlphaFactor = SrcAlphaFactor; +exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor; +exports.SrcColorFactor = SrcColorFactor; +exports.StaticCopyUsage = StaticCopyUsage; +exports.StaticDrawUsage = StaticDrawUsage; +exports.StaticReadUsage = StaticReadUsage; +exports.StereoCamera = StereoCamera; +exports.StreamCopyUsage = StreamCopyUsage; +exports.StreamDrawUsage = StreamDrawUsage; +exports.StreamReadUsage = StreamReadUsage; +exports.StringKeyframeTrack = StringKeyframeTrack; +exports.SubtractEquation = SubtractEquation; +exports.SubtractiveBlending = SubtractiveBlending; +exports.TOUCH = TOUCH; +exports.TangentSpaceNormalMap = TangentSpaceNormalMap; +exports.TetrahedronBufferGeometry = TetrahedronGeometry; +exports.TetrahedronGeometry = TetrahedronGeometry; +exports.TextGeometry = TextGeometry; +exports.Texture = Texture; +exports.TextureLoader = TextureLoader; +exports.TorusBufferGeometry = TorusGeometry; +exports.TorusGeometry = TorusGeometry; +exports.TorusKnotBufferGeometry = TorusKnotGeometry; +exports.TorusKnotGeometry = TorusKnotGeometry; +exports.Triangle = Triangle; +exports.TriangleFanDrawMode = TriangleFanDrawMode; +exports.TriangleStripDrawMode = TriangleStripDrawMode; +exports.TrianglesDrawMode = TrianglesDrawMode; +exports.TubeBufferGeometry = TubeGeometry; +exports.TubeGeometry = TubeGeometry; +exports.UVMapping = UVMapping; +exports.Uint16Attribute = Uint16Attribute; +exports.Uint16BufferAttribute = Uint16BufferAttribute; +exports.Uint32Attribute = Uint32Attribute; +exports.Uint32BufferAttribute = Uint32BufferAttribute; +exports.Uint8Attribute = Uint8Attribute; +exports.Uint8BufferAttribute = Uint8BufferAttribute; +exports.Uint8ClampedAttribute = Uint8ClampedAttribute; +exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute; +exports.Uniform = Uniform; +exports.UniformsLib = UniformsLib; +exports.UniformsUtils = UniformsUtils; +exports.UnsignedByteType = UnsignedByteType; +exports.UnsignedInt248Type = UnsignedInt248Type; +exports.UnsignedIntType = UnsignedIntType; +exports.UnsignedShort4444Type = UnsignedShort4444Type; +exports.UnsignedShort5551Type = UnsignedShort5551Type; +exports.UnsignedShort565Type = UnsignedShort565Type; +exports.UnsignedShortType = UnsignedShortType; +exports.VSMShadowMap = VSMShadowMap; +exports.Vector2 = Vector2; +exports.Vector3 = Vector3; +exports.Vector4 = Vector4; +exports.VectorKeyframeTrack = VectorKeyframeTrack; +exports.Vertex = Vertex; +exports.VertexColors = VertexColors; +exports.VideoTexture = VideoTexture; +exports.WebGL1Renderer = WebGL1Renderer; +exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget; +exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets; +exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget; +exports.WebGLRenderTarget = WebGLRenderTarget; +exports.WebGLRenderTargetCube = WebGLRenderTargetCube; +exports.WebGLRenderer = WebGLRenderer; +exports.WebGLUtils = WebGLUtils; +exports.WireframeGeometry = WireframeGeometry; +exports.WireframeHelper = WireframeHelper; +exports.WrapAroundEnding = WrapAroundEnding; +exports.XHRLoader = XHRLoader; +exports.ZeroCurvatureEnding = ZeroCurvatureEnding; +exports.ZeroFactor = ZeroFactor; +exports.ZeroSlopeEnding = ZeroSlopeEnding; +exports.ZeroStencilOp = ZeroStencilOp; +exports.sRGBEncoding = sRGBEncoding; diff --git a/build/three.js b/build/three.js index aa37f5ce1a..121d38a5e3 100644 --- a/build/three.js +++ b/build/three.js @@ -1,6 +1,6 @@ /** * @license - * Copyright 2010-2021 Three.js Authors + * Copyright 2010-2022 Three.js Authors * SPDX-License-Identifier: MIT */ (function (global, factory) { @@ -19379,7 +19379,9 @@ _isContextLost = true; } - function onContextRestore() { + function + /* event */ + onContextRestore() { console.log('THREE.WebGLRenderer: Context Restored.'); _isContextLost = false; const infoAutoReset = info.autoReset; @@ -35233,10 +35235,14 @@ }; Loader.Handlers = { - add: function () { + add: function + /* regex, loader */ + () { console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.'); }, - get: function () { + get: function + /* file */ + () { console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.'); } }; @@ -35324,7 +35330,9 @@ return vector.applyMatrix3(this); }; - Matrix3.prototype.multiplyVector3Array = function () { + Matrix3.prototype.multiplyVector3Array = function + /* a */ + () { console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.'); }; @@ -35333,7 +35341,9 @@ return attribute.applyMatrix3(this); }; - Matrix3.prototype.applyToVector3Array = function () { + Matrix3.prototype.applyToVector3Array = function + /* array, offset, length */ + () { console.error('THREE.Matrix3: .applyToVector3Array() has been removed.'); }; @@ -35377,7 +35387,9 @@ return vector.applyMatrix4(this); }; - Matrix4.prototype.multiplyVector3Array = function () { + Matrix4.prototype.multiplyVector3Array = function + /* a */ + () { console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.'); }; @@ -35416,7 +35428,9 @@ return attribute.applyMatrix4(this); }; - Matrix4.prototype.applyToVector3Array = function () { + Matrix4.prototype.applyToVector3Array = function + /* array, offset, length */ + () { console.error('THREE.Matrix4: .applyToVector3Array() has been removed.'); }; @@ -35749,7 +35763,9 @@ console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); return this.usage === DynamicDrawUsage; }, - set: function () { + set: function + /* value */ + () { console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); this.setUsage(DynamicDrawUsage); } @@ -35762,9 +35778,13 @@ return this; }; - BufferAttribute.prototype.copyIndicesArray = function () { + BufferAttribute.prototype.copyIndicesArray = function + /* indices */ + () { console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.'); - }, BufferAttribute.prototype.setArray = function () { + }, BufferAttribute.prototype.setArray = function + /* array */ + () { console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); }; // @@ -35839,7 +35859,9 @@ return this; }; - InterleavedBuffer.prototype.setArray = function () { + InterleavedBuffer.prototype.setArray = function + /* array */ + () { console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); }; // @@ -36073,7 +36095,9 @@ console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); return undefined; }, - set: function () { + set: function + /* value */ + () { console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); } }, @@ -36133,7 +36157,9 @@ console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); return undefined; }, - set: function () { + set: function + /* cullFace */ + () { console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); } }, @@ -36328,13 +36354,19 @@ } // const SceneUtils = { - createMultiMaterialObject: function () { + createMultiMaterialObject: function + /* geometry, materials */ + () { console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); }, - detach: function () { + detach: function + /* child, parent, scene */ + () { console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); }, - attach: function () { + attach: function + /* child, scene, parent */ + () { console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); } }; // diff --git a/build/three.min.js b/build/three.min.js index 66d1af6b05..f3d1cfd447 100644 --- a/build/three.min.js +++ b/build/three.min.js @@ -1,6 +1,6 @@ /** * @license - * Copyright 2010-2021 Three.js Authors + * Copyright 2010-2022 Three.js Authors * SPDX-License-Identifier: MIT */ -!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?e(exports):"function"==typeof define&&define.amd?define(["exports"],e):e((t="undefined"!=typeof globalThis?globalThis:t||self).THREE={})}(this,(function(t){"use strict";const e="136",n=100,i=300,r=301,s=302,a=303,o=304,l=306,c=307,h=1e3,u=1001,d=1002,p=1003,m=1004,f=1005,g=1006,v=1007,y=1008,x=1009,_=1012,b=1014,M=1015,w=1016,S=1020,T=1022,E=1023,A=1026,L=1027,R=33776,C=33777,P=33778,D=33779,I=35840,N=35841,z=35842,B=35843,F=37492,O=37496,U=2300,H=2301,G=2302,k=2400,V=2401,W=2402,j=2500,q=2501,X=3e3,J=3001,Y=7680,Z=35044,Q=35048,K="300 es";class ${addEventListener(t,e){void 0===this._listeners&&(this._listeners={});const n=this._listeners;void 0===n[t]&&(n[t]=[]),-1===n[t].indexOf(e)&&n[t].push(e)}hasEventListener(t,e){if(void 0===this._listeners)return!1;const n=this._listeners;return void 0!==n[t]&&-1!==n[t].indexOf(e)}removeEventListener(t,e){if(void 0===this._listeners)return;const n=this._listeners[t];if(void 0!==n){const t=n.indexOf(e);-1!==t&&n.splice(t,1)}}dispatchEvent(t){if(void 0===this._listeners)return;const e=this._listeners[t.type];if(void 0!==e){t.target=this;const n=e.slice(0);for(let e=0,i=n.length;e>8&255]+tt[t>>16&255]+tt[t>>24&255]+"-"+tt[255&e]+tt[e>>8&255]+"-"+tt[e>>16&15|64]+tt[e>>24&255]+"-"+tt[63&n|128]+tt[n>>8&255]+"-"+tt[n>>16&255]+tt[n>>24&255]+tt[255&i]+tt[i>>8&255]+tt[i>>16&255]+tt[i>>24&255]).toUpperCase()}function st(t,e,n){return Math.max(e,Math.min(n,t))}function at(t,e){return(t%e+e)%e}function ot(t,e,n){return(1-n)*t+n*e}function lt(t){return 0==(t&t-1)&&0!==t}function ct(t){return Math.pow(2,Math.ceil(Math.log(t)/Math.LN2))}function ht(t){return Math.pow(2,Math.floor(Math.log(t)/Math.LN2))}var ut=Object.freeze({__proto__:null,DEG2RAD:nt,RAD2DEG:it,generateUUID:rt,clamp:st,euclideanModulo:at,mapLinear:function(t,e,n,i,r){return i+(t-e)*(r-i)/(n-e)},inverseLerp:function(t,e,n){return t!==e?(n-t)/(e-t):0},lerp:ot,damp:function(t,e,n,i){return ot(t,e,1-Math.exp(-n*i))},pingpong:function(t,e=1){return e-Math.abs(at(t,2*e)-e)},smoothstep:function(t,e,n){return t<=e?0:t>=n?1:(t=(t-e)/(n-e))*t*(3-2*t)},smootherstep:function(t,e,n){return t<=e?0:t>=n?1:(t=(t-e)/(n-e))*t*t*(t*(6*t-15)+10)},randInt:function(t,e){return t+Math.floor(Math.random()*(e-t+1))},randFloat:function(t,e){return t+Math.random()*(e-t)},randFloatSpread:function(t){return t*(.5-Math.random())},seededRandom:function(t){return void 0!==t&&(et=t%2147483647),et=16807*et%2147483647,(et-1)/2147483646},degToRad:function(t){return t*nt},radToDeg:function(t){return t*it},isPowerOfTwo:lt,ceilPowerOfTwo:ct,floorPowerOfTwo:ht,setQuaternionFromProperEuler:function(t,e,n,i,r){const s=Math.cos,a=Math.sin,o=s(n/2),l=a(n/2),c=s((e+i)/2),h=a((e+i)/2),u=s((e-i)/2),d=a((e-i)/2),p=s((i-e)/2),m=a((i-e)/2);switch(r){case"XYX":t.set(o*h,l*u,l*d,o*c);break;case"YZY":t.set(l*d,o*h,l*u,o*c);break;case"ZXZ":t.set(l*u,l*d,o*h,o*c);break;case"XZX":t.set(o*h,l*m,l*p,o*c);break;case"YXY":t.set(l*p,o*h,l*m,o*c);break;case"ZYZ":t.set(l*m,l*p,o*h,o*c);break;default:console.warn("THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: "+r)}}});class dt{constructor(t=0,e=0){this.x=t,this.y=e}get width(){return this.x}set width(t){this.x=t}get height(){return this.y}set height(t){this.y=t}set(t,e){return this.x=t,this.y=e,this}setScalar(t){return this.x=t,this.y=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y)}copy(t){return this.x=t.x,this.y=t.y,this}add(t,e){return void 0!==e?(console.warn("THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead."),this.addVectors(t,e)):(this.x+=t.x,this.y+=t.y,this)}addScalar(t){return this.x+=t,this.y+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this}sub(t,e){return void 0!==e?(console.warn("THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."),this.subVectors(t,e)):(this.x-=t.x,this.y-=t.y,this)}subScalar(t){return this.x-=t,this.y-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this}multiply(t){return this.x*=t.x,this.y*=t.y,this}multiplyScalar(t){return this.x*=t,this.y*=t,this}divide(t){return this.x/=t.x,this.y/=t.y,this}divideScalar(t){return this.multiplyScalar(1/t)}applyMatrix3(t){const e=this.x,n=this.y,i=t.elements;return this.x=i[0]*e+i[3]*n+i[6],this.y=i[1]*e+i[4]*n+i[7],this}min(t){return this.x=Math.min(this.x,t.x),this.y=Math.min(this.y,t.y),this}max(t){return this.x=Math.max(this.x,t.x),this.y=Math.max(this.y,t.y),this}clamp(t,e){return this.x=Math.max(t.x,Math.min(e.x,this.x)),this.y=Math.max(t.y,Math.min(e.y,this.y)),this}clampScalar(t,e){return this.x=Math.max(t,Math.min(e,this.x)),this.y=Math.max(t,Math.min(e,this.y)),this}clampLength(t,e){const n=this.length();return this.divideScalar(n||1).multiplyScalar(Math.max(t,Math.min(e,n)))}floor(){return this.x=Math.floor(this.x),this.y=Math.floor(this.y),this}ceil(){return this.x=Math.ceil(this.x),this.y=Math.ceil(this.y),this}round(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this}roundToZero(){return this.x=this.x<0?Math.ceil(this.x):Math.floor(this.x),this.y=this.y<0?Math.ceil(this.y):Math.floor(this.y),this}negate(){return this.x=-this.x,this.y=-this.y,this}dot(t){return this.x*t.x+this.y*t.y}cross(t){return this.x*t.y-this.y*t.x}lengthSq(){return this.x*this.x+this.y*this.y}length(){return Math.sqrt(this.x*this.x+this.y*this.y)}manhattanLength(){return Math.abs(this.x)+Math.abs(this.y)}normalize(){return this.divideScalar(this.length()||1)}angle(){return Math.atan2(-this.y,-this.x)+Math.PI}distanceTo(t){return Math.sqrt(this.distanceToSquared(t))}distanceToSquared(t){const e=this.x-t.x,n=this.y-t.y;return e*e+n*n}manhattanDistanceTo(t){return Math.abs(this.x-t.x)+Math.abs(this.y-t.y)}setLength(t){return this.normalize().multiplyScalar(t)}lerp(t,e){return this.x+=(t.x-this.x)*e,this.y+=(t.y-this.y)*e,this}lerpVectors(t,e,n){return this.x=t.x+(e.x-t.x)*n,this.y=t.y+(e.y-t.y)*n,this}equals(t){return t.x===this.x&&t.y===this.y}fromArray(t,e=0){return this.x=t[e],this.y=t[e+1],this}toArray(t=[],e=0){return t[e]=this.x,t[e+1]=this.y,t}fromBufferAttribute(t,e,n){return void 0!==n&&console.warn("THREE.Vector2: offset has been removed from .fromBufferAttribute()."),this.x=t.getX(e),this.y=t.getY(e),this}rotateAround(t,e){const n=Math.cos(e),i=Math.sin(e),r=this.x-t.x,s=this.y-t.y;return this.x=r*n-s*i+t.x,this.y=r*i+s*n+t.y,this}random(){return this.x=Math.random(),this.y=Math.random(),this}*[Symbol.iterator](){yield this.x,yield this.y}}dt.prototype.isVector2=!0;class pt{constructor(){this.elements=[1,0,0,0,1,0,0,0,1],arguments.length>0&&console.error("THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.")}set(t,e,n,i,r,s,a,o,l){const c=this.elements;return c[0]=t,c[1]=i,c[2]=a,c[3]=e,c[4]=r,c[5]=o,c[6]=n,c[7]=s,c[8]=l,this}identity(){return this.set(1,0,0,0,1,0,0,0,1),this}copy(t){const e=this.elements,n=t.elements;return e[0]=n[0],e[1]=n[1],e[2]=n[2],e[3]=n[3],e[4]=n[4],e[5]=n[5],e[6]=n[6],e[7]=n[7],e[8]=n[8],this}extractBasis(t,e,n){return t.setFromMatrix3Column(this,0),e.setFromMatrix3Column(this,1),n.setFromMatrix3Column(this,2),this}setFromMatrix4(t){const e=t.elements;return this.set(e[0],e[4],e[8],e[1],e[5],e[9],e[2],e[6],e[10]),this}multiply(t){return this.multiplyMatrices(this,t)}premultiply(t){return this.multiplyMatrices(t,this)}multiplyMatrices(t,e){const n=t.elements,i=e.elements,r=this.elements,s=n[0],a=n[3],o=n[6],l=n[1],c=n[4],h=n[7],u=n[2],d=n[5],p=n[8],m=i[0],f=i[3],g=i[6],v=i[1],y=i[4],x=i[7],_=i[2],b=i[5],M=i[8];return r[0]=s*m+a*v+o*_,r[3]=s*f+a*y+o*b,r[6]=s*g+a*x+o*M,r[1]=l*m+c*v+h*_,r[4]=l*f+c*y+h*b,r[7]=l*g+c*x+h*M,r[2]=u*m+d*v+p*_,r[5]=u*f+d*y+p*b,r[8]=u*g+d*x+p*M,this}multiplyScalar(t){const e=this.elements;return e[0]*=t,e[3]*=t,e[6]*=t,e[1]*=t,e[4]*=t,e[7]*=t,e[2]*=t,e[5]*=t,e[8]*=t,this}determinant(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8];return e*s*c-e*a*l-n*r*c+n*a*o+i*r*l-i*s*o}invert(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8],h=c*s-a*l,u=a*o-c*r,d=l*r-s*o,p=e*h+n*u+i*d;if(0===p)return this.set(0,0,0,0,0,0,0,0,0);const m=1/p;return t[0]=h*m,t[1]=(i*l-c*n)*m,t[2]=(a*n-i*s)*m,t[3]=u*m,t[4]=(c*e-i*o)*m,t[5]=(i*r-a*e)*m,t[6]=d*m,t[7]=(n*o-l*e)*m,t[8]=(s*e-n*r)*m,this}transpose(){let t;const e=this.elements;return t=e[1],e[1]=e[3],e[3]=t,t=e[2],e[2]=e[6],e[6]=t,t=e[5],e[5]=e[7],e[7]=t,this}getNormalMatrix(t){return this.setFromMatrix4(t).invert().transpose()}transposeIntoArray(t){const e=this.elements;return t[0]=e[0],t[1]=e[3],t[2]=e[6],t[3]=e[1],t[4]=e[4],t[5]=e[7],t[6]=e[2],t[7]=e[5],t[8]=e[8],this}setUvTransform(t,e,n,i,r,s,a){const o=Math.cos(r),l=Math.sin(r);return this.set(n*o,n*l,-n*(o*s+l*a)+s+t,-i*l,i*o,-i*(-l*s+o*a)+a+e,0,0,1),this}scale(t,e){const n=this.elements;return n[0]*=t,n[3]*=t,n[6]*=t,n[1]*=e,n[4]*=e,n[7]*=e,this}rotate(t){const e=Math.cos(t),n=Math.sin(t),i=this.elements,r=i[0],s=i[3],a=i[6],o=i[1],l=i[4],c=i[7];return i[0]=e*r+n*o,i[3]=e*s+n*l,i[6]=e*a+n*c,i[1]=-n*r+e*o,i[4]=-n*s+e*l,i[7]=-n*a+e*c,this}translate(t,e){const n=this.elements;return n[0]+=t*n[2],n[3]+=t*n[5],n[6]+=t*n[8],n[1]+=e*n[2],n[4]+=e*n[5],n[7]+=e*n[8],this}equals(t){const e=this.elements,n=t.elements;for(let t=0;t<9;t++)if(e[t]!==n[t])return!1;return!0}fromArray(t,e=0){for(let n=0;n<9;n++)this.elements[n]=t[n+e];return this}toArray(t=[],e=0){const n=this.elements;return t[e]=n[0],t[e+1]=n[1],t[e+2]=n[2],t[e+3]=n[3],t[e+4]=n[4],t[e+5]=n[5],t[e+6]=n[6],t[e+7]=n[7],t[e+8]=n[8],t}clone(){return(new this.constructor).fromArray(this.elements)}}function mt(t){if(0===t.length)return-1/0;let e=t[0];for(let n=1,i=t.length;ne&&(e=t[n]);return e}pt.prototype.isMatrix3=!0;const ft={Int8Array:Int8Array,Uint8Array:Uint8Array,Uint8ClampedArray:Uint8ClampedArray,Int16Array:Int16Array,Uint16Array:Uint16Array,Int32Array:Int32Array,Uint32Array:Uint32Array,Float32Array:Float32Array,Float64Array:Float64Array};function gt(t,e){return new ft[t](e)}function vt(t){return document.createElementNS("http://www.w3.org/1999/xhtml",t)}let yt;class xt{static getDataURL(t){if(/^data:/i.test(t.src))return t.src;if("undefined"==typeof HTMLCanvasElement)return t.src;let e;if(t instanceof HTMLCanvasElement)e=t;else{void 0===yt&&(yt=vt("canvas")),yt.width=t.width,yt.height=t.height;const n=yt.getContext("2d");t instanceof ImageData?n.putImageData(t,0,0):n.drawImage(t,0,0,t.width,t.height),e=yt}return e.width>2048||e.height>2048?(console.warn("THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons",t),e.toDataURL("image/jpeg",.6)):e.toDataURL("image/png")}}let _t=0;class bt extends ${constructor(t=bt.DEFAULT_IMAGE,e=bt.DEFAULT_MAPPING,n=1001,i=1001,r=1006,s=1008,a=1023,o=1009,l=1,c=3e3){super(),Object.defineProperty(this,"id",{value:_t++}),this.uuid=rt(),this.name="",this.image=t,this.mipmaps=[],this.mapping=e,this.wrapS=n,this.wrapT=i,this.magFilter=r,this.minFilter=s,this.anisotropy=l,this.format=a,this.internalFormat=null,this.type=o,this.offset=new dt(0,0),this.repeat=new dt(1,1),this.center=new dt(0,0),this.rotation=0,this.matrixAutoUpdate=!0,this.matrix=new pt,this.generateMipmaps=!0,this.premultiplyAlpha=!1,this.flipY=!0,this.unpackAlignment=4,this.encoding=c,this.userData={},this.version=0,this.onUpdate=null,this.isRenderTargetTexture=!1}updateMatrix(){this.matrix.setUvTransform(this.offset.x,this.offset.y,this.repeat.x,this.repeat.y,this.rotation,this.center.x,this.center.y)}clone(){return(new this.constructor).copy(this)}copy(t){return this.name=t.name,this.image=t.image,this.mipmaps=t.mipmaps.slice(0),this.mapping=t.mapping,this.wrapS=t.wrapS,this.wrapT=t.wrapT,this.magFilter=t.magFilter,this.minFilter=t.minFilter,this.anisotropy=t.anisotropy,this.format=t.format,this.internalFormat=t.internalFormat,this.type=t.type,this.offset.copy(t.offset),this.repeat.copy(t.repeat),this.center.copy(t.center),this.rotation=t.rotation,this.matrixAutoUpdate=t.matrixAutoUpdate,this.matrix.copy(t.matrix),this.generateMipmaps=t.generateMipmaps,this.premultiplyAlpha=t.premultiplyAlpha,this.flipY=t.flipY,this.unpackAlignment=t.unpackAlignment,this.encoding=t.encoding,this.userData=JSON.parse(JSON.stringify(t.userData)),this}toJSON(t){const e=void 0===t||"string"==typeof t;if(!e&&void 0!==t.textures[this.uuid])return t.textures[this.uuid];const n={metadata:{version:4.5,type:"Texture",generator:"Texture.toJSON"},uuid:this.uuid,name:this.name,mapping:this.mapping,repeat:[this.repeat.x,this.repeat.y],offset:[this.offset.x,this.offset.y],center:[this.center.x,this.center.y],rotation:this.rotation,wrap:[this.wrapS,this.wrapT],format:this.format,type:this.type,encoding:this.encoding,minFilter:this.minFilter,magFilter:this.magFilter,anisotropy:this.anisotropy,flipY:this.flipY,premultiplyAlpha:this.premultiplyAlpha,unpackAlignment:this.unpackAlignment};if(void 0!==this.image){const i=this.image;if(void 0===i.uuid&&(i.uuid=rt()),!e&&void 0===t.images[i.uuid]){let e;if(Array.isArray(i)){e=[];for(let t=0,n=i.length;t1)switch(this.wrapS){case h:t.x=t.x-Math.floor(t.x);break;case u:t.x=t.x<0?0:1;break;case d:1===Math.abs(Math.floor(t.x)%2)?t.x=Math.ceil(t.x)-t.x:t.x=t.x-Math.floor(t.x)}if(t.y<0||t.y>1)switch(this.wrapT){case h:t.y=t.y-Math.floor(t.y);break;case u:t.y=t.y<0?0:1;break;case d:1===Math.abs(Math.floor(t.y)%2)?t.y=Math.ceil(t.y)-t.y:t.y=t.y-Math.floor(t.y)}return this.flipY&&(t.y=1-t.y),t}set needsUpdate(t){!0===t&&this.version++}}function Mt(t){return"undefined"!=typeof HTMLImageElement&&t instanceof HTMLImageElement||"undefined"!=typeof HTMLCanvasElement&&t instanceof HTMLCanvasElement||"undefined"!=typeof ImageBitmap&&t instanceof ImageBitmap?xt.getDataURL(t):t.data?{data:Array.prototype.slice.call(t.data),width:t.width,height:t.height,type:t.data.constructor.name}:(console.warn("THREE.Texture: Unable to serialize Texture."),{})}bt.DEFAULT_IMAGE=void 0,bt.DEFAULT_MAPPING=i,bt.prototype.isTexture=!0;class wt{constructor(t=0,e=0,n=0,i=1){this.x=t,this.y=e,this.z=n,this.w=i}get width(){return this.z}set width(t){this.z=t}get height(){return this.w}set height(t){this.w=t}set(t,e,n,i){return this.x=t,this.y=e,this.z=n,this.w=i,this}setScalar(t){return this.x=t,this.y=t,this.z=t,this.w=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setZ(t){return this.z=t,this}setW(t){return this.w=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;case 2:this.z=e;break;case 3:this.w=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;case 2:return this.z;case 3:return this.w;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y,this.z,this.w)}copy(t){return this.x=t.x,this.y=t.y,this.z=t.z,this.w=void 0!==t.w?t.w:1,this}add(t,e){return void 0!==e?(console.warn("THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead."),this.addVectors(t,e)):(this.x+=t.x,this.y+=t.y,this.z+=t.z,this.w+=t.w,this)}addScalar(t){return this.x+=t,this.y+=t,this.z+=t,this.w+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this.z=t.z+e.z,this.w=t.w+e.w,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this.z+=t.z*e,this.w+=t.w*e,this}sub(t,e){return void 0!==e?(console.warn("THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."),this.subVectors(t,e)):(this.x-=t.x,this.y-=t.y,this.z-=t.z,this.w-=t.w,this)}subScalar(t){return this.x-=t,this.y-=t,this.z-=t,this.w-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this.z=t.z-e.z,this.w=t.w-e.w,this}multiply(t){return this.x*=t.x,this.y*=t.y,this.z*=t.z,this.w*=t.w,this}multiplyScalar(t){return this.x*=t,this.y*=t,this.z*=t,this.w*=t,this}applyMatrix4(t){const e=this.x,n=this.y,i=this.z,r=this.w,s=t.elements;return this.x=s[0]*e+s[4]*n+s[8]*i+s[12]*r,this.y=s[1]*e+s[5]*n+s[9]*i+s[13]*r,this.z=s[2]*e+s[6]*n+s[10]*i+s[14]*r,this.w=s[3]*e+s[7]*n+s[11]*i+s[15]*r,this}divideScalar(t){return this.multiplyScalar(1/t)}setAxisAngleFromQuaternion(t){this.w=2*Math.acos(t.w);const e=Math.sqrt(1-t.w*t.w);return e<1e-4?(this.x=1,this.y=0,this.z=0):(this.x=t.x/e,this.y=t.y/e,this.z=t.z/e),this}setAxisAngleFromRotationMatrix(t){let e,n,i,r;const s=.01,a=.1,o=t.elements,l=o[0],c=o[4],h=o[8],u=o[1],d=o[5],p=o[9],m=o[2],f=o[6],g=o[10];if(Math.abs(c-u)o&&t>v?tv?o=0?1:-1,i=1-e*e;if(i>Number.EPSILON){const r=Math.sqrt(i),s=Math.atan2(r,e*n);t=Math.sin(t*s)/r,a=Math.sin(a*s)/r}const r=a*n;if(o=o*t+u*r,l=l*t+d*r,c=c*t+p*r,h=h*t+m*r,t===1-a){const t=1/Math.sqrt(o*o+l*l+c*c+h*h);o*=t,l*=t,c*=t,h*=t}}t[e]=o,t[e+1]=l,t[e+2]=c,t[e+3]=h}static multiplyQuaternionsFlat(t,e,n,i,r,s){const a=n[i],o=n[i+1],l=n[i+2],c=n[i+3],h=r[s],u=r[s+1],d=r[s+2],p=r[s+3];return t[e]=a*p+c*h+o*d-l*u,t[e+1]=o*p+c*u+l*h-a*d,t[e+2]=l*p+c*d+a*u-o*h,t[e+3]=c*p-a*h-o*u-l*d,t}get x(){return this._x}set x(t){this._x=t,this._onChangeCallback()}get y(){return this._y}set y(t){this._y=t,this._onChangeCallback()}get z(){return this._z}set z(t){this._z=t,this._onChangeCallback()}get w(){return this._w}set w(t){this._w=t,this._onChangeCallback()}set(t,e,n,i){return this._x=t,this._y=e,this._z=n,this._w=i,this._onChangeCallback(),this}clone(){return new this.constructor(this._x,this._y,this._z,this._w)}copy(t){return this._x=t.x,this._y=t.y,this._z=t.z,this._w=t.w,this._onChangeCallback(),this}setFromEuler(t,e){if(!t||!t.isEuler)throw new Error("THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.");const n=t._x,i=t._y,r=t._z,s=t._order,a=Math.cos,o=Math.sin,l=a(n/2),c=a(i/2),h=a(r/2),u=o(n/2),d=o(i/2),p=o(r/2);switch(s){case"XYZ":this._x=u*c*h+l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h-u*d*p;break;case"YXZ":this._x=u*c*h+l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h+u*d*p;break;case"ZXY":this._x=u*c*h-l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h-u*d*p;break;case"ZYX":this._x=u*c*h-l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h+u*d*p;break;case"YZX":this._x=u*c*h+l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h-u*d*p;break;case"XZY":this._x=u*c*h-l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h+u*d*p;break;default:console.warn("THREE.Quaternion: .setFromEuler() encountered an unknown order: "+s)}return!1!==e&&this._onChangeCallback(),this}setFromAxisAngle(t,e){const n=e/2,i=Math.sin(n);return this._x=t.x*i,this._y=t.y*i,this._z=t.z*i,this._w=Math.cos(n),this._onChangeCallback(),this}setFromRotationMatrix(t){const e=t.elements,n=e[0],i=e[4],r=e[8],s=e[1],a=e[5],o=e[9],l=e[2],c=e[6],h=e[10],u=n+a+h;if(u>0){const t=.5/Math.sqrt(u+1);this._w=.25/t,this._x=(c-o)*t,this._y=(r-l)*t,this._z=(s-i)*t}else if(n>a&&n>h){const t=2*Math.sqrt(1+n-a-h);this._w=(c-o)/t,this._x=.25*t,this._y=(i+s)/t,this._z=(r+l)/t}else if(a>h){const t=2*Math.sqrt(1+a-n-h);this._w=(r-l)/t,this._x=(i+s)/t,this._y=.25*t,this._z=(o+c)/t}else{const t=2*Math.sqrt(1+h-n-a);this._w=(s-i)/t,this._x=(r+l)/t,this._y=(o+c)/t,this._z=.25*t}return this._onChangeCallback(),this}setFromUnitVectors(t,e){let n=t.dot(e)+1;return nMath.abs(t.z)?(this._x=-t.y,this._y=t.x,this._z=0,this._w=n):(this._x=0,this._y=-t.z,this._z=t.y,this._w=n)):(this._x=t.y*e.z-t.z*e.y,this._y=t.z*e.x-t.x*e.z,this._z=t.x*e.y-t.y*e.x,this._w=n),this.normalize()}angleTo(t){return 2*Math.acos(Math.abs(st(this.dot(t),-1,1)))}rotateTowards(t,e){const n=this.angleTo(t);if(0===n)return this;const i=Math.min(1,e/n);return this.slerp(t,i),this}identity(){return this.set(0,0,0,1)}invert(){return this.conjugate()}conjugate(){return this._x*=-1,this._y*=-1,this._z*=-1,this._onChangeCallback(),this}dot(t){return this._x*t._x+this._y*t._y+this._z*t._z+this._w*t._w}lengthSq(){return this._x*this._x+this._y*this._y+this._z*this._z+this._w*this._w}length(){return Math.sqrt(this._x*this._x+this._y*this._y+this._z*this._z+this._w*this._w)}normalize(){let t=this.length();return 0===t?(this._x=0,this._y=0,this._z=0,this._w=1):(t=1/t,this._x=this._x*t,this._y=this._y*t,this._z=this._z*t,this._w=this._w*t),this._onChangeCallback(),this}multiply(t,e){return void 0!==e?(console.warn("THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead."),this.multiplyQuaternions(t,e)):this.multiplyQuaternions(this,t)}premultiply(t){return this.multiplyQuaternions(t,this)}multiplyQuaternions(t,e){const n=t._x,i=t._y,r=t._z,s=t._w,a=e._x,o=e._y,l=e._z,c=e._w;return this._x=n*c+s*a+i*l-r*o,this._y=i*c+s*o+r*a-n*l,this._z=r*c+s*l+n*o-i*a,this._w=s*c-n*a-i*o-r*l,this._onChangeCallback(),this}slerp(t,e){if(0===e)return this;if(1===e)return this.copy(t);const n=this._x,i=this._y,r=this._z,s=this._w;let a=s*t._w+n*t._x+i*t._y+r*t._z;if(a<0?(this._w=-t._w,this._x=-t._x,this._y=-t._y,this._z=-t._z,a=-a):this.copy(t),a>=1)return this._w=s,this._x=n,this._y=i,this._z=r,this;const o=1-a*a;if(o<=Number.EPSILON){const t=1-e;return this._w=t*s+e*this._w,this._x=t*n+e*this._x,this._y=t*i+e*this._y,this._z=t*r+e*this._z,this.normalize(),this._onChangeCallback(),this}const l=Math.sqrt(o),c=Math.atan2(l,a),h=Math.sin((1-e)*c)/l,u=Math.sin(e*c)/l;return this._w=s*h+this._w*u,this._x=n*h+this._x*u,this._y=i*h+this._y*u,this._z=r*h+this._z*u,this._onChangeCallback(),this}slerpQuaternions(t,e,n){this.copy(t).slerp(e,n)}random(){const t=Math.random(),e=Math.sqrt(1-t),n=Math.sqrt(t),i=2*Math.PI*Math.random(),r=2*Math.PI*Math.random();return this.set(e*Math.cos(i),n*Math.sin(r),n*Math.cos(r),e*Math.sin(i))}equals(t){return t._x===this._x&&t._y===this._y&&t._z===this._z&&t._w===this._w}fromArray(t,e=0){return this._x=t[e],this._y=t[e+1],this._z=t[e+2],this._w=t[e+3],this._onChangeCallback(),this}toArray(t=[],e=0){return t[e]=this._x,t[e+1]=this._y,t[e+2]=this._z,t[e+3]=this._w,t}fromBufferAttribute(t,e){return this._x=t.getX(e),this._y=t.getY(e),this._z=t.getZ(e),this._w=t.getW(e),this}_onChange(t){return this._onChangeCallback=t,this}_onChangeCallback(){}}At.prototype.isQuaternion=!0;class Lt{constructor(t=0,e=0,n=0){this.x=t,this.y=e,this.z=n}set(t,e,n){return void 0===n&&(n=this.z),this.x=t,this.y=e,this.z=n,this}setScalar(t){return this.x=t,this.y=t,this.z=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setZ(t){return this.z=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;case 2:this.z=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;case 2:return this.z;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y,this.z)}copy(t){return this.x=t.x,this.y=t.y,this.z=t.z,this}add(t,e){return void 0!==e?(console.warn("THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead."),this.addVectors(t,e)):(this.x+=t.x,this.y+=t.y,this.z+=t.z,this)}addScalar(t){return this.x+=t,this.y+=t,this.z+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this.z=t.z+e.z,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this.z+=t.z*e,this}sub(t,e){return void 0!==e?(console.warn("THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."),this.subVectors(t,e)):(this.x-=t.x,this.y-=t.y,this.z-=t.z,this)}subScalar(t){return this.x-=t,this.y-=t,this.z-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this.z=t.z-e.z,this}multiply(t,e){return void 0!==e?(console.warn("THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead."),this.multiplyVectors(t,e)):(this.x*=t.x,this.y*=t.y,this.z*=t.z,this)}multiplyScalar(t){return this.x*=t,this.y*=t,this.z*=t,this}multiplyVectors(t,e){return this.x=t.x*e.x,this.y=t.y*e.y,this.z=t.z*e.z,this}applyEuler(t){return t&&t.isEuler||console.error("THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order."),this.applyQuaternion(Ct.setFromEuler(t))}applyAxisAngle(t,e){return this.applyQuaternion(Ct.setFromAxisAngle(t,e))}applyMatrix3(t){const e=this.x,n=this.y,i=this.z,r=t.elements;return this.x=r[0]*e+r[3]*n+r[6]*i,this.y=r[1]*e+r[4]*n+r[7]*i,this.z=r[2]*e+r[5]*n+r[8]*i,this}applyNormalMatrix(t){return this.applyMatrix3(t).normalize()}applyMatrix4(t){const e=this.x,n=this.y,i=this.z,r=t.elements,s=1/(r[3]*e+r[7]*n+r[11]*i+r[15]);return this.x=(r[0]*e+r[4]*n+r[8]*i+r[12])*s,this.y=(r[1]*e+r[5]*n+r[9]*i+r[13])*s,this.z=(r[2]*e+r[6]*n+r[10]*i+r[14])*s,this}applyQuaternion(t){const e=this.x,n=this.y,i=this.z,r=t.x,s=t.y,a=t.z,o=t.w,l=o*e+s*i-a*n,c=o*n+a*e-r*i,h=o*i+r*n-s*e,u=-r*e-s*n-a*i;return this.x=l*o+u*-r+c*-a-h*-s,this.y=c*o+u*-s+h*-r-l*-a,this.z=h*o+u*-a+l*-s-c*-r,this}project(t){return this.applyMatrix4(t.matrixWorldInverse).applyMatrix4(t.projectionMatrix)}unproject(t){return this.applyMatrix4(t.projectionMatrixInverse).applyMatrix4(t.matrixWorld)}transformDirection(t){const e=this.x,n=this.y,i=this.z,r=t.elements;return this.x=r[0]*e+r[4]*n+r[8]*i,this.y=r[1]*e+r[5]*n+r[9]*i,this.z=r[2]*e+r[6]*n+r[10]*i,this.normalize()}divide(t){return this.x/=t.x,this.y/=t.y,this.z/=t.z,this}divideScalar(t){return this.multiplyScalar(1/t)}min(t){return this.x=Math.min(this.x,t.x),this.y=Math.min(this.y,t.y),this.z=Math.min(this.z,t.z),this}max(t){return this.x=Math.max(this.x,t.x),this.y=Math.max(this.y,t.y),this.z=Math.max(this.z,t.z),this}clamp(t,e){return this.x=Math.max(t.x,Math.min(e.x,this.x)),this.y=Math.max(t.y,Math.min(e.y,this.y)),this.z=Math.max(t.z,Math.min(e.z,this.z)),this}clampScalar(t,e){return this.x=Math.max(t,Math.min(e,this.x)),this.y=Math.max(t,Math.min(e,this.y)),this.z=Math.max(t,Math.min(e,this.z)),this}clampLength(t,e){const n=this.length();return this.divideScalar(n||1).multiplyScalar(Math.max(t,Math.min(e,n)))}floor(){return this.x=Math.floor(this.x),this.y=Math.floor(this.y),this.z=Math.floor(this.z),this}ceil(){return this.x=Math.ceil(this.x),this.y=Math.ceil(this.y),this.z=Math.ceil(this.z),this}round(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this.z=Math.round(this.z),this}roundToZero(){return this.x=this.x<0?Math.ceil(this.x):Math.floor(this.x),this.y=this.y<0?Math.ceil(this.y):Math.floor(this.y),this.z=this.z<0?Math.ceil(this.z):Math.floor(this.z),this}negate(){return this.x=-this.x,this.y=-this.y,this.z=-this.z,this}dot(t){return this.x*t.x+this.y*t.y+this.z*t.z}lengthSq(){return this.x*this.x+this.y*this.y+this.z*this.z}length(){return Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z)}manhattanLength(){return Math.abs(this.x)+Math.abs(this.y)+Math.abs(this.z)}normalize(){return this.divideScalar(this.length()||1)}setLength(t){return this.normalize().multiplyScalar(t)}lerp(t,e){return this.x+=(t.x-this.x)*e,this.y+=(t.y-this.y)*e,this.z+=(t.z-this.z)*e,this}lerpVectors(t,e,n){return this.x=t.x+(e.x-t.x)*n,this.y=t.y+(e.y-t.y)*n,this.z=t.z+(e.z-t.z)*n,this}cross(t,e){return void 0!==e?(console.warn("THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead."),this.crossVectors(t,e)):this.crossVectors(this,t)}crossVectors(t,e){const n=t.x,i=t.y,r=t.z,s=e.x,a=e.y,o=e.z;return this.x=i*o-r*a,this.y=r*s-n*o,this.z=n*a-i*s,this}projectOnVector(t){const e=t.lengthSq();if(0===e)return this.set(0,0,0);const n=t.dot(this)/e;return this.copy(t).multiplyScalar(n)}projectOnPlane(t){return Rt.copy(this).projectOnVector(t),this.sub(Rt)}reflect(t){return this.sub(Rt.copy(t).multiplyScalar(2*this.dot(t)))}angleTo(t){const e=Math.sqrt(this.lengthSq()*t.lengthSq());if(0===e)return Math.PI/2;const n=this.dot(t)/e;return Math.acos(st(n,-1,1))}distanceTo(t){return Math.sqrt(this.distanceToSquared(t))}distanceToSquared(t){const e=this.x-t.x,n=this.y-t.y,i=this.z-t.z;return e*e+n*n+i*i}manhattanDistanceTo(t){return Math.abs(this.x-t.x)+Math.abs(this.y-t.y)+Math.abs(this.z-t.z)}setFromSpherical(t){return this.setFromSphericalCoords(t.radius,t.phi,t.theta)}setFromSphericalCoords(t,e,n){const i=Math.sin(e)*t;return this.x=i*Math.sin(n),this.y=Math.cos(e)*t,this.z=i*Math.cos(n),this}setFromCylindrical(t){return this.setFromCylindricalCoords(t.radius,t.theta,t.y)}setFromCylindricalCoords(t,e,n){return this.x=t*Math.sin(e),this.y=n,this.z=t*Math.cos(e),this}setFromMatrixPosition(t){const e=t.elements;return this.x=e[12],this.y=e[13],this.z=e[14],this}setFromMatrixScale(t){const e=this.setFromMatrixColumn(t,0).length(),n=this.setFromMatrixColumn(t,1).length(),i=this.setFromMatrixColumn(t,2).length();return this.x=e,this.y=n,this.z=i,this}setFromMatrixColumn(t,e){return this.fromArray(t.elements,4*e)}setFromMatrix3Column(t,e){return this.fromArray(t.elements,3*e)}equals(t){return t.x===this.x&&t.y===this.y&&t.z===this.z}fromArray(t,e=0){return this.x=t[e],this.y=t[e+1],this.z=t[e+2],this}toArray(t=[],e=0){return t[e]=this.x,t[e+1]=this.y,t[e+2]=this.z,t}fromBufferAttribute(t,e,n){return void 0!==n&&console.warn("THREE.Vector3: offset has been removed from .fromBufferAttribute()."),this.x=t.getX(e),this.y=t.getY(e),this.z=t.getZ(e),this}random(){return this.x=Math.random(),this.y=Math.random(),this.z=Math.random(),this}randomDirection(){const t=2*(Math.random()-.5),e=Math.random()*Math.PI*2,n=Math.sqrt(1-t**2);return this.x=n*Math.cos(e),this.y=n*Math.sin(e),this.z=t,this}*[Symbol.iterator](){yield this.x,yield this.y,yield this.z}}Lt.prototype.isVector3=!0;const Rt=new Lt,Ct=new At;class Pt{constructor(t=new Lt(1/0,1/0,1/0),e=new Lt(-1/0,-1/0,-1/0)){this.min=t,this.max=e}set(t,e){return this.min.copy(t),this.max.copy(e),this}setFromArray(t){let e=1/0,n=1/0,i=1/0,r=-1/0,s=-1/0,a=-1/0;for(let o=0,l=t.length;or&&(r=l),c>s&&(s=c),h>a&&(a=h)}return this.min.set(e,n,i),this.max.set(r,s,a),this}setFromBufferAttribute(t){let e=1/0,n=1/0,i=1/0,r=-1/0,s=-1/0,a=-1/0;for(let o=0,l=t.count;or&&(r=l),c>s&&(s=c),h>a&&(a=h)}return this.min.set(e,n,i),this.max.set(r,s,a),this}setFromPoints(t){this.makeEmpty();for(let e=0,n=t.length;ethis.max.x||t.ythis.max.y||t.zthis.max.z)}containsBox(t){return this.min.x<=t.min.x&&t.max.x<=this.max.x&&this.min.y<=t.min.y&&t.max.y<=this.max.y&&this.min.z<=t.min.z&&t.max.z<=this.max.z}getParameter(t,e){return e.set((t.x-this.min.x)/(this.max.x-this.min.x),(t.y-this.min.y)/(this.max.y-this.min.y),(t.z-this.min.z)/(this.max.z-this.min.z))}intersectsBox(t){return!(t.max.xthis.max.x||t.max.ythis.max.y||t.max.zthis.max.z)}intersectsSphere(t){return this.clampPoint(t.center,It),It.distanceToSquared(t.center)<=t.radius*t.radius}intersectsPlane(t){let e,n;return t.normal.x>0?(e=t.normal.x*this.min.x,n=t.normal.x*this.max.x):(e=t.normal.x*this.max.x,n=t.normal.x*this.min.x),t.normal.y>0?(e+=t.normal.y*this.min.y,n+=t.normal.y*this.max.y):(e+=t.normal.y*this.max.y,n+=t.normal.y*this.min.y),t.normal.z>0?(e+=t.normal.z*this.min.z,n+=t.normal.z*this.max.z):(e+=t.normal.z*this.max.z,n+=t.normal.z*this.min.z),e<=-t.constant&&n>=-t.constant}intersectsTriangle(t){if(this.isEmpty())return!1;this.getCenter(Gt),kt.subVectors(this.max,Gt),zt.subVectors(t.a,Gt),Bt.subVectors(t.b,Gt),Ft.subVectors(t.c,Gt),Ot.subVectors(Bt,zt),Ut.subVectors(Ft,Bt),Ht.subVectors(zt,Ft);let e=[0,-Ot.z,Ot.y,0,-Ut.z,Ut.y,0,-Ht.z,Ht.y,Ot.z,0,-Ot.x,Ut.z,0,-Ut.x,Ht.z,0,-Ht.x,-Ot.y,Ot.x,0,-Ut.y,Ut.x,0,-Ht.y,Ht.x,0];return!!jt(e,zt,Bt,Ft,kt)&&(e=[1,0,0,0,1,0,0,0,1],!!jt(e,zt,Bt,Ft,kt)&&(Vt.crossVectors(Ot,Ut),e=[Vt.x,Vt.y,Vt.z],jt(e,zt,Bt,Ft,kt)))}clampPoint(t,e){return e.copy(t).clamp(this.min,this.max)}distanceToPoint(t){return It.copy(t).clamp(this.min,this.max).sub(t).length()}getBoundingSphere(t){return this.getCenter(t.center),t.radius=.5*this.getSize(It).length(),t}intersect(t){return this.min.max(t.min),this.max.min(t.max),this.isEmpty()&&this.makeEmpty(),this}union(t){return this.min.min(t.min),this.max.max(t.max),this}applyMatrix4(t){return this.isEmpty()||(Dt[0].set(this.min.x,this.min.y,this.min.z).applyMatrix4(t),Dt[1].set(this.min.x,this.min.y,this.max.z).applyMatrix4(t),Dt[2].set(this.min.x,this.max.y,this.min.z).applyMatrix4(t),Dt[3].set(this.min.x,this.max.y,this.max.z).applyMatrix4(t),Dt[4].set(this.max.x,this.min.y,this.min.z).applyMatrix4(t),Dt[5].set(this.max.x,this.min.y,this.max.z).applyMatrix4(t),Dt[6].set(this.max.x,this.max.y,this.min.z).applyMatrix4(t),Dt[7].set(this.max.x,this.max.y,this.max.z).applyMatrix4(t),this.setFromPoints(Dt)),this}translate(t){return this.min.add(t),this.max.add(t),this}equals(t){return t.min.equals(this.min)&&t.max.equals(this.max)}}Pt.prototype.isBox3=!0;const Dt=[new Lt,new Lt,new Lt,new Lt,new Lt,new Lt,new Lt,new Lt],It=new Lt,Nt=new Pt,zt=new Lt,Bt=new Lt,Ft=new Lt,Ot=new Lt,Ut=new Lt,Ht=new Lt,Gt=new Lt,kt=new Lt,Vt=new Lt,Wt=new Lt;function jt(t,e,n,i,r){for(let s=0,a=t.length-3;s<=a;s+=3){Wt.fromArray(t,s);const a=r.x*Math.abs(Wt.x)+r.y*Math.abs(Wt.y)+r.z*Math.abs(Wt.z),o=e.dot(Wt),l=n.dot(Wt),c=i.dot(Wt);if(Math.max(-Math.max(o,l,c),Math.min(o,l,c))>a)return!1}return!0}const qt=new Pt,Xt=new Lt,Jt=new Lt,Yt=new Lt;class Zt{constructor(t=new Lt,e=-1){this.center=t,this.radius=e}set(t,e){return this.center.copy(t),this.radius=e,this}setFromPoints(t,e){const n=this.center;void 0!==e?n.copy(e):qt.setFromPoints(t).getCenter(n);let i=0;for(let e=0,r=t.length;ethis.radius*this.radius&&(e.sub(this.center).normalize(),e.multiplyScalar(this.radius).add(this.center)),e}getBoundingBox(t){return this.isEmpty()?(t.makeEmpty(),t):(t.set(this.center,this.center),t.expandByScalar(this.radius),t)}applyMatrix4(t){return this.center.applyMatrix4(t),this.radius=this.radius*t.getMaxScaleOnAxis(),this}translate(t){return this.center.add(t),this}expandByPoint(t){Yt.subVectors(t,this.center);const e=Yt.lengthSq();if(e>this.radius*this.radius){const t=Math.sqrt(e),n=.5*(t-this.radius);this.center.add(Yt.multiplyScalar(n/t)),this.radius+=n}return this}union(t){return!0===this.center.equals(t.center)?Jt.set(0,0,1).multiplyScalar(t.radius):Jt.subVectors(t.center,this.center).normalize().multiplyScalar(t.radius),this.expandByPoint(Xt.copy(t.center).add(Jt)),this.expandByPoint(Xt.copy(t.center).sub(Jt)),this}equals(t){return t.center.equals(this.center)&&t.radius===this.radius}clone(){return(new this.constructor).copy(this)}}const Qt=new Lt,Kt=new Lt,$t=new Lt,te=new Lt,ee=new Lt,ne=new Lt,ie=new Lt;class re{constructor(t=new Lt,e=new Lt(0,0,-1)){this.origin=t,this.direction=e}set(t,e){return this.origin.copy(t),this.direction.copy(e),this}copy(t){return this.origin.copy(t.origin),this.direction.copy(t.direction),this}at(t,e){return e.copy(this.direction).multiplyScalar(t).add(this.origin)}lookAt(t){return this.direction.copy(t).sub(this.origin).normalize(),this}recast(t){return this.origin.copy(this.at(t,Qt)),this}closestPointToPoint(t,e){e.subVectors(t,this.origin);const n=e.dot(this.direction);return n<0?e.copy(this.origin):e.copy(this.direction).multiplyScalar(n).add(this.origin)}distanceToPoint(t){return Math.sqrt(this.distanceSqToPoint(t))}distanceSqToPoint(t){const e=Qt.subVectors(t,this.origin).dot(this.direction);return e<0?this.origin.distanceToSquared(t):(Qt.copy(this.direction).multiplyScalar(e).add(this.origin),Qt.distanceToSquared(t))}distanceSqToSegment(t,e,n,i){Kt.copy(t).add(e).multiplyScalar(.5),$t.copy(e).sub(t).normalize(),te.copy(this.origin).sub(Kt);const r=.5*t.distanceTo(e),s=-this.direction.dot($t),a=te.dot(this.direction),o=-te.dot($t),l=te.lengthSq(),c=Math.abs(1-s*s);let h,u,d,p;if(c>0)if(h=s*o-a,u=s*a-o,p=r*c,h>=0)if(u>=-p)if(u<=p){const t=1/c;h*=t,u*=t,d=h*(h+s*u+2*a)+u*(s*h+u+2*o)+l}else u=r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;else u=-r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;else u<=-p?(h=Math.max(0,-(-s*r+a)),u=h>0?-r:Math.min(Math.max(-r,-o),r),d=-h*h+u*(u+2*o)+l):u<=p?(h=0,u=Math.min(Math.max(-r,-o),r),d=u*(u+2*o)+l):(h=Math.max(0,-(s*r+a)),u=h>0?r:Math.min(Math.max(-r,-o),r),d=-h*h+u*(u+2*o)+l);else u=s>0?-r:r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;return n&&n.copy(this.direction).multiplyScalar(h).add(this.origin),i&&i.copy($t).multiplyScalar(u).add(Kt),d}intersectSphere(t,e){Qt.subVectors(t.center,this.origin);const n=Qt.dot(this.direction),i=Qt.dot(Qt)-n*n,r=t.radius*t.radius;if(i>r)return null;const s=Math.sqrt(r-i),a=n-s,o=n+s;return a<0&&o<0?null:a<0?this.at(o,e):this.at(a,e)}intersectsSphere(t){return this.distanceSqToPoint(t.center)<=t.radius*t.radius}distanceToPlane(t){const e=t.normal.dot(this.direction);if(0===e)return 0===t.distanceToPoint(this.origin)?0:null;const n=-(this.origin.dot(t.normal)+t.constant)/e;return n>=0?n:null}intersectPlane(t,e){const n=this.distanceToPlane(t);return null===n?null:this.at(n,e)}intersectsPlane(t){const e=t.distanceToPoint(this.origin);if(0===e)return!0;return t.normal.dot(this.direction)*e<0}intersectBox(t,e){let n,i,r,s,a,o;const l=1/this.direction.x,c=1/this.direction.y,h=1/this.direction.z,u=this.origin;return l>=0?(n=(t.min.x-u.x)*l,i=(t.max.x-u.x)*l):(n=(t.max.x-u.x)*l,i=(t.min.x-u.x)*l),c>=0?(r=(t.min.y-u.y)*c,s=(t.max.y-u.y)*c):(r=(t.max.y-u.y)*c,s=(t.min.y-u.y)*c),n>s||r>i?null:((r>n||n!=n)&&(n=r),(s=0?(a=(t.min.z-u.z)*h,o=(t.max.z-u.z)*h):(a=(t.max.z-u.z)*h,o=(t.min.z-u.z)*h),n>o||a>i?null:((a>n||n!=n)&&(n=a),(o=0?n:i,e)))}intersectsBox(t){return null!==this.intersectBox(t,Qt)}intersectTriangle(t,e,n,i,r){ee.subVectors(e,t),ne.subVectors(n,t),ie.crossVectors(ee,ne);let s,a=this.direction.dot(ie);if(a>0){if(i)return null;s=1}else{if(!(a<0))return null;s=-1,a=-a}te.subVectors(this.origin,t);const o=s*this.direction.dot(ne.crossVectors(te,ne));if(o<0)return null;const l=s*this.direction.dot(ee.cross(te));if(l<0)return null;if(o+l>a)return null;const c=-s*te.dot(ie);return c<0?null:this.at(c/a,r)}applyMatrix4(t){return this.origin.applyMatrix4(t),this.direction.transformDirection(t),this}equals(t){return t.origin.equals(this.origin)&&t.direction.equals(this.direction)}clone(){return(new this.constructor).copy(this)}}class se{constructor(){this.elements=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],arguments.length>0&&console.error("THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.")}set(t,e,n,i,r,s,a,o,l,c,h,u,d,p,m,f){const g=this.elements;return g[0]=t,g[4]=e,g[8]=n,g[12]=i,g[1]=r,g[5]=s,g[9]=a,g[13]=o,g[2]=l,g[6]=c,g[10]=h,g[14]=u,g[3]=d,g[7]=p,g[11]=m,g[15]=f,this}identity(){return this.set(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),this}clone(){return(new se).fromArray(this.elements)}copy(t){const e=this.elements,n=t.elements;return e[0]=n[0],e[1]=n[1],e[2]=n[2],e[3]=n[3],e[4]=n[4],e[5]=n[5],e[6]=n[6],e[7]=n[7],e[8]=n[8],e[9]=n[9],e[10]=n[10],e[11]=n[11],e[12]=n[12],e[13]=n[13],e[14]=n[14],e[15]=n[15],this}copyPosition(t){const e=this.elements,n=t.elements;return e[12]=n[12],e[13]=n[13],e[14]=n[14],this}setFromMatrix3(t){const e=t.elements;return this.set(e[0],e[3],e[6],0,e[1],e[4],e[7],0,e[2],e[5],e[8],0,0,0,0,1),this}extractBasis(t,e,n){return t.setFromMatrixColumn(this,0),e.setFromMatrixColumn(this,1),n.setFromMatrixColumn(this,2),this}makeBasis(t,e,n){return this.set(t.x,e.x,n.x,0,t.y,e.y,n.y,0,t.z,e.z,n.z,0,0,0,0,1),this}extractRotation(t){const e=this.elements,n=t.elements,i=1/ae.setFromMatrixColumn(t,0).length(),r=1/ae.setFromMatrixColumn(t,1).length(),s=1/ae.setFromMatrixColumn(t,2).length();return e[0]=n[0]*i,e[1]=n[1]*i,e[2]=n[2]*i,e[3]=0,e[4]=n[4]*r,e[5]=n[5]*r,e[6]=n[6]*r,e[7]=0,e[8]=n[8]*s,e[9]=n[9]*s,e[10]=n[10]*s,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,this}makeRotationFromEuler(t){t&&t.isEuler||console.error("THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.");const e=this.elements,n=t.x,i=t.y,r=t.z,s=Math.cos(n),a=Math.sin(n),o=Math.cos(i),l=Math.sin(i),c=Math.cos(r),h=Math.sin(r);if("XYZ"===t.order){const t=s*c,n=s*h,i=a*c,r=a*h;e[0]=o*c,e[4]=-o*h,e[8]=l,e[1]=n+i*l,e[5]=t-r*l,e[9]=-a*o,e[2]=r-t*l,e[6]=i+n*l,e[10]=s*o}else if("YXZ"===t.order){const t=o*c,n=o*h,i=l*c,r=l*h;e[0]=t+r*a,e[4]=i*a-n,e[8]=s*l,e[1]=s*h,e[5]=s*c,e[9]=-a,e[2]=n*a-i,e[6]=r+t*a,e[10]=s*o}else if("ZXY"===t.order){const t=o*c,n=o*h,i=l*c,r=l*h;e[0]=t-r*a,e[4]=-s*h,e[8]=i+n*a,e[1]=n+i*a,e[5]=s*c,e[9]=r-t*a,e[2]=-s*l,e[6]=a,e[10]=s*o}else if("ZYX"===t.order){const t=s*c,n=s*h,i=a*c,r=a*h;e[0]=o*c,e[4]=i*l-n,e[8]=t*l+r,e[1]=o*h,e[5]=r*l+t,e[9]=n*l-i,e[2]=-l,e[6]=a*o,e[10]=s*o}else if("YZX"===t.order){const t=s*o,n=s*l,i=a*o,r=a*l;e[0]=o*c,e[4]=r-t*h,e[8]=i*h+n,e[1]=h,e[5]=s*c,e[9]=-a*c,e[2]=-l*c,e[6]=n*h+i,e[10]=t-r*h}else if("XZY"===t.order){const t=s*o,n=s*l,i=a*o,r=a*l;e[0]=o*c,e[4]=-h,e[8]=l*c,e[1]=t*h+r,e[5]=s*c,e[9]=n*h-i,e[2]=i*h-n,e[6]=a*c,e[10]=r*h+t}return e[3]=0,e[7]=0,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,this}makeRotationFromQuaternion(t){return this.compose(le,t,ce)}lookAt(t,e,n){const i=this.elements;return de.subVectors(t,e),0===de.lengthSq()&&(de.z=1),de.normalize(),he.crossVectors(n,de),0===he.lengthSq()&&(1===Math.abs(n.z)?de.x+=1e-4:de.z+=1e-4,de.normalize(),he.crossVectors(n,de)),he.normalize(),ue.crossVectors(de,he),i[0]=he.x,i[4]=ue.x,i[8]=de.x,i[1]=he.y,i[5]=ue.y,i[9]=de.y,i[2]=he.z,i[6]=ue.z,i[10]=de.z,this}multiply(t,e){return void 0!==e?(console.warn("THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead."),this.multiplyMatrices(t,e)):this.multiplyMatrices(this,t)}premultiply(t){return this.multiplyMatrices(t,this)}multiplyMatrices(t,e){const n=t.elements,i=e.elements,r=this.elements,s=n[0],a=n[4],o=n[8],l=n[12],c=n[1],h=n[5],u=n[9],d=n[13],p=n[2],m=n[6],f=n[10],g=n[14],v=n[3],y=n[7],x=n[11],_=n[15],b=i[0],M=i[4],w=i[8],S=i[12],T=i[1],E=i[5],A=i[9],L=i[13],R=i[2],C=i[6],P=i[10],D=i[14],I=i[3],N=i[7],z=i[11],B=i[15];return r[0]=s*b+a*T+o*R+l*I,r[4]=s*M+a*E+o*C+l*N,r[8]=s*w+a*A+o*P+l*z,r[12]=s*S+a*L+o*D+l*B,r[1]=c*b+h*T+u*R+d*I,r[5]=c*M+h*E+u*C+d*N,r[9]=c*w+h*A+u*P+d*z,r[13]=c*S+h*L+u*D+d*B,r[2]=p*b+m*T+f*R+g*I,r[6]=p*M+m*E+f*C+g*N,r[10]=p*w+m*A+f*P+g*z,r[14]=p*S+m*L+f*D+g*B,r[3]=v*b+y*T+x*R+_*I,r[7]=v*M+y*E+x*C+_*N,r[11]=v*w+y*A+x*P+_*z,r[15]=v*S+y*L+x*D+_*B,this}multiplyScalar(t){const e=this.elements;return e[0]*=t,e[4]*=t,e[8]*=t,e[12]*=t,e[1]*=t,e[5]*=t,e[9]*=t,e[13]*=t,e[2]*=t,e[6]*=t,e[10]*=t,e[14]*=t,e[3]*=t,e[7]*=t,e[11]*=t,e[15]*=t,this}determinant(){const t=this.elements,e=t[0],n=t[4],i=t[8],r=t[12],s=t[1],a=t[5],o=t[9],l=t[13],c=t[2],h=t[6],u=t[10],d=t[14];return t[3]*(+r*o*h-i*l*h-r*a*u+n*l*u+i*a*d-n*o*d)+t[7]*(+e*o*d-e*l*u+r*s*u-i*s*d+i*l*c-r*o*c)+t[11]*(+e*l*h-e*a*d-r*s*h+n*s*d+r*a*c-n*l*c)+t[15]*(-i*a*c-e*o*h+e*a*u+i*s*h-n*s*u+n*o*c)}transpose(){const t=this.elements;let e;return e=t[1],t[1]=t[4],t[4]=e,e=t[2],t[2]=t[8],t[8]=e,e=t[6],t[6]=t[9],t[9]=e,e=t[3],t[3]=t[12],t[12]=e,e=t[7],t[7]=t[13],t[13]=e,e=t[11],t[11]=t[14],t[14]=e,this}setPosition(t,e,n){const i=this.elements;return t.isVector3?(i[12]=t.x,i[13]=t.y,i[14]=t.z):(i[12]=t,i[13]=e,i[14]=n),this}invert(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8],h=t[9],u=t[10],d=t[11],p=t[12],m=t[13],f=t[14],g=t[15],v=h*f*l-m*u*l+m*o*d-a*f*d-h*o*g+a*u*g,y=p*u*l-c*f*l-p*o*d+s*f*d+c*o*g-s*u*g,x=c*m*l-p*h*l+p*a*d-s*m*d-c*a*g+s*h*g,_=p*h*o-c*m*o-p*a*u+s*m*u+c*a*f-s*h*f,b=e*v+n*y+i*x+r*_;if(0===b)return this.set(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);const M=1/b;return t[0]=v*M,t[1]=(m*u*r-h*f*r-m*i*d+n*f*d+h*i*g-n*u*g)*M,t[2]=(a*f*r-m*o*r+m*i*l-n*f*l-a*i*g+n*o*g)*M,t[3]=(h*o*r-a*u*r-h*i*l+n*u*l+a*i*d-n*o*d)*M,t[4]=y*M,t[5]=(c*f*r-p*u*r+p*i*d-e*f*d-c*i*g+e*u*g)*M,t[6]=(p*o*r-s*f*r-p*i*l+e*f*l+s*i*g-e*o*g)*M,t[7]=(s*u*r-c*o*r+c*i*l-e*u*l-s*i*d+e*o*d)*M,t[8]=x*M,t[9]=(p*h*r-c*m*r-p*n*d+e*m*d+c*n*g-e*h*g)*M,t[10]=(s*m*r-p*a*r+p*n*l-e*m*l-s*n*g+e*a*g)*M,t[11]=(c*a*r-s*h*r-c*n*l+e*h*l+s*n*d-e*a*d)*M,t[12]=_*M,t[13]=(c*m*i-p*h*i+p*n*u-e*m*u-c*n*f+e*h*f)*M,t[14]=(p*a*i-s*m*i-p*n*o+e*m*o+s*n*f-e*a*f)*M,t[15]=(s*h*i-c*a*i+c*n*o-e*h*o-s*n*u+e*a*u)*M,this}scale(t){const e=this.elements,n=t.x,i=t.y,r=t.z;return e[0]*=n,e[4]*=i,e[8]*=r,e[1]*=n,e[5]*=i,e[9]*=r,e[2]*=n,e[6]*=i,e[10]*=r,e[3]*=n,e[7]*=i,e[11]*=r,this}getMaxScaleOnAxis(){const t=this.elements,e=t[0]*t[0]+t[1]*t[1]+t[2]*t[2],n=t[4]*t[4]+t[5]*t[5]+t[6]*t[6],i=t[8]*t[8]+t[9]*t[9]+t[10]*t[10];return Math.sqrt(Math.max(e,n,i))}makeTranslation(t,e,n){return this.set(1,0,0,t,0,1,0,e,0,0,1,n,0,0,0,1),this}makeRotationX(t){const e=Math.cos(t),n=Math.sin(t);return this.set(1,0,0,0,0,e,-n,0,0,n,e,0,0,0,0,1),this}makeRotationY(t){const e=Math.cos(t),n=Math.sin(t);return this.set(e,0,n,0,0,1,0,0,-n,0,e,0,0,0,0,1),this}makeRotationZ(t){const e=Math.cos(t),n=Math.sin(t);return this.set(e,-n,0,0,n,e,0,0,0,0,1,0,0,0,0,1),this}makeRotationAxis(t,e){const n=Math.cos(e),i=Math.sin(e),r=1-n,s=t.x,a=t.y,o=t.z,l=r*s,c=r*a;return this.set(l*s+n,l*a-i*o,l*o+i*a,0,l*a+i*o,c*a+n,c*o-i*s,0,l*o-i*a,c*o+i*s,r*o*o+n,0,0,0,0,1),this}makeScale(t,e,n){return this.set(t,0,0,0,0,e,0,0,0,0,n,0,0,0,0,1),this}makeShear(t,e,n,i,r,s){return this.set(1,n,r,0,t,1,s,0,e,i,1,0,0,0,0,1),this}compose(t,e,n){const i=this.elements,r=e._x,s=e._y,a=e._z,o=e._w,l=r+r,c=s+s,h=a+a,u=r*l,d=r*c,p=r*h,m=s*c,f=s*h,g=a*h,v=o*l,y=o*c,x=o*h,_=n.x,b=n.y,M=n.z;return i[0]=(1-(m+g))*_,i[1]=(d+x)*_,i[2]=(p-y)*_,i[3]=0,i[4]=(d-x)*b,i[5]=(1-(u+g))*b,i[6]=(f+v)*b,i[7]=0,i[8]=(p+y)*M,i[9]=(f-v)*M,i[10]=(1-(u+m))*M,i[11]=0,i[12]=t.x,i[13]=t.y,i[14]=t.z,i[15]=1,this}decompose(t,e,n){const i=this.elements;let r=ae.set(i[0],i[1],i[2]).length();const s=ae.set(i[4],i[5],i[6]).length(),a=ae.set(i[8],i[9],i[10]).length();this.determinant()<0&&(r=-r),t.x=i[12],t.y=i[13],t.z=i[14],oe.copy(this);const o=1/r,l=1/s,c=1/a;return oe.elements[0]*=o,oe.elements[1]*=o,oe.elements[2]*=o,oe.elements[4]*=l,oe.elements[5]*=l,oe.elements[6]*=l,oe.elements[8]*=c,oe.elements[9]*=c,oe.elements[10]*=c,e.setFromRotationMatrix(oe),n.x=r,n.y=s,n.z=a,this}makePerspective(t,e,n,i,r,s){void 0===s&&console.warn("THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.");const a=this.elements,o=2*r/(e-t),l=2*r/(n-i),c=(e+t)/(e-t),h=(n+i)/(n-i),u=-(s+r)/(s-r),d=-2*s*r/(s-r);return a[0]=o,a[4]=0,a[8]=c,a[12]=0,a[1]=0,a[5]=l,a[9]=h,a[13]=0,a[2]=0,a[6]=0,a[10]=u,a[14]=d,a[3]=0,a[7]=0,a[11]=-1,a[15]=0,this}makeOrthographic(t,e,n,i,r,s){const a=this.elements,o=1/(e-t),l=1/(n-i),c=1/(s-r),h=(e+t)*o,u=(n+i)*l,d=(s+r)*c;return a[0]=2*o,a[4]=0,a[8]=0,a[12]=-h,a[1]=0,a[5]=2*l,a[9]=0,a[13]=-u,a[2]=0,a[6]=0,a[10]=-2*c,a[14]=-d,a[3]=0,a[7]=0,a[11]=0,a[15]=1,this}equals(t){const e=this.elements,n=t.elements;for(let t=0;t<16;t++)if(e[t]!==n[t])return!1;return!0}fromArray(t,e=0){for(let n=0;n<16;n++)this.elements[n]=t[n+e];return this}toArray(t=[],e=0){const n=this.elements;return t[e]=n[0],t[e+1]=n[1],t[e+2]=n[2],t[e+3]=n[3],t[e+4]=n[4],t[e+5]=n[5],t[e+6]=n[6],t[e+7]=n[7],t[e+8]=n[8],t[e+9]=n[9],t[e+10]=n[10],t[e+11]=n[11],t[e+12]=n[12],t[e+13]=n[13],t[e+14]=n[14],t[e+15]=n[15],t}}se.prototype.isMatrix4=!0;const ae=new Lt,oe=new se,le=new Lt(0,0,0),ce=new Lt(1,1,1),he=new Lt,ue=new Lt,de=new Lt,pe=new se,me=new At;class fe{constructor(t=0,e=0,n=0,i=fe.DefaultOrder){this._x=t,this._y=e,this._z=n,this._order=i}get x(){return this._x}set x(t){this._x=t,this._onChangeCallback()}get y(){return this._y}set y(t){this._y=t,this._onChangeCallback()}get z(){return this._z}set z(t){this._z=t,this._onChangeCallback()}get order(){return this._order}set order(t){this._order=t,this._onChangeCallback()}set(t,e,n,i=this._order){return this._x=t,this._y=e,this._z=n,this._order=i,this._onChangeCallback(),this}clone(){return new this.constructor(this._x,this._y,this._z,this._order)}copy(t){return this._x=t._x,this._y=t._y,this._z=t._z,this._order=t._order,this._onChangeCallback(),this}setFromRotationMatrix(t,e=this._order,n=!0){const i=t.elements,r=i[0],s=i[4],a=i[8],o=i[1],l=i[5],c=i[9],h=i[2],u=i[6],d=i[10];switch(e){case"XYZ":this._y=Math.asin(st(a,-1,1)),Math.abs(a)<.9999999?(this._x=Math.atan2(-c,d),this._z=Math.atan2(-s,r)):(this._x=Math.atan2(u,l),this._z=0);break;case"YXZ":this._x=Math.asin(-st(c,-1,1)),Math.abs(c)<.9999999?(this._y=Math.atan2(a,d),this._z=Math.atan2(o,l)):(this._y=Math.atan2(-h,r),this._z=0);break;case"ZXY":this._x=Math.asin(st(u,-1,1)),Math.abs(u)<.9999999?(this._y=Math.atan2(-h,d),this._z=Math.atan2(-s,l)):(this._y=0,this._z=Math.atan2(o,r));break;case"ZYX":this._y=Math.asin(-st(h,-1,1)),Math.abs(h)<.9999999?(this._x=Math.atan2(u,d),this._z=Math.atan2(o,r)):(this._x=0,this._z=Math.atan2(-s,l));break;case"YZX":this._z=Math.asin(st(o,-1,1)),Math.abs(o)<.9999999?(this._x=Math.atan2(-c,l),this._y=Math.atan2(-h,r)):(this._x=0,this._y=Math.atan2(a,d));break;case"XZY":this._z=Math.asin(-st(s,-1,1)),Math.abs(s)<.9999999?(this._x=Math.atan2(u,l),this._y=Math.atan2(a,r)):(this._x=Math.atan2(-c,d),this._y=0);break;default:console.warn("THREE.Euler: .setFromRotationMatrix() encountered an unknown order: "+e)}return this._order=e,!0===n&&this._onChangeCallback(),this}setFromQuaternion(t,e,n){return pe.makeRotationFromQuaternion(t),this.setFromRotationMatrix(pe,e,n)}setFromVector3(t,e=this._order){return this.set(t.x,t.y,t.z,e)}reorder(t){return me.setFromEuler(this),this.setFromQuaternion(me,t)}equals(t){return t._x===this._x&&t._y===this._y&&t._z===this._z&&t._order===this._order}fromArray(t){return this._x=t[0],this._y=t[1],this._z=t[2],void 0!==t[3]&&(this._order=t[3]),this._onChangeCallback(),this}toArray(t=[],e=0){return t[e]=this._x,t[e+1]=this._y,t[e+2]=this._z,t[e+3]=this._order,t}toVector3(t){return t?t.set(this._x,this._y,this._z):new Lt(this._x,this._y,this._z)}_onChange(t){return this._onChangeCallback=t,this}_onChangeCallback(){}}fe.prototype.isEuler=!0,fe.DefaultOrder="XYZ",fe.RotationOrders=["XYZ","YZX","ZXY","XZY","YXZ","ZYX"];class ge{constructor(){this.mask=1}set(t){this.mask=(1<>>0}enable(t){this.mask|=1<1){for(let t=0;t1){for(let t=0;t0){i.children=[];for(let e=0;e0){i.animations=[];for(let e=0;e0&&(n.geometries=e),i.length>0&&(n.materials=i),r.length>0&&(n.textures=r),a.length>0&&(n.images=a),o.length>0&&(n.shapes=o),l.length>0&&(n.skeletons=l),c.length>0&&(n.animations=c)}return n.object=i,n;function s(t){const e=[];for(const n in t){const i=t[n];delete i.metadata,e.push(i)}return e}}clone(t){return(new this.constructor).copy(this,t)}copy(t,e=!0){if(this.name=t.name,this.up.copy(t.up),this.position.copy(t.position),this.rotation.order=t.rotation.order,this.quaternion.copy(t.quaternion),this.scale.copy(t.scale),this.matrix.copy(t.matrix),this.matrixWorld.copy(t.matrixWorld),this.matrixAutoUpdate=t.matrixAutoUpdate,this.matrixWorldNeedsUpdate=t.matrixWorldNeedsUpdate,this.layers.mask=t.layers.mask,this.visible=t.visible,this.castShadow=t.castShadow,this.receiveShadow=t.receiveShadow,this.frustumCulled=t.frustumCulled,this.renderOrder=t.renderOrder,this.userData=JSON.parse(JSON.stringify(t.userData)),!0===e)for(let e=0;e0?i.multiplyScalar(1/Math.sqrt(r)):i.set(0,0,0)}static getBarycoord(t,e,n,i,r){Pe.subVectors(i,e),De.subVectors(n,e),Ie.subVectors(t,e);const s=Pe.dot(Pe),a=Pe.dot(De),o=Pe.dot(Ie),l=De.dot(De),c=De.dot(Ie),h=s*l-a*a;if(0===h)return r.set(-2,-1,-1);const u=1/h,d=(l*o-a*c)*u,p=(s*c-a*o)*u;return r.set(1-d-p,p,d)}static containsPoint(t,e,n,i){return this.getBarycoord(t,e,n,i,Ne),Ne.x>=0&&Ne.y>=0&&Ne.x+Ne.y<=1}static getUV(t,e,n,i,r,s,a,o){return this.getBarycoord(t,e,n,i,Ne),o.set(0,0),o.addScaledVector(r,Ne.x),o.addScaledVector(s,Ne.y),o.addScaledVector(a,Ne.z),o}static isFrontFacing(t,e,n,i){return Pe.subVectors(n,e),De.subVectors(t,e),Pe.cross(De).dot(i)<0}set(t,e,n){return this.a.copy(t),this.b.copy(e),this.c.copy(n),this}setFromPointsAndIndices(t,e,n,i){return this.a.copy(t[e]),this.b.copy(t[n]),this.c.copy(t[i]),this}setFromAttributeAndIndices(t,e,n,i){return this.a.fromBufferAttribute(t,e),this.b.fromBufferAttribute(t,n),this.c.fromBufferAttribute(t,i),this}clone(){return(new this.constructor).copy(this)}copy(t){return this.a.copy(t.a),this.b.copy(t.b),this.c.copy(t.c),this}getArea(){return Pe.subVectors(this.c,this.b),De.subVectors(this.a,this.b),.5*Pe.cross(De).length()}getMidpoint(t){return t.addVectors(this.a,this.b).add(this.c).multiplyScalar(1/3)}getNormal(t){return Ge.getNormal(this.a,this.b,this.c,t)}getPlane(t){return t.setFromCoplanarPoints(this.a,this.b,this.c)}getBarycoord(t,e){return Ge.getBarycoord(t,this.a,this.b,this.c,e)}getUV(t,e,n,i,r){return Ge.getUV(t,this.a,this.b,this.c,e,n,i,r)}containsPoint(t){return Ge.containsPoint(t,this.a,this.b,this.c)}isFrontFacing(t){return Ge.isFrontFacing(this.a,this.b,this.c,t)}intersectsBox(t){return t.intersectsTriangle(this)}closestPointToPoint(t,e){const n=this.a,i=this.b,r=this.c;let s,a;ze.subVectors(i,n),Be.subVectors(r,n),Oe.subVectors(t,n);const o=ze.dot(Oe),l=Be.dot(Oe);if(o<=0&&l<=0)return e.copy(n);Ue.subVectors(t,i);const c=ze.dot(Ue),h=Be.dot(Ue);if(c>=0&&h<=c)return e.copy(i);const u=o*h-c*l;if(u<=0&&o>=0&&c<=0)return s=o/(o-c),e.copy(n).addScaledVector(ze,s);He.subVectors(t,r);const d=ze.dot(He),p=Be.dot(He);if(p>=0&&d<=p)return e.copy(r);const m=d*l-o*p;if(m<=0&&l>=0&&p<=0)return a=l/(l-p),e.copy(n).addScaledVector(Be,a);const f=c*p-d*h;if(f<=0&&h-c>=0&&d-p>=0)return Fe.subVectors(r,i),a=(h-c)/(h-c+(d-p)),e.copy(i).addScaledVector(Fe,a);const g=1/(f+m+u);return s=m*g,a=u*g,e.copy(n).addScaledVector(ze,s).addScaledVector(Be,a)}equals(t){return t.a.equals(this.a)&&t.b.equals(this.b)&&t.c.equals(this.c)}}let ke=0;class Ve extends ${constructor(){super(),Object.defineProperty(this,"id",{value:ke++}),this.uuid=rt(),this.name="",this.type="Material",this.fog=!0,this.blending=1,this.side=0,this.vertexColors=!1,this.opacity=1,this.format=E,this.transparent=!1,this.blendSrc=204,this.blendDst=205,this.blendEquation=n,this.blendSrcAlpha=null,this.blendDstAlpha=null,this.blendEquationAlpha=null,this.depthFunc=3,this.depthTest=!0,this.depthWrite=!0,this.stencilWriteMask=255,this.stencilFunc=519,this.stencilRef=0,this.stencilFuncMask=255,this.stencilFail=Y,this.stencilZFail=Y,this.stencilZPass=Y,this.stencilWrite=!1,this.clippingPlanes=null,this.clipIntersection=!1,this.clipShadows=!1,this.shadowSide=null,this.colorWrite=!0,this.precision=null,this.polygonOffset=!1,this.polygonOffsetFactor=0,this.polygonOffsetUnits=0,this.dithering=!1,this.alphaToCoverage=!1,this.premultipliedAlpha=!1,this.visible=!0,this.toneMapped=!0,this.userData={},this.version=0,this._alphaTest=0}get alphaTest(){return this._alphaTest}set alphaTest(t){this._alphaTest>0!=t>0&&this.version++,this._alphaTest=t}onBuild(){}onBeforeRender(){}onBeforeCompile(){}customProgramCacheKey(){return this.onBeforeCompile.toString()}setValues(t){if(void 0!==t)for(const e in t){const n=t[e];if(void 0===n){console.warn("THREE.Material: '"+e+"' parameter is undefined.");continue}if("shading"===e){console.warn("THREE."+this.type+": .shading has been removed. Use the boolean .flatShading instead."),this.flatShading=1===n;continue}const i=this[e];void 0!==i?i&&i.isColor?i.set(n):i&&i.isVector3&&n&&n.isVector3?i.copy(n):this[e]=n:console.warn("THREE."+this.type+": '"+e+"' is not a property of this material.")}}toJSON(t){const e=void 0===t||"string"==typeof t;e&&(t={textures:{},images:{}});const n={metadata:{version:4.5,type:"Material",generator:"Material.toJSON"}};function i(t){const e=[];for(const n in t){const i=t[n];delete i.metadata,e.push(i)}return e}if(n.uuid=this.uuid,n.type=this.type,""!==this.name&&(n.name=this.name),this.color&&this.color.isColor&&(n.color=this.color.getHex()),void 0!==this.roughness&&(n.roughness=this.roughness),void 0!==this.metalness&&(n.metalness=this.metalness),void 0!==this.sheen&&(n.sheen=this.sheen),this.sheenColor&&this.sheenColor.isColor&&(n.sheenColor=this.sheenColor.getHex()),void 0!==this.sheenRoughness&&(n.sheenRoughness=this.sheenRoughness),this.emissive&&this.emissive.isColor&&(n.emissive=this.emissive.getHex()),this.emissiveIntensity&&1!==this.emissiveIntensity&&(n.emissiveIntensity=this.emissiveIntensity),this.specular&&this.specular.isColor&&(n.specular=this.specular.getHex()),void 0!==this.specularIntensity&&(n.specularIntensity=this.specularIntensity),this.specularColor&&this.specularColor.isColor&&(n.specularColor=this.specularColor.getHex()),void 0!==this.shininess&&(n.shininess=this.shininess),void 0!==this.clearcoat&&(n.clearcoat=this.clearcoat),void 0!==this.clearcoatRoughness&&(n.clearcoatRoughness=this.clearcoatRoughness),this.clearcoatMap&&this.clearcoatMap.isTexture&&(n.clearcoatMap=this.clearcoatMap.toJSON(t).uuid),this.clearcoatRoughnessMap&&this.clearcoatRoughnessMap.isTexture&&(n.clearcoatRoughnessMap=this.clearcoatRoughnessMap.toJSON(t).uuid),this.clearcoatNormalMap&&this.clearcoatNormalMap.isTexture&&(n.clearcoatNormalMap=this.clearcoatNormalMap.toJSON(t).uuid,n.clearcoatNormalScale=this.clearcoatNormalScale.toArray()),this.map&&this.map.isTexture&&(n.map=this.map.toJSON(t).uuid),this.matcap&&this.matcap.isTexture&&(n.matcap=this.matcap.toJSON(t).uuid),this.alphaMap&&this.alphaMap.isTexture&&(n.alphaMap=this.alphaMap.toJSON(t).uuid),this.lightMap&&this.lightMap.isTexture&&(n.lightMap=this.lightMap.toJSON(t).uuid,n.lightMapIntensity=this.lightMapIntensity),this.aoMap&&this.aoMap.isTexture&&(n.aoMap=this.aoMap.toJSON(t).uuid,n.aoMapIntensity=this.aoMapIntensity),this.bumpMap&&this.bumpMap.isTexture&&(n.bumpMap=this.bumpMap.toJSON(t).uuid,n.bumpScale=this.bumpScale),this.normalMap&&this.normalMap.isTexture&&(n.normalMap=this.normalMap.toJSON(t).uuid,n.normalMapType=this.normalMapType,n.normalScale=this.normalScale.toArray()),this.displacementMap&&this.displacementMap.isTexture&&(n.displacementMap=this.displacementMap.toJSON(t).uuid,n.displacementScale=this.displacementScale,n.displacementBias=this.displacementBias),this.roughnessMap&&this.roughnessMap.isTexture&&(n.roughnessMap=this.roughnessMap.toJSON(t).uuid),this.metalnessMap&&this.metalnessMap.isTexture&&(n.metalnessMap=this.metalnessMap.toJSON(t).uuid),this.emissiveMap&&this.emissiveMap.isTexture&&(n.emissiveMap=this.emissiveMap.toJSON(t).uuid),this.specularMap&&this.specularMap.isTexture&&(n.specularMap=this.specularMap.toJSON(t).uuid),this.specularIntensityMap&&this.specularIntensityMap.isTexture&&(n.specularIntensityMap=this.specularIntensityMap.toJSON(t).uuid),this.specularColorMap&&this.specularColorMap.isTexture&&(n.specularColorMap=this.specularColorMap.toJSON(t).uuid),this.envMap&&this.envMap.isTexture&&(n.envMap=this.envMap.toJSON(t).uuid,void 0!==this.combine&&(n.combine=this.combine)),void 0!==this.envMapIntensity&&(n.envMapIntensity=this.envMapIntensity),void 0!==this.reflectivity&&(n.reflectivity=this.reflectivity),void 0!==this.refractionRatio&&(n.refractionRatio=this.refractionRatio),this.gradientMap&&this.gradientMap.isTexture&&(n.gradientMap=this.gradientMap.toJSON(t).uuid),void 0!==this.transmission&&(n.transmission=this.transmission),this.transmissionMap&&this.transmissionMap.isTexture&&(n.transmissionMap=this.transmissionMap.toJSON(t).uuid),void 0!==this.thickness&&(n.thickness=this.thickness),this.thicknessMap&&this.thicknessMap.isTexture&&(n.thicknessMap=this.thicknessMap.toJSON(t).uuid),void 0!==this.attenuationDistance&&(n.attenuationDistance=this.attenuationDistance),void 0!==this.attenuationColor&&(n.attenuationColor=this.attenuationColor.getHex()),void 0!==this.size&&(n.size=this.size),null!==this.shadowSide&&(n.shadowSide=this.shadowSide),void 0!==this.sizeAttenuation&&(n.sizeAttenuation=this.sizeAttenuation),1!==this.blending&&(n.blending=this.blending),0!==this.side&&(n.side=this.side),this.vertexColors&&(n.vertexColors=!0),this.opacity<1&&(n.opacity=this.opacity),this.format!==E&&(n.format=this.format),!0===this.transparent&&(n.transparent=this.transparent),n.depthFunc=this.depthFunc,n.depthTest=this.depthTest,n.depthWrite=this.depthWrite,n.colorWrite=this.colorWrite,n.stencilWrite=this.stencilWrite,n.stencilWriteMask=this.stencilWriteMask,n.stencilFunc=this.stencilFunc,n.stencilRef=this.stencilRef,n.stencilFuncMask=this.stencilFuncMask,n.stencilFail=this.stencilFail,n.stencilZFail=this.stencilZFail,n.stencilZPass=this.stencilZPass,this.rotation&&0!==this.rotation&&(n.rotation=this.rotation),!0===this.polygonOffset&&(n.polygonOffset=!0),0!==this.polygonOffsetFactor&&(n.polygonOffsetFactor=this.polygonOffsetFactor),0!==this.polygonOffsetUnits&&(n.polygonOffsetUnits=this.polygonOffsetUnits),this.linewidth&&1!==this.linewidth&&(n.linewidth=this.linewidth),void 0!==this.dashSize&&(n.dashSize=this.dashSize),void 0!==this.gapSize&&(n.gapSize=this.gapSize),void 0!==this.scale&&(n.scale=this.scale),!0===this.dithering&&(n.dithering=!0),this.alphaTest>0&&(n.alphaTest=this.alphaTest),!0===this.alphaToCoverage&&(n.alphaToCoverage=this.alphaToCoverage),!0===this.premultipliedAlpha&&(n.premultipliedAlpha=this.premultipliedAlpha),!0===this.wireframe&&(n.wireframe=this.wireframe),this.wireframeLinewidth>1&&(n.wireframeLinewidth=this.wireframeLinewidth),"round"!==this.wireframeLinecap&&(n.wireframeLinecap=this.wireframeLinecap),"round"!==this.wireframeLinejoin&&(n.wireframeLinejoin=this.wireframeLinejoin),!0===this.flatShading&&(n.flatShading=this.flatShading),!1===this.visible&&(n.visible=!1),!1===this.toneMapped&&(n.toneMapped=!1),"{}"!==JSON.stringify(this.userData)&&(n.userData=this.userData),e){const e=i(t.textures),r=i(t.images);e.length>0&&(n.textures=e),r.length>0&&(n.images=r)}return n}clone(){return(new this.constructor).copy(this)}copy(t){this.name=t.name,this.fog=t.fog,this.blending=t.blending,this.side=t.side,this.vertexColors=t.vertexColors,this.opacity=t.opacity,this.format=t.format,this.transparent=t.transparent,this.blendSrc=t.blendSrc,this.blendDst=t.blendDst,this.blendEquation=t.blendEquation,this.blendSrcAlpha=t.blendSrcAlpha,this.blendDstAlpha=t.blendDstAlpha,this.blendEquationAlpha=t.blendEquationAlpha,this.depthFunc=t.depthFunc,this.depthTest=t.depthTest,this.depthWrite=t.depthWrite,this.stencilWriteMask=t.stencilWriteMask,this.stencilFunc=t.stencilFunc,this.stencilRef=t.stencilRef,this.stencilFuncMask=t.stencilFuncMask,this.stencilFail=t.stencilFail,this.stencilZFail=t.stencilZFail,this.stencilZPass=t.stencilZPass,this.stencilWrite=t.stencilWrite;const e=t.clippingPlanes;let n=null;if(null!==e){const t=e.length;n=new Array(t);for(let i=0;i!==t;++i)n[i]=e[i].clone()}return this.clippingPlanes=n,this.clipIntersection=t.clipIntersection,this.clipShadows=t.clipShadows,this.shadowSide=t.shadowSide,this.colorWrite=t.colorWrite,this.precision=t.precision,this.polygonOffset=t.polygonOffset,this.polygonOffsetFactor=t.polygonOffsetFactor,this.polygonOffsetUnits=t.polygonOffsetUnits,this.dithering=t.dithering,this.alphaTest=t.alphaTest,this.alphaToCoverage=t.alphaToCoverage,this.premultipliedAlpha=t.premultipliedAlpha,this.visible=t.visible,this.toneMapped=t.toneMapped,this.userData=JSON.parse(JSON.stringify(t.userData)),this}dispose(){this.dispatchEvent({type:"dispose"})}set needsUpdate(t){!0===t&&this.version++}}Ve.prototype.isMaterial=!0;const We={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074},je={h:0,s:0,l:0},qe={h:0,s:0,l:0};function Xe(t,e,n){return n<0&&(n+=1),n>1&&(n-=1),n<1/6?t+6*(e-t)*n:n<.5?e:n<2/3?t+6*(e-t)*(2/3-n):t}function Je(t){return t<.04045?.0773993808*t:Math.pow(.9478672986*t+.0521327014,2.4)}function Ye(t){return t<.0031308?12.92*t:1.055*Math.pow(t,.41666)-.055}class Ze{constructor(t,e,n){return void 0===e&&void 0===n?this.set(t):this.setRGB(t,e,n)}set(t){return t&&t.isColor?this.copy(t):"number"==typeof t?this.setHex(t):"string"==typeof t&&this.setStyle(t),this}setScalar(t){return this.r=t,this.g=t,this.b=t,this}setHex(t){return t=Math.floor(t),this.r=(t>>16&255)/255,this.g=(t>>8&255)/255,this.b=(255&t)/255,this}setRGB(t,e,n){return this.r=t,this.g=e,this.b=n,this}setHSL(t,e,n){if(t=at(t,1),e=st(e,0,1),n=st(n,0,1),0===e)this.r=this.g=this.b=n;else{const i=n<=.5?n*(1+e):n+e-n*e,r=2*n-i;this.r=Xe(r,i,t+1/3),this.g=Xe(r,i,t),this.b=Xe(r,i,t-1/3)}return this}setStyle(t){function e(e){void 0!==e&&parseFloat(e)<1&&console.warn("THREE.Color: Alpha component of "+t+" will be ignored.")}let n;if(n=/^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(t)){let t;const i=n[1],r=n[2];switch(i){case"rgb":case"rgba":if(t=/^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(r))return this.r=Math.min(255,parseInt(t[1],10))/255,this.g=Math.min(255,parseInt(t[2],10))/255,this.b=Math.min(255,parseInt(t[3],10))/255,e(t[4]),this;if(t=/^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(r))return this.r=Math.min(100,parseInt(t[1],10))/100,this.g=Math.min(100,parseInt(t[2],10))/100,this.b=Math.min(100,parseInt(t[3],10))/100,e(t[4]),this;break;case"hsl":case"hsla":if(t=/^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(r)){const n=parseFloat(t[1])/360,i=parseInt(t[2],10)/100,r=parseInt(t[3],10)/100;return e(t[4]),this.setHSL(n,i,r)}}}else if(n=/^\#([A-Fa-f\d]+)$/.exec(t)){const t=n[1],e=t.length;if(3===e)return this.r=parseInt(t.charAt(0)+t.charAt(0),16)/255,this.g=parseInt(t.charAt(1)+t.charAt(1),16)/255,this.b=parseInt(t.charAt(2)+t.charAt(2),16)/255,this;if(6===e)return this.r=parseInt(t.charAt(0)+t.charAt(1),16)/255,this.g=parseInt(t.charAt(2)+t.charAt(3),16)/255,this.b=parseInt(t.charAt(4)+t.charAt(5),16)/255,this}return t&&t.length>0?this.setColorName(t):this}setColorName(t){const e=We[t.toLowerCase()];return void 0!==e?this.setHex(e):console.warn("THREE.Color: Unknown color "+t),this}clone(){return new this.constructor(this.r,this.g,this.b)}copy(t){return this.r=t.r,this.g=t.g,this.b=t.b,this}copySRGBToLinear(t){return this.r=Je(t.r),this.g=Je(t.g),this.b=Je(t.b),this}copyLinearToSRGB(t){return this.r=Ye(t.r),this.g=Ye(t.g),this.b=Ye(t.b),this}convertSRGBToLinear(){return this.copySRGBToLinear(this),this}convertLinearToSRGB(){return this.copyLinearToSRGB(this),this}getHex(){return 255*this.r<<16^255*this.g<<8^255*this.b<<0}getHexString(){return("000000"+this.getHex().toString(16)).slice(-6)}getHSL(t){const e=this.r,n=this.g,i=this.b,r=Math.max(e,n,i),s=Math.min(e,n,i);let a,o;const l=(s+r)/2;if(s===r)a=0,o=0;else{const t=r-s;switch(o=l<=.5?t/(r+s):t/(2-r-s),r){case e:a=(n-i)/t+(n65535?ln:an)(t,1):this.index=t,this}getAttribute(t){return this.attributes[t]}setAttribute(t,e){return this.attributes[t]=e,this}deleteAttribute(t){return delete this.attributes[t],this}hasAttribute(t){return void 0!==this.attributes[t]}addGroup(t,e,n=0){this.groups.push({start:t,count:e,materialIndex:n})}clearGroups(){this.groups=[]}setDrawRange(t,e){this.drawRange.start=t,this.drawRange.count=e}applyMatrix4(t){const e=this.attributes.position;void 0!==e&&(e.applyMatrix4(t),e.needsUpdate=!0);const n=this.attributes.normal;if(void 0!==n){const e=(new pt).getNormalMatrix(t);n.applyNormalMatrix(e),n.needsUpdate=!0}const i=this.attributes.tangent;return void 0!==i&&(i.transformDirection(t),i.needsUpdate=!0),null!==this.boundingBox&&this.computeBoundingBox(),null!==this.boundingSphere&&this.computeBoundingSphere(),this}applyQuaternion(t){return pn.makeRotationFromQuaternion(t),this.applyMatrix4(pn),this}rotateX(t){return pn.makeRotationX(t),this.applyMatrix4(pn),this}rotateY(t){return pn.makeRotationY(t),this.applyMatrix4(pn),this}rotateZ(t){return pn.makeRotationZ(t),this.applyMatrix4(pn),this}translate(t,e,n){return pn.makeTranslation(t,e,n),this.applyMatrix4(pn),this}scale(t,e,n){return pn.makeScale(t,e,n),this.applyMatrix4(pn),this}lookAt(t){return mn.lookAt(t),mn.updateMatrix(),this.applyMatrix4(mn.matrix),this}center(){return this.computeBoundingBox(),this.boundingBox.getCenter(fn).negate(),this.translate(fn.x,fn.y,fn.z),this}setFromPoints(t){const e=[];for(let n=0,i=t.length;n0&&(t.userData=this.userData),void 0!==this.parameters){const e=this.parameters;for(const n in e)void 0!==e[n]&&(t[n]=e[n]);return t}t.data={attributes:{}};const e=this.index;null!==e&&(t.data.index={type:e.array.constructor.name,array:Array.prototype.slice.call(e.array)});const n=this.attributes;for(const e in n){const i=n[e];t.data.attributes[e]=i.toJSON(t.data)}const i={};let r=!1;for(const e in this.morphAttributes){const n=this.morphAttributes[e],s=[];for(let e=0,i=n.length;e0&&(i[e]=s,r=!0)}r&&(t.data.morphAttributes=i,t.data.morphTargetsRelative=this.morphTargetsRelative);const s=this.groups;s.length>0&&(t.data.groups=JSON.parse(JSON.stringify(s)));const a=this.boundingSphere;return null!==a&&(t.data.boundingSphere={center:a.center.toArray(),radius:a.radius}),t}clone(){return(new this.constructor).copy(this)}copy(t){this.index=null,this.attributes={},this.morphAttributes={},this.groups=[],this.boundingBox=null,this.boundingSphere=null;const e={};this.name=t.name;const n=t.index;null!==n&&this.setIndex(n.clone(e));const i=t.attributes;for(const t in i){const n=i[t];this.setAttribute(t,n.clone(e))}const r=t.morphAttributes;for(const t in r){const n=[],i=r[t];for(let t=0,r=i.length;t0){const t=e[n[0]];if(void 0!==t){this.morphTargetInfluences=[],this.morphTargetDictionary={};for(let e=0,n=t.length;e0&&console.error("THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.")}}raycast(t,e){const n=this.geometry,i=this.material,r=this.matrixWorld;if(void 0===i)return;if(null===n.boundingSphere&&n.computeBoundingSphere(),Mn.copy(n.boundingSphere),Mn.applyMatrix4(r),!1===t.ray.intersectsSphere(Mn))return;if(_n.copy(r).invert(),bn.copy(t.ray).applyMatrix4(_n),null!==n.boundingBox&&!1===bn.intersectsBox(n.boundingBox))return;let s;if(n.isBufferGeometry){const r=n.index,a=n.attributes.position,o=n.morphAttributes.position,l=n.morphTargetsRelative,c=n.attributes.uv,h=n.attributes.uv2,u=n.groups,d=n.drawRange;if(null!==r)if(Array.isArray(i))for(let n=0,p=u.length;nn.far?null:{distance:c,point:Bn.clone(),object:t}}(t,e,n,i,wn,Sn,Tn,zn);if(p){o&&(Dn.fromBufferAttribute(o,c),In.fromBufferAttribute(o,h),Nn.fromBufferAttribute(o,u),p.uv=Ge.getUV(zn,wn,Sn,Tn,Dn,In,Nn,new dt)),l&&(Dn.fromBufferAttribute(l,c),In.fromBufferAttribute(l,h),Nn.fromBufferAttribute(l,u),p.uv2=Ge.getUV(zn,wn,Sn,Tn,Dn,In,Nn,new dt));const t={a:c,b:h,c:u,normal:new Lt,materialIndex:0};Ge.getNormal(wn,Sn,Tn,t.normal),p.face=t}return p}Fn.prototype.isMesh=!0;class Un extends xn{constructor(t=1,e=1,n=1,i=1,r=1,s=1){super(),this.type="BoxGeometry",this.parameters={width:t,height:e,depth:n,widthSegments:i,heightSegments:r,depthSegments:s};const a=this;i=Math.floor(i),r=Math.floor(r),s=Math.floor(s);const o=[],l=[],c=[],h=[];let u=0,d=0;function p(t,e,n,i,r,s,p,m,f,g,v){const y=s/f,x=p/g,_=s/2,b=p/2,M=m/2,w=f+1,S=g+1;let T=0,E=0;const A=new Lt;for(let s=0;s0?1:-1,c.push(A.x,A.y,A.z),h.push(o/f),h.push(1-s/g),T+=1}}for(let t=0;t0&&(e.defines=this.defines),e.vertexShader=this.vertexShader,e.fragmentShader=this.fragmentShader;const n={};for(const t in this.extensions)!0===this.extensions[t]&&(n[t]=!0);return Object.keys(n).length>0&&(e.extensions=n),e}}Vn.prototype.isShaderMaterial=!0;class Wn extends Ce{constructor(){super(),this.type="Camera",this.matrixWorldInverse=new se,this.projectionMatrix=new se,this.projectionMatrixInverse=new se}copy(t,e){return super.copy(t,e),this.matrixWorldInverse.copy(t.matrixWorldInverse),this.projectionMatrix.copy(t.projectionMatrix),this.projectionMatrixInverse.copy(t.projectionMatrixInverse),this}getWorldDirection(t){this.updateWorldMatrix(!0,!1);const e=this.matrixWorld.elements;return t.set(-e[8],-e[9],-e[10]).normalize()}updateMatrixWorld(t){super.updateMatrixWorld(t),this.matrixWorldInverse.copy(this.matrixWorld).invert()}updateWorldMatrix(t,e){super.updateWorldMatrix(t,e),this.matrixWorldInverse.copy(this.matrixWorld).invert()}clone(){return(new this.constructor).copy(this)}}Wn.prototype.isCamera=!0;class jn extends Wn{constructor(t=50,e=1,n=.1,i=2e3){super(),this.type="PerspectiveCamera",this.fov=t,this.zoom=1,this.near=n,this.far=i,this.focus=10,this.aspect=e,this.view=null,this.filmGauge=35,this.filmOffset=0,this.updateProjectionMatrix()}copy(t,e){return super.copy(t,e),this.fov=t.fov,this.zoom=t.zoom,this.near=t.near,this.far=t.far,this.focus=t.focus,this.aspect=t.aspect,this.view=null===t.view?null:Object.assign({},t.view),this.filmGauge=t.filmGauge,this.filmOffset=t.filmOffset,this}setFocalLength(t){const e=.5*this.getFilmHeight()/t;this.fov=2*it*Math.atan(e),this.updateProjectionMatrix()}getFocalLength(){const t=Math.tan(.5*nt*this.fov);return.5*this.getFilmHeight()/t}getEffectiveFOV(){return 2*it*Math.atan(Math.tan(.5*nt*this.fov)/this.zoom)}getFilmWidth(){return this.filmGauge*Math.min(this.aspect,1)}getFilmHeight(){return this.filmGauge/Math.max(this.aspect,1)}setViewOffset(t,e,n,i,r,s){this.aspect=t/e,null===this.view&&(this.view={enabled:!0,fullWidth:1,fullHeight:1,offsetX:0,offsetY:0,width:1,height:1}),this.view.enabled=!0,this.view.fullWidth=t,this.view.fullHeight=e,this.view.offsetX=n,this.view.offsetY=i,this.view.width=r,this.view.height=s,this.updateProjectionMatrix()}clearViewOffset(){null!==this.view&&(this.view.enabled=!1),this.updateProjectionMatrix()}updateProjectionMatrix(){const t=this.near;let e=t*Math.tan(.5*nt*this.fov)/this.zoom,n=2*e,i=this.aspect*n,r=-.5*i;const s=this.view;if(null!==this.view&&this.view.enabled){const t=s.fullWidth,a=s.fullHeight;r+=s.offsetX*i/t,e-=s.offsetY*n/a,i*=s.width/t,n*=s.height/a}const a=this.filmOffset;0!==a&&(r+=t*a/this.getFilmWidth()),this.projectionMatrix.makePerspective(r,r+i,e,e-n,t,this.far),this.projectionMatrixInverse.copy(this.projectionMatrix).invert()}toJSON(t){const e=super.toJSON(t);return e.object.fov=this.fov,e.object.zoom=this.zoom,e.object.near=this.near,e.object.far=this.far,e.object.focus=this.focus,e.object.aspect=this.aspect,null!==this.view&&(e.object.view=Object.assign({},this.view)),e.object.filmGauge=this.filmGauge,e.object.filmOffset=this.filmOffset,e}}jn.prototype.isPerspectiveCamera=!0;const qn=90;class Xn extends Ce{constructor(t,e,n){if(super(),this.type="CubeCamera",!0!==n.isWebGLCubeRenderTarget)return void console.error("THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.");this.renderTarget=n;const i=new jn(qn,1,t,e);i.layers=this.layers,i.up.set(0,-1,0),i.lookAt(new Lt(1,0,0)),this.add(i);const r=new jn(qn,1,t,e);r.layers=this.layers,r.up.set(0,-1,0),r.lookAt(new Lt(-1,0,0)),this.add(r);const s=new jn(qn,1,t,e);s.layers=this.layers,s.up.set(0,0,1),s.lookAt(new Lt(0,1,0)),this.add(s);const a=new jn(qn,1,t,e);a.layers=this.layers,a.up.set(0,0,-1),a.lookAt(new Lt(0,-1,0)),this.add(a);const o=new jn(qn,1,t,e);o.layers=this.layers,o.up.set(0,-1,0),o.lookAt(new Lt(0,0,1)),this.add(o);const l=new jn(qn,1,t,e);l.layers=this.layers,l.up.set(0,-1,0),l.lookAt(new Lt(0,0,-1)),this.add(l)}update(t,e){null===this.parent&&this.updateMatrixWorld();const n=this.renderTarget,[i,r,s,a,o,l]=this.children,c=t.xr.enabled,h=t.getRenderTarget();t.xr.enabled=!1;const u=n.texture.generateMipmaps;n.texture.generateMipmaps=!1,t.setRenderTarget(n,0),t.render(e,i),t.setRenderTarget(n,1),t.render(e,r),t.setRenderTarget(n,2),t.render(e,s),t.setRenderTarget(n,3),t.render(e,a),t.setRenderTarget(n,4),t.render(e,o),n.texture.generateMipmaps=u,t.setRenderTarget(n,5),t.render(e,l),t.setRenderTarget(h),t.xr.enabled=c}}class Jn extends bt{constructor(t,e,n,i,s,a,o,l,c,h){super(t=void 0!==t?t:[],e=void 0!==e?e:r,n,i,s,a,o,l,c,h),this.flipY=!1}get images(){return this.image}set images(t){this.image=t}}Jn.prototype.isCubeTexture=!0;class Yn extends St{constructor(t,e,n){Number.isInteger(e)&&(console.warn("THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )"),e=n),super(t,t,e),e=e||{},this.texture=new Jn(void 0,e.mapping,e.wrapS,e.wrapT,e.magFilter,e.minFilter,e.format,e.type,e.anisotropy,e.encoding),this.texture.isRenderTargetTexture=!0,this.texture.generateMipmaps=void 0!==e.generateMipmaps&&e.generateMipmaps,this.texture.minFilter=void 0!==e.minFilter?e.minFilter:g,this.texture._needsFlipEnvMap=!1}fromEquirectangularTexture(t,e){this.texture.type=e.type,this.texture.format=E,this.texture.encoding=e.encoding,this.texture.generateMipmaps=e.generateMipmaps,this.texture.minFilter=e.minFilter,this.texture.magFilter=e.magFilter;const n={uniforms:{tEquirect:{value:null}},vertexShader:"\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\tvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\n\t\t\t\t\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n\n\t\t\t\t}\n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvWorldDirection = transformDirection( position, modelMatrix );\n\n\t\t\t\t\t#include \n\t\t\t\t\t#include \n\n\t\t\t\t}\n\t\t\t",fragmentShader:"\n\n\t\t\t\tuniform sampler2D tEquirect;\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\t#include \n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvec3 direction = normalize( vWorldDirection );\n\n\t\t\t\t\tvec2 sampleUV = equirectUv( direction );\n\n\t\t\t\t\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\n\t\t\t\t}\n\t\t\t"},i=new Un(5,5,5),r=new Vn({name:"CubemapFromEquirect",uniforms:Hn(n.uniforms),vertexShader:n.vertexShader,fragmentShader:n.fragmentShader,side:1,blending:0});r.uniforms.tEquirect.value=e;const s=new Fn(i,r),a=e.minFilter;e.minFilter===y&&(e.minFilter=g);return new Xn(1,10,this).update(t,s),e.minFilter=a,s.geometry.dispose(),s.material.dispose(),this}clear(t,e,n,i){const r=t.getRenderTarget();for(let r=0;r<6;r++)t.setRenderTarget(this,r),t.clear(e,n,i);t.setRenderTarget(r)}}Yn.prototype.isWebGLCubeRenderTarget=!0;const Zn=new Lt,Qn=new Lt,Kn=new pt;class $n{constructor(t=new Lt(1,0,0),e=0){this.normal=t,this.constant=e}set(t,e){return this.normal.copy(t),this.constant=e,this}setComponents(t,e,n,i){return this.normal.set(t,e,n),this.constant=i,this}setFromNormalAndCoplanarPoint(t,e){return this.normal.copy(t),this.constant=-e.dot(this.normal),this}setFromCoplanarPoints(t,e,n){const i=Zn.subVectors(n,e).cross(Qn.subVectors(t,e)).normalize();return this.setFromNormalAndCoplanarPoint(i,t),this}copy(t){return this.normal.copy(t.normal),this.constant=t.constant,this}normalize(){const t=1/this.normal.length();return this.normal.multiplyScalar(t),this.constant*=t,this}negate(){return this.constant*=-1,this.normal.negate(),this}distanceToPoint(t){return this.normal.dot(t)+this.constant}distanceToSphere(t){return this.distanceToPoint(t.center)-t.radius}projectPoint(t,e){return e.copy(this.normal).multiplyScalar(-this.distanceToPoint(t)).add(t)}intersectLine(t,e){const n=t.delta(Zn),i=this.normal.dot(n);if(0===i)return 0===this.distanceToPoint(t.start)?e.copy(t.start):null;const r=-(t.start.dot(this.normal)+this.constant)/i;return r<0||r>1?null:e.copy(n).multiplyScalar(r).add(t.start)}intersectsLine(t){const e=this.distanceToPoint(t.start),n=this.distanceToPoint(t.end);return e<0&&n>0||n<0&&e>0}intersectsBox(t){return t.intersectsPlane(this)}intersectsSphere(t){return t.intersectsPlane(this)}coplanarPoint(t){return t.copy(this.normal).multiplyScalar(-this.constant)}applyMatrix4(t,e){const n=e||Kn.getNormalMatrix(t),i=this.coplanarPoint(Zn).applyMatrix4(t),r=this.normal.applyMatrix3(n).normalize();return this.constant=-i.dot(r),this}translate(t){return this.constant-=t.dot(this.normal),this}equals(t){return t.normal.equals(this.normal)&&t.constant===this.constant}clone(){return(new this.constructor).copy(this)}}$n.prototype.isPlane=!0;const ti=new Zt,ei=new Lt;class ni{constructor(t=new $n,e=new $n,n=new $n,i=new $n,r=new $n,s=new $n){this.planes=[t,e,n,i,r,s]}set(t,e,n,i,r,s){const a=this.planes;return a[0].copy(t),a[1].copy(e),a[2].copy(n),a[3].copy(i),a[4].copy(r),a[5].copy(s),this}copy(t){const e=this.planes;for(let n=0;n<6;n++)e[n].copy(t.planes[n]);return this}setFromProjectionMatrix(t){const e=this.planes,n=t.elements,i=n[0],r=n[1],s=n[2],a=n[3],o=n[4],l=n[5],c=n[6],h=n[7],u=n[8],d=n[9],p=n[10],m=n[11],f=n[12],g=n[13],v=n[14],y=n[15];return e[0].setComponents(a-i,h-o,m-u,y-f).normalize(),e[1].setComponents(a+i,h+o,m+u,y+f).normalize(),e[2].setComponents(a+r,h+l,m+d,y+g).normalize(),e[3].setComponents(a-r,h-l,m-d,y-g).normalize(),e[4].setComponents(a-s,h-c,m-p,y-v).normalize(),e[5].setComponents(a+s,h+c,m+p,y+v).normalize(),this}intersectsObject(t){const e=t.geometry;return null===e.boundingSphere&&e.computeBoundingSphere(),ti.copy(e.boundingSphere).applyMatrix4(t.matrixWorld),this.intersectsSphere(ti)}intersectsSprite(t){return ti.center.set(0,0,0),ti.radius=.7071067811865476,ti.applyMatrix4(t.matrixWorld),this.intersectsSphere(ti)}intersectsSphere(t){const e=this.planes,n=t.center,i=-t.radius;for(let t=0;t<6;t++){if(e[t].distanceToPoint(n)0?t.max.x:t.min.x,ei.y=i.normal.y>0?t.max.y:t.min.y,ei.z=i.normal.z>0?t.max.z:t.min.z,i.distanceToPoint(ei)<0)return!1}return!0}containsPoint(t){const e=this.planes;for(let n=0;n<6;n++)if(e[n].distanceToPoint(t)<0)return!1;return!0}clone(){return(new this.constructor).copy(this)}}function ii(){let t=null,e=!1,n=null,i=null;function r(e,s){n(e,s),i=t.requestAnimationFrame(r)}return{start:function(){!0!==e&&null!==n&&(i=t.requestAnimationFrame(r),e=!0)},stop:function(){t.cancelAnimationFrame(i),e=!1},setAnimationLoop:function(t){n=t},setContext:function(e){t=e}}}function ri(t,e){const n=e.isWebGL2,i=new WeakMap;return{get:function(t){return t.isInterleavedBufferAttribute&&(t=t.data),i.get(t)},remove:function(e){e.isInterleavedBufferAttribute&&(e=e.data);const n=i.get(e);n&&(t.deleteBuffer(n.buffer),i.delete(e))},update:function(e,r){if(e.isGLBufferAttribute){const t=i.get(e);return void((!t||t.version 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif",bumpmap_pars_fragment:"#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif",clipping_planes_fragment:"#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif",clipping_planes_pars_fragment:"#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif",clipping_planes_pars_vertex:"#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif",clipping_planes_vertex:"#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif",color_fragment:"#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif",color_pars_fragment:"#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif",color_pars_vertex:"#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif",color_vertex:"#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif",common:"#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}",cube_uv_reflection_fragment:"#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 ) + 0.5;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\treturn texture2D( envMap, uv ).rgb;\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif",defaultnormal_vertex:"vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif",displacementmap_pars_vertex:"#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif",displacementmap_vertex:"#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif",emissivemap_fragment:"#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif",emissivemap_pars_fragment:"#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif",encodings_fragment:"gl_FragColor = linearToOutputTexel( gl_FragColor );",encodings_pars_fragment:"vec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}",envmap_fragment:"#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif",envmap_common_pars_fragment:"#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif",envmap_pars_fragment:"#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif",envmap_pars_vertex:"#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif",envmap_physical_pars_fragment:"#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif",envmap_vertex:"#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif",fog_vertex:"#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif",fog_pars_vertex:"#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif",fog_fragment:"#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif",fog_pars_fragment:"#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif",gradientmap_pars_fragment:"#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}",lightmap_fragment:"#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif",lightmap_pars_fragment:"#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif",lights_lambert_vertex:"vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif",lights_pars_begin:"uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif",lights_toon_fragment:"ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;",lights_toon_pars_fragment:"varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)",lights_phong_fragment:"BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;",lights_phong_pars_fragment:"varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)",lights_physical_fragment:"PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARCOLORMAP\n\t\t\tspecularColorFactor *= specularColorMapTexelToLinear( texture2D( specularColorMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tmaterial.sheenColor *= sheenColorMapTexelToLinear( texture2D( sheenColorMap, vUv ) ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a;\n\t#endif\n#endif",lights_physical_pars_fragment:"struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec3 sheenSpecular = vec3( 0.0 );\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3(\t\t0, 1,\t\t0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}",lights_fragment_begin:"\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif",lights_fragment_maps:"#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif",lights_fragment_end:"#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif",logdepthbuf_fragment:"#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif",logdepthbuf_pars_fragment:"#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif",logdepthbuf_pars_vertex:"#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif",logdepthbuf_vertex:"#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif",map_fragment:"#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif",map_pars_fragment:"#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif",map_particle_fragment:"#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif",map_particle_pars_fragment:"#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif",metalnessmap_fragment:"float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif",metalnessmap_pars_fragment:"#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif",morphnormal_vertex:"#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif",morphtarget_pars_vertex:"#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif",morphtarget_vertex:"#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif",normal_fragment_begin:"float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;",normal_fragment_maps:"#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif",normal_pars_fragment:"#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif",normal_pars_vertex:"#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif",normal_vertex:"#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif",normalmap_pars_fragment:"#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif",clearcoat_normal_fragment_begin:"#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif",clearcoat_normal_fragment_maps:"#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif",clearcoat_pars_fragment:"#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif",output_fragment:"#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );",packing:"vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}",premultiplied_alpha_fragment:"#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif",project_vertex:"vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;",dithering_fragment:"#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif",dithering_pars_fragment:"#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif",roughnessmap_fragment:"float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif",roughnessmap_pars_fragment:"#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif",shadowmap_pars_fragment:"#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t\tf.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t\tf.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif",shadowmap_pars_vertex:"#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif",shadowmap_vertex:"#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif",shadowmask_pars_fragment:"float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}",skinbase_vertex:"#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif",skinning_pars_vertex:"#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif",skinning_vertex:"#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif",skinnormal_vertex:"#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif",specularmap_fragment:"float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif",specularmap_pars_fragment:"#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif",tonemapping_fragment:"#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif",tonemapping_pars_fragment:"#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3(\t1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108,\t1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605,\t1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }",transmission_fragment:"#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif",transmission_pars_fragment:"#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif",uv_pars_fragment:"#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif",uv_pars_vertex:"#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif",uv_vertex:"#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif",uv2_pars_fragment:"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif",uv2_pars_vertex:"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif",uv2_vertex:"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif",worldpos_vertex:"#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif",background_vert:"varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}",background_frag:"uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}",cube_vert:"varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}",cube_frag:"#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}",depth_vert:"#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}",depth_frag:"#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}",distanceRGBA_vert:"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}",distanceRGBA_frag:"#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}",equirect_vert:"varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}",equirect_frag:"uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}",linedashed_vert:"uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",linedashed_frag:"uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshbasic_vert:"#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshbasic_frag:"uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshlambert_vert:"#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshlambert_frag:"uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshmatcap_vert:"#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}",meshmatcap_frag:"#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshnormal_vert:"#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}",meshnormal_frag:"#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}",meshphong_vert:"#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}",meshphong_frag:"#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshphysical_vert:"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}",meshphysical_frag:"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshtoon_vert:"#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}",meshtoon_frag:"#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",points_vert:"uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}",points_frag:"uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",shadow_vert:"#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",shadow_frag:"uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}",sprite_vert:"uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}",sprite_frag:"uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"},oi={common:{diffuse:{value:new Ze(16777215)},opacity:{value:1},map:{value:null},uvTransform:{value:new pt},uv2Transform:{value:new pt},alphaMap:{value:null},alphaTest:{value:0}},specularmap:{specularMap:{value:null}},envmap:{envMap:{value:null},flipEnvMap:{value:-1},reflectivity:{value:1},ior:{value:1.5},refractionRatio:{value:.98}},aomap:{aoMap:{value:null},aoMapIntensity:{value:1}},lightmap:{lightMap:{value:null},lightMapIntensity:{value:1}},emissivemap:{emissiveMap:{value:null}},bumpmap:{bumpMap:{value:null},bumpScale:{value:1}},normalmap:{normalMap:{value:null},normalScale:{value:new dt(1,1)}},displacementmap:{displacementMap:{value:null},displacementScale:{value:1},displacementBias:{value:0}},roughnessmap:{roughnessMap:{value:null}},metalnessmap:{metalnessMap:{value:null}},gradientmap:{gradientMap:{value:null}},fog:{fogDensity:{value:25e-5},fogNear:{value:1},fogFar:{value:2e3},fogColor:{value:new Ze(16777215)}},lights:{ambientLightColor:{value:[]},lightProbe:{value:[]},directionalLights:{value:[],properties:{direction:{},color:{}}},directionalLightShadows:{value:[],properties:{shadowBias:{},shadowNormalBias:{},shadowRadius:{},shadowMapSize:{}}},directionalShadowMap:{value:[]},directionalShadowMatrix:{value:[]},spotLights:{value:[],properties:{color:{},position:{},direction:{},distance:{},coneCos:{},penumbraCos:{},decay:{}}},spotLightShadows:{value:[],properties:{shadowBias:{},shadowNormalBias:{},shadowRadius:{},shadowMapSize:{}}},spotShadowMap:{value:[]},spotShadowMatrix:{value:[]},pointLights:{value:[],properties:{color:{},position:{},decay:{},distance:{}}},pointLightShadows:{value:[],properties:{shadowBias:{},shadowNormalBias:{},shadowRadius:{},shadowMapSize:{},shadowCameraNear:{},shadowCameraFar:{}}},pointShadowMap:{value:[]},pointShadowMatrix:{value:[]},hemisphereLights:{value:[],properties:{direction:{},skyColor:{},groundColor:{}}},rectAreaLights:{value:[],properties:{color:{},position:{},width:{},height:{}}},ltc_1:{value:null},ltc_2:{value:null}},points:{diffuse:{value:new Ze(16777215)},opacity:{value:1},size:{value:1},scale:{value:1},map:{value:null},alphaMap:{value:null},alphaTest:{value:0},uvTransform:{value:new pt}},sprite:{diffuse:{value:new Ze(16777215)},opacity:{value:1},center:{value:new dt(.5,.5)},rotation:{value:0},map:{value:null},alphaMap:{value:null},alphaTest:{value:0},uvTransform:{value:new pt}}},li={basic:{uniforms:Gn([oi.common,oi.specularmap,oi.envmap,oi.aomap,oi.lightmap,oi.fog]),vertexShader:ai.meshbasic_vert,fragmentShader:ai.meshbasic_frag},lambert:{uniforms:Gn([oi.common,oi.specularmap,oi.envmap,oi.aomap,oi.lightmap,oi.emissivemap,oi.fog,oi.lights,{emissive:{value:new Ze(0)}}]),vertexShader:ai.meshlambert_vert,fragmentShader:ai.meshlambert_frag},phong:{uniforms:Gn([oi.common,oi.specularmap,oi.envmap,oi.aomap,oi.lightmap,oi.emissivemap,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.fog,oi.lights,{emissive:{value:new Ze(0)},specular:{value:new Ze(1118481)},shininess:{value:30}}]),vertexShader:ai.meshphong_vert,fragmentShader:ai.meshphong_frag},standard:{uniforms:Gn([oi.common,oi.envmap,oi.aomap,oi.lightmap,oi.emissivemap,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.roughnessmap,oi.metalnessmap,oi.fog,oi.lights,{emissive:{value:new Ze(0)},roughness:{value:1},metalness:{value:0},envMapIntensity:{value:1}}]),vertexShader:ai.meshphysical_vert,fragmentShader:ai.meshphysical_frag},toon:{uniforms:Gn([oi.common,oi.aomap,oi.lightmap,oi.emissivemap,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.gradientmap,oi.fog,oi.lights,{emissive:{value:new Ze(0)}}]),vertexShader:ai.meshtoon_vert,fragmentShader:ai.meshtoon_frag},matcap:{uniforms:Gn([oi.common,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.fog,{matcap:{value:null}}]),vertexShader:ai.meshmatcap_vert,fragmentShader:ai.meshmatcap_frag},points:{uniforms:Gn([oi.points,oi.fog]),vertexShader:ai.points_vert,fragmentShader:ai.points_frag},dashed:{uniforms:Gn([oi.common,oi.fog,{scale:{value:1},dashSize:{value:1},totalSize:{value:2}}]),vertexShader:ai.linedashed_vert,fragmentShader:ai.linedashed_frag},depth:{uniforms:Gn([oi.common,oi.displacementmap]),vertexShader:ai.depth_vert,fragmentShader:ai.depth_frag},normal:{uniforms:Gn([oi.common,oi.bumpmap,oi.normalmap,oi.displacementmap,{opacity:{value:1}}]),vertexShader:ai.meshnormal_vert,fragmentShader:ai.meshnormal_frag},sprite:{uniforms:Gn([oi.sprite,oi.fog]),vertexShader:ai.sprite_vert,fragmentShader:ai.sprite_frag},background:{uniforms:{uvTransform:{value:new pt},t2D:{value:null}},vertexShader:ai.background_vert,fragmentShader:ai.background_frag},cube:{uniforms:Gn([oi.envmap,{opacity:{value:1}}]),vertexShader:ai.cube_vert,fragmentShader:ai.cube_frag},equirect:{uniforms:{tEquirect:{value:null}},vertexShader:ai.equirect_vert,fragmentShader:ai.equirect_frag},distanceRGBA:{uniforms:Gn([oi.common,oi.displacementmap,{referencePosition:{value:new Lt},nearDistance:{value:1},farDistance:{value:1e3}}]),vertexShader:ai.distanceRGBA_vert,fragmentShader:ai.distanceRGBA_frag},shadow:{uniforms:Gn([oi.lights,oi.fog,{color:{value:new Ze(0)},opacity:{value:1}}]),vertexShader:ai.shadow_vert,fragmentShader:ai.shadow_frag}};function ci(t,e,n,i,r){const s=new Ze(0);let a,o,c=0,h=null,u=0,d=null;function p(t,e){n.buffers.color.setClear(t.r,t.g,t.b,e,r)}return{getClearColor:function(){return s},setClearColor:function(t,e=1){s.set(t),c=e,p(s,c)},getClearAlpha:function(){return c},setClearAlpha:function(t){c=t,p(s,c)},render:function(n,r){let m=!1,f=!0===r.isScene?r.background:null;f&&f.isTexture&&(f=e.get(f));const g=t.xr,v=g.getSession&&g.getSession();v&&"additive"===v.environmentBlendMode&&(f=null),null===f?p(s,c):f&&f.isColor&&(p(f,1),m=!0),(t.autoClear||m)&&t.clear(t.autoClearColor,t.autoClearDepth,t.autoClearStencil),f&&(f.isCubeTexture||f.mapping===l)?(void 0===o&&(o=new Fn(new Un(1,1,1),new Vn({name:"BackgroundCubeMaterial",uniforms:Hn(li.cube.uniforms),vertexShader:li.cube.vertexShader,fragmentShader:li.cube.fragmentShader,side:1,depthTest:!1,depthWrite:!1,fog:!1})),o.geometry.deleteAttribute("normal"),o.geometry.deleteAttribute("uv"),o.onBeforeRender=function(t,e,n){this.matrixWorld.copyPosition(n.matrixWorld)},Object.defineProperty(o.material,"envMap",{get:function(){return this.uniforms.envMap.value}}),i.update(o)),o.material.uniforms.envMap.value=f,o.material.uniforms.flipEnvMap.value=f.isCubeTexture&&!1===f.isRenderTargetTexture?-1:1,h===f&&u===f.version&&d===t.toneMapping||(o.material.needsUpdate=!0,h=f,u=f.version,d=t.toneMapping),n.unshift(o,o.geometry,o.material,0,0,null)):f&&f.isTexture&&(void 0===a&&(a=new Fn(new si(2,2),new Vn({name:"BackgroundMaterial",uniforms:Hn(li.background.uniforms),vertexShader:li.background.vertexShader,fragmentShader:li.background.fragmentShader,side:0,depthTest:!1,depthWrite:!1,fog:!1})),a.geometry.deleteAttribute("normal"),Object.defineProperty(a.material,"map",{get:function(){return this.uniforms.t2D.value}}),i.update(a)),a.material.uniforms.t2D.value=f,!0===f.matrixAutoUpdate&&f.updateMatrix(),a.material.uniforms.uvTransform.value.copy(f.matrix),h===f&&u===f.version&&d===t.toneMapping||(a.material.needsUpdate=!0,h=f,u=f.version,d=t.toneMapping),n.unshift(a,a.geometry,a.material,0,0,null))}}}function hi(t,e,n,i){const r=t.getParameter(34921),s=i.isWebGL2?null:e.get("OES_vertex_array_object"),a=i.isWebGL2||null!==s,o={},l=d(null);let c=l;function h(e){return i.isWebGL2?t.bindVertexArray(e):s.bindVertexArrayOES(e)}function u(e){return i.isWebGL2?t.deleteVertexArray(e):s.deleteVertexArrayOES(e)}function d(t){const e=[],n=[],i=[];for(let t=0;t=0){let s=l[e];if(void 0===s&&("instanceMatrix"===e&&r.instanceMatrix&&(s=r.instanceMatrix),"instanceColor"===e&&r.instanceColor&&(s=r.instanceColor)),void 0!==s){const e=s.normalized,a=s.itemSize,l=n.get(s);if(void 0===l)continue;const c=l.buffer,h=l.type,u=l.bytesPerElement;if(s.isInterleavedBufferAttribute){const n=s.data,l=n.stride,d=s.offset;if(n&&n.isInstancedInterleavedBuffer){for(let t=0;t0&&t.getShaderPrecisionFormat(35632,36338).precision>0)return"highp";e="mediump"}return"mediump"===e&&t.getShaderPrecisionFormat(35633,36337).precision>0&&t.getShaderPrecisionFormat(35632,36337).precision>0?"mediump":"lowp"}const s="undefined"!=typeof WebGL2RenderingContext&&t instanceof WebGL2RenderingContext||"undefined"!=typeof WebGL2ComputeRenderingContext&&t instanceof WebGL2ComputeRenderingContext;let a=void 0!==n.precision?n.precision:"highp";const o=r(a);o!==a&&(console.warn("THREE.WebGLRenderer:",a,"not supported, using",o,"instead."),a=o);const l=s||e.has("WEBGL_draw_buffers"),c=!0===n.logarithmicDepthBuffer,h=t.getParameter(34930),u=t.getParameter(35660),d=t.getParameter(3379),p=t.getParameter(34076),m=t.getParameter(34921),f=t.getParameter(36347),g=t.getParameter(36348),v=t.getParameter(36349),y=u>0,x=s||e.has("OES_texture_float");return{isWebGL2:s,drawBuffers:l,getMaxAnisotropy:function(){if(void 0!==i)return i;if(!0===e.has("EXT_texture_filter_anisotropic")){const n=e.get("EXT_texture_filter_anisotropic");i=t.getParameter(n.MAX_TEXTURE_MAX_ANISOTROPY_EXT)}else i=0;return i},getMaxPrecision:r,precision:a,logarithmicDepthBuffer:c,maxTextures:h,maxVertexTextures:u,maxTextureSize:d,maxCubemapSize:p,maxAttributes:m,maxVertexUniforms:f,maxVaryings:g,maxFragmentUniforms:v,vertexTextures:y,floatFragmentTextures:x,floatVertexTextures:y&&x,maxSamples:s?t.getParameter(36183):0}}function pi(t){const e=this;let n=null,i=0,r=!1,s=!1;const a=new $n,o=new pt,l={value:null,needsUpdate:!1};function c(){l.value!==n&&(l.value=n,l.needsUpdate=i>0),e.numPlanes=i,e.numIntersection=0}function h(t,n,i,r){const s=null!==t?t.length:0;let c=null;if(0!==s){if(c=l.value,!0!==r||null===c){const e=i+4*s,r=n.matrixWorldInverse;o.getNormalMatrix(r),(null===c||c.length0){const a=t.getRenderTarget(),o=new Yn(s.height/2);return o.fromEquirectangularTexture(t,r),e.set(r,o),t.setRenderTarget(a),r.addEventListener("dispose",i),n(o.texture,r.mapping)}return null}}}return r},dispose:function(){e=new WeakMap}}}li.physical={uniforms:Gn([li.standard.uniforms,{clearcoat:{value:0},clearcoatMap:{value:null},clearcoatRoughness:{value:0},clearcoatRoughnessMap:{value:null},clearcoatNormalScale:{value:new dt(1,1)},clearcoatNormalMap:{value:null},sheen:{value:0},sheenColor:{value:new Ze(0)},sheenColorMap:{value:null},sheenRoughness:{value:0},sheenRoughnessMap:{value:null},transmission:{value:0},transmissionMap:{value:null},transmissionSamplerSize:{value:new dt},transmissionSamplerMap:{value:null},thickness:{value:0},thicknessMap:{value:null},attenuationDistance:{value:0},attenuationColor:{value:new Ze(0)},specularIntensity:{value:0},specularIntensityMap:{value:null},specularColor:{value:new Ze(1,1,1)},specularColorMap:{value:null}}]),vertexShader:ai.meshphysical_vert,fragmentShader:ai.meshphysical_frag};class fi extends Wn{constructor(t=-1,e=1,n=1,i=-1,r=.1,s=2e3){super(),this.type="OrthographicCamera",this.zoom=1,this.view=null,this.left=t,this.right=e,this.top=n,this.bottom=i,this.near=r,this.far=s,this.updateProjectionMatrix()}copy(t,e){return super.copy(t,e),this.left=t.left,this.right=t.right,this.top=t.top,this.bottom=t.bottom,this.near=t.near,this.far=t.far,this.zoom=t.zoom,this.view=null===t.view?null:Object.assign({},t.view),this}setViewOffset(t,e,n,i,r,s){null===this.view&&(this.view={enabled:!0,fullWidth:1,fullHeight:1,offsetX:0,offsetY:0,width:1,height:1}),this.view.enabled=!0,this.view.fullWidth=t,this.view.fullHeight=e,this.view.offsetX=n,this.view.offsetY=i,this.view.width=r,this.view.height=s,this.updateProjectionMatrix()}clearViewOffset(){null!==this.view&&(this.view.enabled=!1),this.updateProjectionMatrix()}updateProjectionMatrix(){const t=(this.right-this.left)/(2*this.zoom),e=(this.top-this.bottom)/(2*this.zoom),n=(this.right+this.left)/2,i=(this.top+this.bottom)/2;let r=n-t,s=n+t,a=i+e,o=i-e;if(null!==this.view&&this.view.enabled){const t=(this.right-this.left)/this.view.fullWidth/this.zoom,e=(this.top-this.bottom)/this.view.fullHeight/this.zoom;r+=t*this.view.offsetX,s=r+t*this.view.width,a-=e*this.view.offsetY,o=a-e*this.view.height}this.projectionMatrix.makeOrthographic(r,s,a,o,this.near,this.far),this.projectionMatrixInverse.copy(this.projectionMatrix).invert()}toJSON(t){const e=super.toJSON(t);return e.object.zoom=this.zoom,e.object.left=this.left,e.object.right=this.right,e.object.top=this.top,e.object.bottom=this.bottom,e.object.near=this.near,e.object.far=this.far,null!==this.view&&(e.object.view=Object.assign({},this.view)),e}}fi.prototype.isOrthographicCamera=!0;class gi extends Vn{constructor(t){super(t),this.type="RawShaderMaterial"}}gi.prototype.isRawShaderMaterial=!0;const vi=Math.pow(2,8),yi=[.125,.215,.35,.446,.526,.582],xi=5+yi.length,_i=20,bi={[X]:0,[J]:1},Mi=new fi,{_lodPlanes:wi,_sizeLods:Si,_sigmas:Ti}=Di(),Ei=new Ze;let Ai=null;const Li=(1+Math.sqrt(5))/2,Ri=1/Li,Ci=[new Lt(1,1,1),new Lt(-1,1,1),new Lt(1,1,-1),new Lt(-1,1,-1),new Lt(0,Li,Ri),new Lt(0,Li,-Ri),new Lt(Ri,0,Li),new Lt(-Ri,0,Li),new Lt(Li,Ri,0),new Lt(-Li,Ri,0)];class Pi{constructor(t){this._renderer=t,this._pingPongRenderTarget=null,this._blurMaterial=function(t){const e=new Float32Array(t),n=new Lt(0,1,0);return new gi({name:"SphericalGaussianBlur",defines:{n:t},uniforms:{envMap:{value:null},samples:{value:1},weights:{value:e},latitudinal:{value:!1},dTheta:{value:0},mipInt:{value:0},poleAxis:{value:n}},vertexShader:Fi(),fragmentShader:`\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform int samples;\n\t\t\tuniform float weights[ n ];\n\t\t\tuniform bool latitudinal;\n\t\t\tuniform float dTheta;\n\t\t\tuniform float mipInt;\n\t\t\tuniform vec3 poleAxis;\n\n\t\t\t${Oi()}\n\n\t\t\t#define ENVMAP_TYPE_CUBE_UV\n\t\t\t#include \n\n\t\t\tvec3 getSample( float theta, vec3 axis ) {\n\n\t\t\t\tfloat cosTheta = cos( theta );\n\t\t\t\t// Rodrigues' axis-angle rotation\n\t\t\t\tvec3 sampleDirection = vOutputDirection * cosTheta\n\t\t\t\t\t+ cross( axis, vOutputDirection ) * sin( theta )\n\t\t\t\t\t+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );\n\n\t\t\t\treturn bilinearCubeUV( envMap, sampleDirection, mipInt );\n\n\t\t\t}\n\n\t\t\tvoid main() {\n\n\t\t\t\tvec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );\n\n\t\t\t\tif ( all( equal( axis, vec3( 0.0 ) ) ) ) {\n\n\t\t\t\t\taxis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );\n\n\t\t\t\t}\n\n\t\t\t\taxis = normalize( axis );\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );\n\n\t\t\t\tfor ( int i = 1; i < n; i++ ) {\n\n\t\t\t\t\tif ( i >= samples ) {\n\n\t\t\t\t\t\tbreak;\n\n\t\t\t\t\t}\n\n\t\t\t\t\tfloat theta = dTheta * float( i );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( theta, axis );\n\n\t\t\t\t}\n\n\t\t\t}\n\t\t`,blending:0,depthTest:!1,depthWrite:!1})}(_i),this._equirectShader=null,this._cubemapShader=null,this._compileMaterial(this._blurMaterial)}fromScene(t,e=0,n=.1,i=100){Ai=this._renderer.getRenderTarget();const r=this._allocateTargets();return this._sceneToCubeUV(t,n,i,r),e>0&&this._blur(r,0,0,e),this._applyPMREM(r),this._cleanup(r),r}fromEquirectangular(t){return this._fromTexture(t)}fromCubemap(t){return this._fromTexture(t)}compileCubemapShader(){null===this._cubemapShader&&(this._cubemapShader=Bi(),this._compileMaterial(this._cubemapShader))}compileEquirectangularShader(){null===this._equirectShader&&(this._equirectShader=zi(),this._compileMaterial(this._equirectShader))}dispose(){this._blurMaterial.dispose(),null!==this._cubemapShader&&this._cubemapShader.dispose(),null!==this._equirectShader&&this._equirectShader.dispose();for(let t=0;t2?vi:0,vi,vi),o.setRenderTarget(i),d&&o.render(u,r),o.render(t,r)}u.geometry.dispose(),u.material.dispose(),o.toneMapping=c,o.autoClear=l,t.background=p}_setEncoding(t,e){!0===this._renderer.capabilities.isWebGL2&&e.format===E&&e.type===x&&e.encoding===J?t.value=bi[3e3]:t.value=bi[e.encoding]}_textureToCubeUV(t,e){const n=this._renderer,i=t.mapping===r||t.mapping===s;i?null==this._cubemapShader&&(this._cubemapShader=Bi()):null==this._equirectShader&&(this._equirectShader=zi());const a=i?this._cubemapShader:this._equirectShader,o=new Fn(wi[0],a),l=a.uniforms;l.envMap.value=t,i||l.texelSize.value.set(1/t.image.width,1/t.image.height),this._setEncoding(l.inputEncoding,t),Ni(e,0,0,3*vi,2*vi),n.setRenderTarget(e),n.render(o,Mi)}_applyPMREM(t){const e=this._renderer,n=e.autoClear;e.autoClear=!1;for(let e=1;e_i&&console.warn(`sigmaRadians, ${r}, is too large and will clip, as it requested ${m} samples when the maximum is set to 20`);const f=[];let g=0;for(let t=0;t<_i;++t){const e=t/p,n=Math.exp(-e*e/2);f.push(n),0==t?g+=n:t4?i-8+4:0),3*v,2*v),o.setRenderTarget(e),o.render(c,Mi)}}function Di(){const t=[],e=[],n=[];let i=8;for(let r=0;r4?a=yi[r-8+4-1]:0==r&&(a=0),n.push(a);const o=1/(s-1),l=-o/2,c=1+o/2,h=[l,l,c,l,c,c,l,l,c,c,l,c],u=6,d=6,p=3,m=2,f=1,g=new Float32Array(p*d*u),v=new Float32Array(m*d*u),y=new Float32Array(f*d*u);for(let t=0;t2?0:-1,i=[e,n,0,e+2/3,n,0,e+2/3,n+1,0,e,n,0,e+2/3,n+1,0,e,n+1,0];g.set(i,p*d*t),v.set(h,m*d*t);const r=[t,t,t,t,t,t];y.set(r,f*d*t)}const x=new xn;x.setAttribute("position",new tn(g,p)),x.setAttribute("uv",new tn(v,m)),x.setAttribute("faceIndex",new tn(y,f)),t.push(x),i>4&&i--}return{_lodPlanes:t,_sizeLods:e,_sigmas:n}}function Ii(t){const e=new St(3*vi,3*vi,t);return e.texture.mapping=l,e.texture.name="PMREM.cubeUv",e.scissorTest=!0,e}function Ni(t,e,n,i,r){t.viewport.set(e,n,i,r),t.scissor.set(e,n,i,r)}function zi(){const t=new dt(1,1);return new gi({name:"EquirectangularToCubeUV",uniforms:{envMap:{value:null},texelSize:{value:t},inputEncoding:{value:bi[3e3]}},vertexShader:Fi(),fragmentShader:`\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform vec2 texelSize;\n\n\t\t\t${Oi()}\n\n\t\t\t#include \n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\n\t\t\t\tvec3 outputDirection = normalize( vOutputDirection );\n\t\t\t\tvec2 uv = equirectUv( outputDirection );\n\n\t\t\t\tvec2 f = fract( uv / texelSize - 0.5 );\n\t\t\t\tuv -= f * texelSize;\n\t\t\t\tvec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x += texelSize.x;\n\t\t\t\tvec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.y += texelSize.y;\n\t\t\t\tvec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x -= texelSize.x;\n\t\t\t\tvec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\n\t\t\t\tvec3 tm = mix( tl, tr, f.x );\n\t\t\t\tvec3 bm = mix( bl, br, f.x );\n\t\t\t\tgl_FragColor.rgb = mix( tm, bm, f.y );\n\n\t\t\t}\n\t\t`,blending:0,depthTest:!1,depthWrite:!1})}function Bi(){return new gi({name:"CubemapToCubeUV",uniforms:{envMap:{value:null},inputEncoding:{value:bi[3e3]}},vertexShader:Fi(),fragmentShader:`\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform samplerCube envMap;\n\n\t\t\t${Oi()}\n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) );\n\n\t\t\t}\n\t\t`,blending:0,depthTest:!1,depthWrite:!1})}function Fi(){return"\n\n\t\tprecision mediump float;\n\t\tprecision mediump int;\n\n\t\tattribute vec3 position;\n\t\tattribute vec2 uv;\n\t\tattribute float faceIndex;\n\n\t\tvarying vec3 vOutputDirection;\n\n\t\t// RH coordinate system; PMREM face-indexing convention\n\t\tvec3 getDirection( vec2 uv, float face ) {\n\n\t\t\tuv = 2.0 * uv - 1.0;\n\n\t\t\tvec3 direction = vec3( uv, 1.0 );\n\n\t\t\tif ( face == 0.0 ) {\n\n\t\t\t\tdirection = direction.zyx; // ( 1, v, u ) pos x\n\n\t\t\t} else if ( face == 1.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xz *= -1.0; // ( -u, 1, -v ) pos y\n\n\t\t\t} else if ( face == 2.0 ) {\n\n\t\t\t\tdirection.x *= -1.0; // ( -u, v, 1 ) pos z\n\n\t\t\t} else if ( face == 3.0 ) {\n\n\t\t\t\tdirection = direction.zyx;\n\t\t\t\tdirection.xz *= -1.0; // ( -1, v, -u ) neg x\n\n\t\t\t} else if ( face == 4.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xy *= -1.0; // ( -u, -1, v ) neg y\n\n\t\t\t} else if ( face == 5.0 ) {\n\n\t\t\t\tdirection.z *= -1.0; // ( u, v, -1 ) neg z\n\n\t\t\t}\n\n\t\t\treturn direction;\n\n\t\t}\n\n\t\tvoid main() {\n\n\t\t\tvOutputDirection = getDirection( uv, faceIndex );\n\t\t\tgl_Position = vec4( position, 1.0 );\n\n\t\t}\n\t"}function Oi(){return"\n\n\t\tuniform int inputEncoding;\n\n\t\t#include \n\n\t\tvec4 inputTexelToLinear( vec4 value ) {\n\n\t\t\tif ( inputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else {\n\n\t\t\t\treturn sRGBToLinear( value );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 envMapTexelToLinear( vec4 color ) {\n\n\t\t\treturn inputTexelToLinear( color );\n\n\t\t}\n\t"}function Ui(t){let e=new WeakMap,n=null;function i(t){const n=t.target;n.removeEventListener("dispose",i);const r=e.get(n);void 0!==r&&(e.delete(n),r.dispose())}return{get:function(l){if(l&&l.isTexture&&!1===l.isRenderTargetTexture){const c=l.mapping,h=c===a||c===o,u=c===r||c===s;if(h||u){if(e.has(l))return e.get(l).texture;{const r=l.image;if(h&&r&&r.height>0||u&&r&&function(t){let e=0;const n=6;for(let i=0;i65535?ln:an)(n,1);o.version=a;const l=s.get(t);l&&e.remove(l),s.set(t,o)}return{get:function(t,e){return!0===r[e.id]||(e.addEventListener("dispose",a),r[e.id]=!0,n.memory.geometries++),e},update:function(t){const n=t.attributes;for(const t in n)e.update(n[t],34962);const i=t.morphAttributes;for(const t in i){const n=i[t];for(let t=0,i=n.length;te.maxTextureSize&&(u=Math.ceil(h/e.maxTextureSize),h=e.maxTextureSize);const d=new Float32Array(h*u*4*i),p=new Wi(d,h,u,i);p.format=E,p.type=M,p.needsUpdate=!0;const m=4*l;for(let e=0;e0)return t;const r=e*n;let s=er[r];if(void 0===s&&(s=new Float32Array(r),er[r]=s),0!==e){i.toArray(s,0);for(let i=1,r=0;i!==e;++i)r+=n,t[i].toArray(s,r)}return s}function or(t,e){if(t.length!==e.length)return!1;for(let n=0,i=t.length;n/gm;function ds(t){return t.replace(us,ps)}function ps(t,e){const n=ai[e];if(void 0===n)throw new Error("Can not resolve #include <"+e+">");return ds(n)}const ms=/#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g,fs=/#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;function gs(t){return t.replace(fs,ys).replace(ms,vs)}function vs(t,e,n,i){return console.warn("WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead."),ys(t,e,n,i)}function ys(t,e,n,i){let r="";for(let t=parseInt(e);t0&&(x+="\n"),_=[g,v].filter(ls).join("\n"),_.length>0&&(_+="\n")):(x=[xs(n),"#define SHADER_NAME "+n.shaderName,v,n.instancing?"#define USE_INSTANCING":"",n.instancingColor?"#define USE_INSTANCING_COLOR":"",n.supportsVertexTextures?"#define VERTEX_TEXTURES":"","#define MAX_BONES "+n.maxBones,n.useFog&&n.fog?"#define USE_FOG":"",n.useFog&&n.fogExp2?"#define FOG_EXP2":"",n.map?"#define USE_MAP":"",n.envMap?"#define USE_ENVMAP":"",n.envMap?"#define "+m:"",n.lightMap?"#define USE_LIGHTMAP":"",n.aoMap?"#define USE_AOMAP":"",n.emissiveMap?"#define USE_EMISSIVEMAP":"",n.bumpMap?"#define USE_BUMPMAP":"",n.normalMap?"#define USE_NORMALMAP":"",n.normalMap&&n.objectSpaceNormalMap?"#define OBJECTSPACE_NORMALMAP":"",n.normalMap&&n.tangentSpaceNormalMap?"#define TANGENTSPACE_NORMALMAP":"",n.clearcoatMap?"#define USE_CLEARCOATMAP":"",n.clearcoatRoughnessMap?"#define USE_CLEARCOAT_ROUGHNESSMAP":"",n.clearcoatNormalMap?"#define USE_CLEARCOAT_NORMALMAP":"",n.displacementMap&&n.supportsVertexTextures?"#define USE_DISPLACEMENTMAP":"",n.specularMap?"#define USE_SPECULARMAP":"",n.specularIntensityMap?"#define USE_SPECULARINTENSITYMAP":"",n.specularColorMap?"#define USE_SPECULARCOLORMAP":"",n.roughnessMap?"#define USE_ROUGHNESSMAP":"",n.metalnessMap?"#define USE_METALNESSMAP":"",n.alphaMap?"#define USE_ALPHAMAP":"",n.transmission?"#define USE_TRANSMISSION":"",n.transmissionMap?"#define USE_TRANSMISSIONMAP":"",n.thicknessMap?"#define USE_THICKNESSMAP":"",n.sheenColorMap?"#define USE_SHEENCOLORMAP":"",n.sheenRoughnessMap?"#define USE_SHEENROUGHNESSMAP":"",n.vertexTangents?"#define USE_TANGENT":"",n.vertexColors?"#define USE_COLOR":"",n.vertexAlphas?"#define USE_COLOR_ALPHA":"",n.vertexUvs?"#define USE_UV":"",n.uvsVertexOnly?"#define UVS_VERTEX_ONLY":"",n.flatShading?"#define FLAT_SHADED":"",n.skinning?"#define USE_SKINNING":"",n.useVertexTexture?"#define BONE_TEXTURE":"",n.morphTargets?"#define USE_MORPHTARGETS":"",n.morphNormals&&!1===n.flatShading?"#define USE_MORPHNORMALS":"",n.morphTargets&&n.isWebGL2?"#define MORPHTARGETS_TEXTURE":"",n.morphTargets&&n.isWebGL2?"#define MORPHTARGETS_COUNT "+n.morphTargetsCount:"",n.doubleSided?"#define DOUBLE_SIDED":"",n.flipSided?"#define FLIP_SIDED":"",n.shadowMapEnabled?"#define USE_SHADOWMAP":"",n.shadowMapEnabled?"#define "+d:"",n.sizeAttenuation?"#define USE_SIZEATTENUATION":"",n.logarithmicDepthBuffer?"#define USE_LOGDEPTHBUF":"",n.logarithmicDepthBuffer&&n.rendererExtensionFragDepth?"#define USE_LOGDEPTHBUF_EXT":"","uniform mat4 modelMatrix;","uniform mat4 modelViewMatrix;","uniform mat4 projectionMatrix;","uniform mat4 viewMatrix;","uniform mat3 normalMatrix;","uniform vec3 cameraPosition;","uniform bool isOrthographic;","#ifdef USE_INSTANCING","\tattribute mat4 instanceMatrix;","#endif","#ifdef USE_INSTANCING_COLOR","\tattribute vec3 instanceColor;","#endif","attribute vec3 position;","attribute vec3 normal;","attribute vec2 uv;","#ifdef USE_TANGENT","\tattribute vec4 tangent;","#endif","#if defined( USE_COLOR_ALPHA )","\tattribute vec4 color;","#elif defined( USE_COLOR )","\tattribute vec3 color;","#endif","#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )","\tattribute vec3 morphTarget0;","\tattribute vec3 morphTarget1;","\tattribute vec3 morphTarget2;","\tattribute vec3 morphTarget3;","\t#ifdef USE_MORPHNORMALS","\t\tattribute vec3 morphNormal0;","\t\tattribute vec3 morphNormal1;","\t\tattribute vec3 morphNormal2;","\t\tattribute vec3 morphNormal3;","\t#else","\t\tattribute vec3 morphTarget4;","\t\tattribute vec3 morphTarget5;","\t\tattribute vec3 morphTarget6;","\t\tattribute vec3 morphTarget7;","\t#endif","#endif","#ifdef USE_SKINNING","\tattribute vec4 skinIndex;","\tattribute vec4 skinWeight;","#endif","\n"].filter(ls).join("\n"),_=[g,xs(n),"#define SHADER_NAME "+n.shaderName,v,n.useFog&&n.fog?"#define USE_FOG":"",n.useFog&&n.fogExp2?"#define FOG_EXP2":"",n.map?"#define USE_MAP":"",n.matcap?"#define USE_MATCAP":"",n.envMap?"#define USE_ENVMAP":"",n.envMap?"#define "+p:"",n.envMap?"#define "+m:"",n.envMap?"#define "+f:"",n.lightMap?"#define USE_LIGHTMAP":"",n.aoMap?"#define USE_AOMAP":"",n.emissiveMap?"#define USE_EMISSIVEMAP":"",n.bumpMap?"#define USE_BUMPMAP":"",n.normalMap?"#define USE_NORMALMAP":"",n.normalMap&&n.objectSpaceNormalMap?"#define OBJECTSPACE_NORMALMAP":"",n.normalMap&&n.tangentSpaceNormalMap?"#define TANGENTSPACE_NORMALMAP":"",n.clearcoat?"#define USE_CLEARCOAT":"",n.clearcoatMap?"#define USE_CLEARCOATMAP":"",n.clearcoatRoughnessMap?"#define USE_CLEARCOAT_ROUGHNESSMAP":"",n.clearcoatNormalMap?"#define USE_CLEARCOAT_NORMALMAP":"",n.specularMap?"#define USE_SPECULARMAP":"",n.specularIntensityMap?"#define USE_SPECULARINTENSITYMAP":"",n.specularColorMap?"#define USE_SPECULARCOLORMAP":"",n.roughnessMap?"#define USE_ROUGHNESSMAP":"",n.metalnessMap?"#define USE_METALNESSMAP":"",n.alphaMap?"#define USE_ALPHAMAP":"",n.alphaTest?"#define USE_ALPHATEST":"",n.sheen?"#define USE_SHEEN":"",n.sheenColorMap?"#define USE_SHEENCOLORMAP":"",n.sheenRoughnessMap?"#define USE_SHEENROUGHNESSMAP":"",n.transmission?"#define USE_TRANSMISSION":"",n.transmissionMap?"#define USE_TRANSMISSIONMAP":"",n.thicknessMap?"#define USE_THICKNESSMAP":"",n.vertexTangents?"#define USE_TANGENT":"",n.vertexColors||n.instancingColor?"#define USE_COLOR":"",n.vertexAlphas?"#define USE_COLOR_ALPHA":"",n.vertexUvs?"#define USE_UV":"",n.uvsVertexOnly?"#define UVS_VERTEX_ONLY":"",n.gradientMap?"#define USE_GRADIENTMAP":"",n.flatShading?"#define FLAT_SHADED":"",n.doubleSided?"#define DOUBLE_SIDED":"",n.flipSided?"#define FLIP_SIDED":"",n.shadowMapEnabled?"#define USE_SHADOWMAP":"",n.shadowMapEnabled?"#define "+d:"",n.premultipliedAlpha?"#define PREMULTIPLIED_ALPHA":"",n.physicallyCorrectLights?"#define PHYSICALLY_CORRECT_LIGHTS":"",n.logarithmicDepthBuffer?"#define USE_LOGDEPTHBUF":"",n.logarithmicDepthBuffer&&n.rendererExtensionFragDepth?"#define USE_LOGDEPTHBUF_EXT":"",(n.extensionShaderTextureLOD||n.envMap)&&n.rendererExtensionShaderTextureLod?"#define TEXTURE_LOD_EXT":"","uniform mat4 viewMatrix;","uniform vec3 cameraPosition;","uniform bool isOrthographic;",0!==n.toneMapping?"#define TONE_MAPPING":"",0!==n.toneMapping?ai.tonemapping_pars_fragment:"",0!==n.toneMapping?os("toneMapping",n.toneMapping):"",n.dithering?"#define DITHERING":"",n.format===T?"#define OPAQUE":"",ai.encodings_pars_fragment,n.map?ss("mapTexelToLinear",n.mapEncoding):"",n.matcap?ss("matcapTexelToLinear",n.matcapEncoding):"",n.envMap?ss("envMapTexelToLinear",n.envMapEncoding):"",n.emissiveMap?ss("emissiveMapTexelToLinear",n.emissiveMapEncoding):"",n.specularColorMap?ss("specularColorMapTexelToLinear",n.specularColorMapEncoding):"",n.sheenColorMap?ss("sheenColorMapTexelToLinear",n.sheenColorMapEncoding):"",n.lightMap?ss("lightMapTexelToLinear",n.lightMapEncoding):"",as("linearToOutputTexel",n.outputEncoding),n.depthPacking?"#define DEPTH_PACKING "+n.depthPacking:"","\n"].filter(ls).join("\n")),h=ds(h),h=cs(h,n),h=hs(h,n),u=ds(u),u=cs(u,n),u=hs(u,n),h=gs(h),u=gs(u),n.isWebGL2&&!0!==n.isRawShaderMaterial&&(b="#version 300 es\n",x=["precision mediump sampler2DArray;","#define attribute in","#define varying out","#define texture2D texture"].join("\n")+"\n"+x,_=["#define varying in",n.glslVersion===K?"":"layout(location = 0) out highp vec4 pc_fragColor;",n.glslVersion===K?"":"#define gl_FragColor pc_fragColor","#define gl_FragDepthEXT gl_FragDepth","#define texture2D texture","#define textureCube texture","#define texture2DProj textureProj","#define texture2DLodEXT textureLod","#define texture2DProjLodEXT textureProjLod","#define textureCubeLodEXT textureLod","#define texture2DGradEXT textureGrad","#define texture2DProjGradEXT textureProjGrad","#define textureCubeGradEXT textureGrad"].join("\n")+"\n"+_);const M=b+_+u,w=es(a,35633,b+x+h),S=es(a,35632,M);function E(){if(t.debug.checkShaderErrors){const t=a.getProgramInfoLog(y).trim(),e=a.getShaderInfoLog(w).trim(),n=a.getShaderInfoLog(S).trim();let i=!0,r=!0;if(!1===a.getProgramParameter(y,35714)){i=!1;const e=rs(a,w,"vertex"),n=rs(a,S,"fragment");console.error("THREE.WebGLProgram: Shader Error "+a.getError()+" - VALIDATE_STATUS "+a.getProgramParameter(y,35715)+"\n\nProgram Info Log: "+t+"\n"+e+"\n"+n)}else""!==t?console.warn("THREE.WebGLProgram: Program Info Log:",t):""!==e&&""!==n||(r=!1);r&&(this.diagnostics={runnable:i,programLog:t,vertexShader:{log:e,prefix:x},fragmentShader:{log:n,prefix:_}})}a.deleteShader(w),a.deleteShader(S),A=new ts(a,y),L=function(t,e){const n={},i=t.getProgramParameter(e,35721);for(let r=0;r0,I=s.clearcoat>0;return{isWebGL2:d,shaderID:T,shaderName:s.type,vertexShader:A,fragmentShader:L,defines:s.defines,customVertexShaderID:R,customFragmentShaderID:C,isRawShaderMaterial:!0===s.isRawShaderMaterial,glslVersion:s.glslVersion,precision:v,instancing:!0===b.isInstancedMesh,instancingColor:!0===b.isInstancedMesh&&null!==b.instanceColor,supportsVertexTextures:g,outputEncoding:null!==P?_(P.texture):t.outputEncoding,map:!!s.map,mapEncoding:_(s.map),matcap:!!s.matcap,matcapEncoding:_(s.matcap),envMap:!!S,envMapMode:S&&S.mapping,envMapEncoding:_(S),envMapCubeUV:!!S&&(S.mapping===l||S.mapping===c),lightMap:!!s.lightMap,lightMapEncoding:_(s.lightMap),aoMap:!!s.aoMap,emissiveMap:!!s.emissiveMap,emissiveMapEncoding:_(s.emissiveMap),bumpMap:!!s.bumpMap,normalMap:!!s.normalMap,objectSpaceNormalMap:1===s.normalMapType,tangentSpaceNormalMap:0===s.normalMapType,clearcoat:I,clearcoatMap:I&&!!s.clearcoatMap,clearcoatRoughnessMap:I&&!!s.clearcoatRoughnessMap,clearcoatNormalMap:I&&!!s.clearcoatNormalMap,displacementMap:!!s.displacementMap,roughnessMap:!!s.roughnessMap,metalnessMap:!!s.metalnessMap,specularMap:!!s.specularMap,specularIntensityMap:!!s.specularIntensityMap,specularColorMap:!!s.specularColorMap,specularColorMapEncoding:_(s.specularColorMap),alphaMap:!!s.alphaMap,alphaTest:D,gradientMap:!!s.gradientMap,sheen:s.sheen>0,sheenColorMap:!!s.sheenColorMap,sheenColorMapEncoding:_(s.sheenColorMap),sheenRoughnessMap:!!s.sheenRoughnessMap,transmission:s.transmission>0,transmissionMap:!!s.transmissionMap,thicknessMap:!!s.thicknessMap,combine:s.combine,vertexTangents:!!s.normalMap&&!!b.geometry&&!!b.geometry.attributes.tangent,vertexColors:s.vertexColors,vertexAlphas:!0===s.vertexColors&&!!b.geometry&&!!b.geometry.attributes.color&&4===b.geometry.attributes.color.itemSize,vertexUvs:!!(s.map||s.bumpMap||s.normalMap||s.specularMap||s.alphaMap||s.emissiveMap||s.roughnessMap||s.metalnessMap||s.clearcoatMap||s.clearcoatRoughnessMap||s.clearcoatNormalMap||s.displacementMap||s.transmissionMap||s.thicknessMap||s.specularIntensityMap||s.specularColorMap||s.sheenColorMap||s.sheenRoughnessMap),uvsVertexOnly:!(s.map||s.bumpMap||s.normalMap||s.specularMap||s.alphaMap||s.emissiveMap||s.roughnessMap||s.metalnessMap||s.clearcoatNormalMap||s.transmission>0||s.transmissionMap||s.thicknessMap||s.specularIntensityMap||s.specularColorMap||s.sheen>0||s.sheenColorMap||s.sheenRoughnessMap||!s.displacementMap),fog:!!M,useFog:s.fog,fogExp2:M&&M.isFogExp2,flatShading:!!s.flatShading,sizeAttenuation:s.sizeAttenuation,logarithmicDepthBuffer:p,skinning:!0===b.isSkinnedMesh&&E>0,maxBones:E,useVertexTexture:m,morphTargets:!!b.geometry&&!!b.geometry.morphAttributes.position,morphNormals:!!b.geometry&&!!b.geometry.morphAttributes.normal,morphTargetsCount:b.geometry&&b.geometry.morphAttributes.position?b.geometry.morphAttributes.position.length:0,numDirLights:o.directional.length,numPointLights:o.point.length,numSpotLights:o.spot.length,numRectAreaLights:o.rectArea.length,numHemiLights:o.hemi.length,numDirLightShadows:o.directionalShadowMap.length,numPointLightShadows:o.pointShadowMap.length,numSpotLightShadows:o.spotShadowMap.length,numClippingPlanes:a.numPlanes,numClipIntersection:a.numIntersection,format:s.format,dithering:s.dithering,shadowMapEnabled:t.shadowMap.enabled&&u.length>0,shadowMapType:t.shadowMap.type,toneMapping:s.toneMapped?t.toneMapping:0,physicallyCorrectLights:t.physicallyCorrectLights,premultipliedAlpha:s.premultipliedAlpha,doubleSided:2===s.side,flipSided:1===s.side,depthPacking:void 0!==s.depthPacking&&s.depthPacking,index0AttributeName:s.index0AttributeName,extensionDerivatives:s.extensions&&s.extensions.derivatives,extensionFragDepth:s.extensions&&s.extensions.fragDepth,extensionDrawBuffers:s.extensions&&s.extensions.drawBuffers,extensionShaderTextureLOD:s.extensions&&s.extensions.shaderTextureLOD,rendererExtensionFragDepth:d||i.has("EXT_frag_depth"),rendererExtensionDrawBuffers:d||i.has("WEBGL_draw_buffers"),rendererExtensionShaderTextureLod:d||i.has("EXT_shader_texture_lod"),rendererExtensionParallelShaderCompile:i.has("KHR_parallel_shader_compile"),customProgramCacheKey:s.customProgramCacheKey()}},getProgramCacheKey:function(e){const n=[];if(e.shaderID?n.push(e.shaderID):(n.push(e.customVertexShaderID),n.push(e.customFragmentShaderID)),void 0!==e.defines)for(const t in e.defines)n.push(t),n.push(e.defines[t]);return!1===e.isRawShaderMaterial&&(!function(t,e){t.push(e.precision),t.push(e.outputEncoding),t.push(e.mapEncoding),t.push(e.matcapEncoding),t.push(e.envMapMode),t.push(e.envMapEncoding),t.push(e.lightMapEncoding),t.push(e.emissiveMapEncoding),t.push(e.combine),t.push(e.vertexUvs),t.push(e.fogExp2),t.push(e.sizeAttenuation),t.push(e.maxBones),t.push(e.morphTargetsCount),t.push(e.numDirLights),t.push(e.numPointLights),t.push(e.numSpotLights),t.push(e.numHemiLights),t.push(e.numRectAreaLights),t.push(e.numDirLightShadows),t.push(e.numPointLightShadows),t.push(e.numSpotLightShadows),t.push(e.shadowMapType),t.push(e.toneMapping),t.push(e.numClippingPlanes),t.push(e.numClipIntersection),t.push(e.format),t.push(e.specularColorMapEncoding),t.push(e.sheenColorMapEncoding)}(n,e),function(t,e){o.disableAll(),e.isWebGL2&&o.enable(0);e.supportsVertexTextures&&o.enable(1);e.instancing&&o.enable(2);e.instancingColor&&o.enable(3);e.map&&o.enable(4);e.matcap&&o.enable(5);e.envMap&&o.enable(6);e.envMapCubeUV&&o.enable(7);e.lightMap&&o.enable(8);e.aoMap&&o.enable(9);e.emissiveMap&&o.enable(10);e.bumpMap&&o.enable(11);e.normalMap&&o.enable(12);e.objectSpaceNormalMap&&o.enable(13);e.tangentSpaceNormalMap&&o.enable(14);e.clearcoat&&o.enable(15);e.clearcoatMap&&o.enable(16);e.clearcoatRoughnessMap&&o.enable(17);e.clearcoatNormalMap&&o.enable(18);e.displacementMap&&o.enable(19);e.specularMap&&o.enable(20);e.roughnessMap&&o.enable(21);e.metalnessMap&&o.enable(22);e.gradientMap&&o.enable(23);e.alphaMap&&o.enable(24);e.alphaTest&&o.enable(25);e.vertexColors&&o.enable(26);e.vertexAlphas&&o.enable(27);e.vertexUvs&&o.enable(28);e.vertexTangents&&o.enable(29);e.uvsVertexOnly&&o.enable(30);e.fog&&o.enable(31);t.push(o.mask),o.disableAll(),e.useFog&&o.enable(0);e.flatShading&&o.enable(1);e.logarithmicDepthBuffer&&o.enable(2);e.skinning&&o.enable(3);e.useVertexTexture&&o.enable(4);e.morphTargets&&o.enable(5);e.morphNormals&&o.enable(6);e.premultipliedAlpha&&o.enable(7);e.shadowMapEnabled&&o.enable(8);e.physicallyCorrectLights&&o.enable(9);e.doubleSided&&o.enable(10);e.flipSided&&o.enable(11);e.depthPacking&&o.enable(12);e.dithering&&o.enable(13);e.specularIntensityMap&&o.enable(14);e.specularColorMap&&o.enable(15);e.transmission&&o.enable(16);e.transmissionMap&&o.enable(17);e.thicknessMap&&o.enable(18);e.sheen&&o.enable(19);e.sheenColorMap&&o.enable(20);e.sheenRoughnessMap&&o.enable(21);t.push(o.mask)}(n,e),n.push(t.outputEncoding)),n.push(e.customProgramCacheKey),n.join()},getUniforms:function(t){const e=y[t.type];let n;if(e){const t=li[e];n=kn.clone(t.uniforms)}else n=t.uniforms;return n},acquireProgram:function(e,n){let i;for(let t=0,e=u.length;t0?i.push(h):!0===a.transparent?r.push(h):n.push(h)},unshift:function(t,e,a,o,l,c){const h=s(t,e,a,o,l,c);a.transmission>0?i.unshift(h):!0===a.transparent?r.unshift(h):n.unshift(h)},finish:function(){for(let n=e,i=t.length;n1&&n.sort(t||Es),i.length>1&&i.sort(e||As),r.length>1&&r.sort(e||As)}}}function Rs(){let t=new WeakMap;return{get:function(e,n){let i;return!1===t.has(e)?(i=new Ls,t.set(e,[i])):n>=t.get(e).length?(i=new Ls,t.get(e).push(i)):i=t.get(e)[n],i},dispose:function(){t=new WeakMap}}}function Cs(){const t={};return{get:function(e){if(void 0!==t[e.id])return t[e.id];let n;switch(e.type){case"DirectionalLight":n={direction:new Lt,color:new Ze};break;case"SpotLight":n={position:new Lt,direction:new Lt,color:new Ze,distance:0,coneCos:0,penumbraCos:0,decay:0};break;case"PointLight":n={position:new Lt,color:new Ze,distance:0,decay:0};break;case"HemisphereLight":n={direction:new Lt,skyColor:new Ze,groundColor:new Ze};break;case"RectAreaLight":n={color:new Ze,position:new Lt,halfWidth:new Lt,halfHeight:new Lt}}return t[e.id]=n,n}}}let Ps=0;function Ds(t,e){return(e.castShadow?1:0)-(t.castShadow?1:0)}function Is(t,e){const n=new Cs,i=function(){const t={};return{get:function(e){if(void 0!==t[e.id])return t[e.id];let n;switch(e.type){case"DirectionalLight":case"SpotLight":n={shadowBias:0,shadowNormalBias:0,shadowRadius:1,shadowMapSize:new dt};break;case"PointLight":n={shadowBias:0,shadowNormalBias:0,shadowRadius:1,shadowMapSize:new dt,shadowCameraNear:1,shadowCameraFar:1e3}}return t[e.id]=n,n}}}(),r={version:0,hash:{directionalLength:-1,pointLength:-1,spotLength:-1,rectAreaLength:-1,hemiLength:-1,numDirectionalShadows:-1,numPointShadows:-1,numSpotShadows:-1},ambient:[0,0,0],probe:[],directional:[],directionalShadow:[],directionalShadowMap:[],directionalShadowMatrix:[],spot:[],spotShadow:[],spotShadowMap:[],spotShadowMatrix:[],rectArea:[],rectAreaLTC1:null,rectAreaLTC2:null,point:[],pointShadow:[],pointShadowMap:[],pointShadowMatrix:[],hemi:[]};for(let t=0;t<9;t++)r.probe.push(new Lt);const s=new Lt,a=new se,o=new se;return{setup:function(s,a){let o=0,l=0,c=0;for(let t=0;t<9;t++)r.probe[t].set(0,0,0);let h=0,u=0,d=0,p=0,m=0,f=0,g=0,v=0;s.sort(Ds);const y=!0!==a?Math.PI:1;for(let t=0,e=s.length;t0&&(e.isWebGL2||!0===t.has("OES_texture_float_linear")?(r.rectAreaLTC1=oi.LTC_FLOAT_1,r.rectAreaLTC2=oi.LTC_FLOAT_2):!0===t.has("OES_texture_half_float_linear")?(r.rectAreaLTC1=oi.LTC_HALF_1,r.rectAreaLTC2=oi.LTC_HALF_2):console.error("THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.")),r.ambient[0]=o,r.ambient[1]=l,r.ambient[2]=c;const x=r.hash;x.directionalLength===h&&x.pointLength===u&&x.spotLength===d&&x.rectAreaLength===p&&x.hemiLength===m&&x.numDirectionalShadows===f&&x.numPointShadows===g&&x.numSpotShadows===v||(r.directional.length=h,r.spot.length=d,r.rectArea.length=p,r.point.length=u,r.hemi.length=m,r.directionalShadow.length=f,r.directionalShadowMap.length=f,r.pointShadow.length=g,r.pointShadowMap.length=g,r.spotShadow.length=v,r.spotShadowMap.length=v,r.directionalShadowMatrix.length=f,r.pointShadowMatrix.length=g,r.spotShadowMatrix.length=v,x.directionalLength=h,x.pointLength=u,x.spotLength=d,x.rectAreaLength=p,x.hemiLength=m,x.numDirectionalShadows=f,x.numPointShadows=g,x.numSpotShadows=v,r.version=Ps++)},setupView:function(t,e){let n=0,i=0,l=0,c=0,h=0;const u=e.matrixWorldInverse;for(let e=0,d=t.length;e=n.get(i).length?(s=new Ns(t,e),n.get(i).push(s)):s=n.get(i)[r],s},dispose:function(){n=new WeakMap}}}class Bs extends Ve{constructor(t){super(),this.type="MeshDepthMaterial",this.depthPacking=3200,this.map=null,this.alphaMap=null,this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.wireframe=!1,this.wireframeLinewidth=1,this.fog=!1,this.setValues(t)}copy(t){return super.copy(t),this.depthPacking=t.depthPacking,this.map=t.map,this.alphaMap=t.alphaMap,this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this}}Bs.prototype.isMeshDepthMaterial=!0;class Fs extends Ve{constructor(t){super(),this.type="MeshDistanceMaterial",this.referencePosition=new Lt,this.nearDistance=1,this.farDistance=1e3,this.map=null,this.alphaMap=null,this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.fog=!1,this.setValues(t)}copy(t){return super.copy(t),this.referencePosition.copy(t.referencePosition),this.nearDistance=t.nearDistance,this.farDistance=t.farDistance,this.map=t.map,this.alphaMap=t.alphaMap,this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this}}Fs.prototype.isMeshDistanceMaterial=!0;function Os(t,e,n){let i=new ni;const r=new dt,s=new dt,a=new wt,o=new Bs({depthPacking:3201}),l=new Fs,c={},h=n.maxTextureSize,u={0:1,1:0,2:2},d=new Vn({defines:{VSM_SAMPLES:8},uniforms:{shadow_pass:{value:null},resolution:{value:new dt},radius:{value:4}},vertexShader:"void main() {\n\tgl_Position = vec4( position, 1.0 );\n}",fragmentShader:"uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"}),m=d.clone();m.defines.HORIZONTAL_PASS=1;const f=new xn;f.setAttribute("position",new tn(new Float32Array([-1,-1,.5,3,-1,.5,-1,3,.5]),3));const v=new Fn(f,d),y=this;function x(n,i){const r=e.update(v);d.defines.VSM_SAMPLES!==n.blurSamples&&(d.defines.VSM_SAMPLES=n.blurSamples,m.defines.VSM_SAMPLES=n.blurSamples,d.needsUpdate=!0,m.needsUpdate=!0),d.uniforms.shadow_pass.value=n.map.texture,d.uniforms.resolution.value=n.mapSize,d.uniforms.radius.value=n.radius,t.setRenderTarget(n.mapPass),t.clear(),t.renderBufferDirect(i,null,r,d,v,null),m.uniforms.shadow_pass.value=n.mapPass.texture,m.uniforms.resolution.value=n.mapSize,m.uniforms.radius.value=n.radius,t.setRenderTarget(n.map),t.clear(),t.renderBufferDirect(i,null,r,m,v,null)}function _(e,n,i,r,s,a,h){let d=null;const p=!0===r.isPointLight?e.customDistanceMaterial:e.customDepthMaterial;if(d=void 0!==p?p:!0===r.isPointLight?l:o,t.localClippingEnabled&&!0===i.clipShadows&&0!==i.clippingPlanes.length||i.displacementMap&&0!==i.displacementScale||i.alphaMap&&i.alphaTest>0){const t=d.uuid,e=i.uuid;let n=c[t];void 0===n&&(n={},c[t]=n);let r=n[e];void 0===r&&(r=d.clone(),n[e]=r),d=r}return d.visible=i.visible,d.wireframe=i.wireframe,d.side=3===h?null!==i.shadowSide?i.shadowSide:i.side:null!==i.shadowSide?i.shadowSide:u[i.side],d.alphaMap=i.alphaMap,d.alphaTest=i.alphaTest,d.clipShadows=i.clipShadows,d.clippingPlanes=i.clippingPlanes,d.clipIntersection=i.clipIntersection,d.displacementMap=i.displacementMap,d.displacementScale=i.displacementScale,d.displacementBias=i.displacementBias,d.wireframeLinewidth=i.wireframeLinewidth,d.linewidth=i.linewidth,!0===r.isPointLight&&!0===d.isMeshDistanceMaterial&&(d.referencePosition.setFromMatrixPosition(r.matrixWorld),d.nearDistance=s,d.farDistance=a),d}function b(n,r,s,a,o){if(!1===n.visible)return;if(n.layers.test(r.layers)&&(n.isMesh||n.isLine||n.isPoints)&&(n.castShadow||n.receiveShadow&&3===o)&&(!n.frustumCulled||i.intersectsObject(n))){n.modelViewMatrix.multiplyMatrices(s.matrixWorldInverse,n.matrixWorld);const i=e.update(n),r=n.material;if(Array.isArray(r)){const e=i.groups;for(let l=0,c=e.length;lh||r.y>h)&&(r.x>h&&(s.x=Math.floor(h/m.x),r.x=s.x*m.x,u.mapSize.x=s.x),r.y>h&&(s.y=Math.floor(h/m.y),r.y=s.y*m.y,u.mapSize.y=s.y)),null===u.map&&!u.isPointLightShadow&&3===this.type){const t={minFilter:g,magFilter:g,format:E};u.map=new St(r.x,r.y,t),u.map.texture.name=c.name+".shadowMap",u.mapPass=new St(r.x,r.y,t),u.camera.updateProjectionMatrix()}if(null===u.map){const t={minFilter:p,magFilter:p,format:E};u.map=new St(r.x,r.y,t),u.map.texture.name=c.name+".shadowMap",u.camera.updateProjectionMatrix()}t.setRenderTarget(u.map),t.clear();const f=u.getViewportCount();for(let t=0;t=1):-1!==L.indexOf("OpenGL ES")&&(A=parseFloat(/^OpenGL ES (\d)/.exec(L)[1]),E=A>=2);let R=null,C={};const P=t.getParameter(3088),D=t.getParameter(2978),I=(new wt).fromArray(P),N=(new wt).fromArray(D);function z(e,n,i){const r=new Uint8Array(4),s=t.createTexture();t.bindTexture(e,s),t.texParameteri(e,10241,9728),t.texParameteri(e,10240,9728);for(let e=0;ei||t.height>i)&&(r=i/Math.max(t.width,t.height)),r<1||!0===e){if("undefined"!=typeof HTMLImageElement&&t instanceof HTMLImageElement||"undefined"!=typeof HTMLCanvasElement&&t instanceof HTMLCanvasElement||"undefined"!=typeof ImageBitmap&&t instanceof ImageBitmap){const i=e?ht:Math.floor,s=i(r*t.width),a=i(r*t.height);void 0===D&&(D=N(s,a));const o=n?N(s,a):D;o.width=s,o.height=a;return o.getContext("2d").drawImage(t,0,0,s,a),console.warn("THREE.WebGLRenderer: Texture has been resized from ("+t.width+"x"+t.height+") to ("+s+"x"+a+")."),o}return"data"in t&&console.warn("THREE.WebGLRenderer: Image in DataTexture is too big ("+t.width+"x"+t.height+")."),t}return t}function B(t){return lt(t.width)&<(t.height)}function F(t,e){return t.generateMipmaps&&e&&t.minFilter!==p&&t.minFilter!==g}function O(e){t.generateMipmap(e)}function U(n,i,r,s){if(!1===o)return i;if(null!==n){if(void 0!==t[n])return t[n];console.warn("THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format '"+n+"'")}let a=i;return 6403===i&&(5126===r&&(a=33326),5131===r&&(a=33325),5121===r&&(a=33321)),6407===i&&(5126===r&&(a=34837),5131===r&&(a=34843),5121===r&&(a=32849)),6408===i&&(5126===r&&(a=34836),5131===r&&(a=34842),5121===r&&(a=s===J?35907:32856)),33325!==a&&33326!==a&&34842!==a&&34836!==a||e.get("EXT_color_buffer_float"),a}function H(t,e,n){return!0===F(t,n)||t.isFramebufferTexture&&t.minFilter!==p&&t.minFilter!==g?Math.log2(Math.max(e.width,e.height))+1:void 0!==t.mipmaps&&t.mipmaps.length>0?t.mipmaps.length:t.isCompressedTexture&&Array.isArray(t.image)?e.mipmaps.length:1}function G(t){return t===p||t===m||t===f?9728:9729}function k(e){const n=e.target;n.removeEventListener("dispose",k),function(e){const n=i.get(e);if(void 0===n.__webglInit)return;t.deleteTexture(n.__webglTexture),i.remove(e)}(n),n.isVideoTexture&&P.delete(n),a.memory.textures--}function V(e){const n=e.target;n.removeEventListener("dispose",V),function(e){const n=e.texture,r=i.get(e),s=i.get(n);if(!e)return;void 0!==s.__webglTexture&&(t.deleteTexture(s.__webglTexture),a.memory.textures--);e.depthTexture&&e.depthTexture.dispose();if(e.isWebGLCubeRenderTarget)for(let e=0;e<6;e++)t.deleteFramebuffer(r.__webglFramebuffer[e]),r.__webglDepthbuffer&&t.deleteRenderbuffer(r.__webglDepthbuffer[e]);else t.deleteFramebuffer(r.__webglFramebuffer),r.__webglDepthbuffer&&t.deleteRenderbuffer(r.__webglDepthbuffer),r.__webglMultisampledFramebuffer&&t.deleteFramebuffer(r.__webglMultisampledFramebuffer),r.__webglColorRenderbuffer&&t.deleteRenderbuffer(r.__webglColorRenderbuffer),r.__webglDepthRenderbuffer&&t.deleteRenderbuffer(r.__webglDepthRenderbuffer);if(e.isWebGLMultipleRenderTargets)for(let e=0,r=n.length;e0&&r.__version!==t.version){const n=t.image;if(void 0===n)console.warn("THREE.WebGLRenderer: Texture marked for update but image is undefined");else{if(!1!==n.complete)return void K(r,t,e);console.warn("THREE.WebGLRenderer: Texture marked for update but image is incomplete")}}n.activeTexture(33984+e),n.bindTexture(3553,r.__webglTexture)}function q(e,r){const a=i.get(e);e.version>0&&a.__version!==e.version?function(e,i,r){if(6!==i.image.length)return;Q(e,i),n.activeTexture(33984+r),n.bindTexture(34067,e.__webglTexture),t.pixelStorei(37440,i.flipY),t.pixelStorei(37441,i.premultiplyAlpha),t.pixelStorei(3317,i.unpackAlignment),t.pixelStorei(37443,0);const a=i&&(i.isCompressedTexture||i.image[0].isCompressedTexture),l=i.image[0]&&i.image[0].isDataTexture,h=[];for(let t=0;t<6;t++)h[t]=a||l?l?i.image[t].image:i.image[t]:z(i.image[t],!1,!0,c);const u=h[0],d=B(u)||o,p=s.convert(i.format),m=s.convert(i.type),f=U(i.internalFormat,p,m,i.encoding),g=o&&!0!==i.isVideoTexture,v=void 0===e.__version;let y,x=H(i,u,d);if(Z(34067,i,d),a){g&&v&&n.texStorage2D(34067,x,f,u.width,u.height);for(let t=0;t<6;t++){y=h[t].mipmaps;for(let e=0;e0&&x++,n.texStorage2D(34067,x,f,h[0].width,h[0].height));for(let t=0;t<6;t++)if(l){g?n.texSubImage2D(34069+t,0,0,0,h[t].width,h[t].height,p,m,h[t].data):n.texImage2D(34069+t,0,f,h[t].width,h[t].height,0,p,m,h[t].data);for(let e=0;e1||i.get(s).__currentAnisotropy)&&(t.texParameterf(n,a.TEXTURE_MAX_ANISOTROPY_EXT,Math.min(s.anisotropy,r.getMaxAnisotropy())),i.get(s).__currentAnisotropy=s.anisotropy)}}function Q(e,n){void 0===e.__webglInit&&(e.__webglInit=!0,n.addEventListener("dispose",k),e.__webglTexture=t.createTexture(),a.memory.textures++)}function K(e,i,r){let a=3553;i.isDataTexture2DArray&&(a=35866),i.isDataTexture3D&&(a=32879),Q(e,i),n.activeTexture(33984+r),n.bindTexture(a,e.__webglTexture),t.pixelStorei(37440,i.flipY),t.pixelStorei(37441,i.premultiplyAlpha),t.pixelStorei(3317,i.unpackAlignment),t.pixelStorei(37443,0);const l=function(t){return!o&&(t.wrapS!==u||t.wrapT!==u||t.minFilter!==p&&t.minFilter!==g)}(i)&&!1===B(i.image),c=z(i.image,l,!1,x),h=B(c)||o,d=s.convert(i.format);let m,f=s.convert(i.type),v=U(i.internalFormat,d,f,i.encoding);Z(a,i,h);const y=i.mipmaps,w=o&&!0!==i.isVideoTexture,R=void 0===e.__version,C=H(i,c,h);if(i.isDepthTexture)v=6402,o?v=i.type===M?36012:i.type===b?33190:i.type===S?35056:33189:i.type===M&&console.error("WebGLRenderer: Floating point depth texture requires WebGL2."),i.format===A&&6402===v&&i.type!==_&&i.type!==b&&(console.warn("THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture."),i.type=_,f=s.convert(i.type)),i.format===L&&6402===v&&(v=34041,i.type!==S&&(console.warn("THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture."),i.type=S,f=s.convert(i.type))),w&&R?n.texStorage2D(3553,1,v,c.width,c.height):n.texImage2D(3553,0,v,c.width,c.height,0,d,f,null);else if(i.isDataTexture)if(y.length>0&&h){w&&R&&n.texStorage2D(3553,C,v,y[0].width,y[0].height);for(let t=0,e=y.length;t0&&h){w&&R&&n.texStorage2D(3553,C,v,y[0].width,y[0].height);for(let t=0,e=y.length;t=l&&console.warn("THREE.WebGLTextures: Trying to use "+t+" texture units while this GPU supports only "+l),W+=1,t},this.resetTextureUnits=function(){W=0},this.setTexture2D=j,this.setTexture2DArray=function(t,e){const r=i.get(t);t.version>0&&r.__version!==t.version?K(r,t,e):(n.activeTexture(33984+e),n.bindTexture(35866,r.__webglTexture))},this.setTexture3D=function(t,e){const r=i.get(t);t.version>0&&r.__version!==t.version?K(r,t,e):(n.activeTexture(33984+e),n.bindTexture(32879,r.__webglTexture))},this.setTextureCube=q,this.rebindTextures=function(t,e,n){const r=i.get(t);void 0!==e&&$(r.__webglFramebuffer,t,t.texture,36064,3553),void 0!==n&&et(t)},this.setupRenderTarget=function(e){const l=e.texture,c=i.get(e),h=i.get(l);e.addEventListener("dispose",V),!0!==e.isWebGLMultipleRenderTargets&&(void 0===h.__webglTexture&&(h.__webglTexture=t.createTexture()),h.__version=l.version,a.memory.textures++);const u=!0===e.isWebGLCubeRenderTarget,d=!0===e.isWebGLMultipleRenderTargets,p=l.isDataTexture3D||l.isDataTexture2DArray,m=B(e)||o;if(!o||l.format!==T||l.type!==M&&l.type!==w||(l.format=E,console.warn("THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.")),u){c.__webglFramebuffer=[];for(let e=0;e<6;e++)c.__webglFramebuffer[e]=t.createFramebuffer()}else if(c.__webglFramebuffer=t.createFramebuffer(),d)if(r.drawBuffers){const n=e.texture;for(let e=0,r=n.length;eo+c?(l.inputState.pinching=!1,this.dispatchEvent({type:"pinchend",handedness:t.handedness,target:this})):!l.inputState.pinching&&a<=o-c&&(l.inputState.pinching=!0,this.dispatchEvent({type:"pinchstart",handedness:t.handedness,target:this}))}else null!==o&&t.gripSpace&&(r=e.getPose(t.gripSpace,n),null!==r&&(o.matrix.fromArray(r.transform.matrix),o.matrix.decompose(o.position,o.rotation,o.scale),r.linearVelocity?(o.hasLinearVelocity=!0,o.linearVelocity.copy(r.linearVelocity)):o.hasLinearVelocity=!1,r.angularVelocity?(o.hasAngularVelocity=!0,o.angularVelocity.copy(r.angularVelocity)):o.hasAngularVelocity=!1));return null!==a&&(a.visible=null!==i),null!==o&&(o.visible=null!==r),null!==l&&(l.visible=null!==s),this}}class qs extends bt{constructor(t,e,n,i,r,s,a,o,l,c){if((c=void 0!==c?c:A)!==A&&c!==L)throw new Error("DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat");void 0===n&&c===A&&(n=_),void 0===n&&c===L&&(n=S),super(null,i,r,s,a,o,c,n,l),this.image={width:t,height:e},this.magFilter=void 0!==a?a:p,this.minFilter=void 0!==o?o:p,this.flipY=!1,this.generateMipmaps=!1}}qs.prototype.isDepthTexture=!0;class Xs extends ${constructor(t,e){super();const n=this;let i=null,r=1,s=null,a="local-floor";const o=t.extensions.has("WEBGL_multisampled_render_to_texture");let l=null,c=null,h=null,u=null,d=!1,p=null;const m=e.getContextAttributes();let f=null,g=null;const v=[],y=new Map,b=new jn;b.layers.enable(1),b.viewport=new wt;const M=new jn;M.layers.enable(2),M.viewport=new wt;const w=[b,M],R=new ks;R.layers.enable(1),R.layers.enable(2);let C=null,P=null;function D(t){const e=y.get(t.inputSource);e&&e.dispatchEvent({type:t.type,data:t.inputSource})}function I(){y.forEach((function(t,e){t.disconnect(e)})),y.clear(),C=null,P=null,t.setRenderTarget(f),u=null,h=null,c=null,i=null,g=null,U.stop(),n.isPresenting=!1,n.dispatchEvent({type:"sessionend"})}function N(t){const e=i.inputSources;for(let t=0;t0&&(e.alphaTest.value=n.alphaTest);const i=t.get(n).envMap;let r,s;i&&(e.envMap.value=i,e.flipEnvMap.value=i.isCubeTexture&&!1===i.isRenderTargetTexture?-1:1,e.reflectivity.value=n.reflectivity,e.ior.value=n.ior,e.refractionRatio.value=n.refractionRatio),n.lightMap&&(e.lightMap.value=n.lightMap,e.lightMapIntensity.value=n.lightMapIntensity),n.aoMap&&(e.aoMap.value=n.aoMap,e.aoMapIntensity.value=n.aoMapIntensity),n.map?r=n.map:n.specularMap?r=n.specularMap:n.displacementMap?r=n.displacementMap:n.normalMap?r=n.normalMap:n.bumpMap?r=n.bumpMap:n.roughnessMap?r=n.roughnessMap:n.metalnessMap?r=n.metalnessMap:n.alphaMap?r=n.alphaMap:n.emissiveMap?r=n.emissiveMap:n.clearcoatMap?r=n.clearcoatMap:n.clearcoatNormalMap?r=n.clearcoatNormalMap:n.clearcoatRoughnessMap?r=n.clearcoatRoughnessMap:n.specularIntensityMap?r=n.specularIntensityMap:n.specularColorMap?r=n.specularColorMap:n.transmissionMap?r=n.transmissionMap:n.thicknessMap?r=n.thicknessMap:n.sheenColorMap?r=n.sheenColorMap:n.sheenRoughnessMap&&(r=n.sheenRoughnessMap),void 0!==r&&(r.isWebGLRenderTarget&&(r=r.texture),!0===r.matrixAutoUpdate&&r.updateMatrix(),e.uvTransform.value.copy(r.matrix)),n.aoMap?s=n.aoMap:n.lightMap&&(s=n.lightMap),void 0!==s&&(s.isWebGLRenderTarget&&(s=s.texture),!0===s.matrixAutoUpdate&&s.updateMatrix(),e.uv2Transform.value.copy(s.matrix))}function n(e,n){e.roughness.value=n.roughness,e.metalness.value=n.metalness,n.roughnessMap&&(e.roughnessMap.value=n.roughnessMap),n.metalnessMap&&(e.metalnessMap.value=n.metalnessMap),n.emissiveMap&&(e.emissiveMap.value=n.emissiveMap),n.bumpMap&&(e.bumpMap.value=n.bumpMap,e.bumpScale.value=n.bumpScale,1===n.side&&(e.bumpScale.value*=-1)),n.normalMap&&(e.normalMap.value=n.normalMap,e.normalScale.value.copy(n.normalScale),1===n.side&&e.normalScale.value.negate()),n.displacementMap&&(e.displacementMap.value=n.displacementMap,e.displacementScale.value=n.displacementScale,e.displacementBias.value=n.displacementBias);t.get(n).envMap&&(e.envMapIntensity.value=n.envMapIntensity)}return{refreshFogUniforms:function(t,e){t.fogColor.value.copy(e.color),e.isFog?(t.fogNear.value=e.near,t.fogFar.value=e.far):e.isFogExp2&&(t.fogDensity.value=e.density)},refreshMaterialUniforms:function(t,i,r,s,a){i.isMeshBasicMaterial?e(t,i):i.isMeshLambertMaterial?(e(t,i),function(t,e){e.emissiveMap&&(t.emissiveMap.value=e.emissiveMap)}(t,i)):i.isMeshToonMaterial?(e(t,i),function(t,e){e.gradientMap&&(t.gradientMap.value=e.gradientMap);e.emissiveMap&&(t.emissiveMap.value=e.emissiveMap);e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshPhongMaterial?(e(t,i),function(t,e){t.specular.value.copy(e.specular),t.shininess.value=Math.max(e.shininess,1e-4),e.emissiveMap&&(t.emissiveMap.value=e.emissiveMap);e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshStandardMaterial?(e(t,i),i.isMeshPhysicalMaterial?function(t,e,i){n(t,e),t.ior.value=e.ior,e.sheen>0&&(t.sheenColor.value.copy(e.sheenColor).multiplyScalar(e.sheen),t.sheenRoughness.value=e.sheenRoughness,e.sheenColorMap&&(t.sheenColorMap.value=e.sheenColorMap),e.sheenRoughnessMap&&(t.sheenRoughnessMap.value=e.sheenRoughnessMap));e.clearcoat>0&&(t.clearcoat.value=e.clearcoat,t.clearcoatRoughness.value=e.clearcoatRoughness,e.clearcoatMap&&(t.clearcoatMap.value=e.clearcoatMap),e.clearcoatRoughnessMap&&(t.clearcoatRoughnessMap.value=e.clearcoatRoughnessMap),e.clearcoatNormalMap&&(t.clearcoatNormalScale.value.copy(e.clearcoatNormalScale),t.clearcoatNormalMap.value=e.clearcoatNormalMap,1===e.side&&t.clearcoatNormalScale.value.negate()));e.transmission>0&&(t.transmission.value=e.transmission,t.transmissionSamplerMap.value=i.texture,t.transmissionSamplerSize.value.set(i.width,i.height),e.transmissionMap&&(t.transmissionMap.value=e.transmissionMap),t.thickness.value=e.thickness,e.thicknessMap&&(t.thicknessMap.value=e.thicknessMap),t.attenuationDistance.value=e.attenuationDistance,t.attenuationColor.value.copy(e.attenuationColor));t.specularIntensity.value=e.specularIntensity,t.specularColor.value.copy(e.specularColor),e.specularIntensityMap&&(t.specularIntensityMap.value=e.specularIntensityMap);e.specularColorMap&&(t.specularColorMap.value=e.specularColorMap)}(t,i,a):n(t,i)):i.isMeshMatcapMaterial?(e(t,i),function(t,e){e.matcap&&(t.matcap.value=e.matcap);e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshDepthMaterial?(e(t,i),function(t,e){e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshDistanceMaterial?(e(t,i),function(t,e){e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias);t.referencePosition.value.copy(e.referencePosition),t.nearDistance.value=e.nearDistance,t.farDistance.value=e.farDistance}(t,i)):i.isMeshNormalMaterial?(e(t,i),function(t,e){e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isLineBasicMaterial?(function(t,e){t.diffuse.value.copy(e.color),t.opacity.value=e.opacity}(t,i),i.isLineDashedMaterial&&function(t,e){t.dashSize.value=e.dashSize,t.totalSize.value=e.dashSize+e.gapSize,t.scale.value=e.scale}(t,i)):i.isPointsMaterial?function(t,e,n,i){t.diffuse.value.copy(e.color),t.opacity.value=e.opacity,t.size.value=e.size*n,t.scale.value=.5*i,e.map&&(t.map.value=e.map);e.alphaMap&&(t.alphaMap.value=e.alphaMap);e.alphaTest>0&&(t.alphaTest.value=e.alphaTest);let r;e.map?r=e.map:e.alphaMap&&(r=e.alphaMap);void 0!==r&&(!0===r.matrixAutoUpdate&&r.updateMatrix(),t.uvTransform.value.copy(r.matrix))}(t,i,r,s):i.isSpriteMaterial?function(t,e){t.diffuse.value.copy(e.color),t.opacity.value=e.opacity,t.rotation.value=e.rotation,e.map&&(t.map.value=e.map);e.alphaMap&&(t.alphaMap.value=e.alphaMap);e.alphaTest>0&&(t.alphaTest.value=e.alphaTest);let n;e.map?n=e.map:e.alphaMap&&(n=e.alphaMap);void 0!==n&&(!0===n.matrixAutoUpdate&&n.updateMatrix(),t.uvTransform.value.copy(n.matrix))}(t,i):i.isShadowMaterial?(t.color.value.copy(i.color),t.opacity.value=i.opacity):i.isShaderMaterial&&(i.uniformsNeedUpdate=!1)}}}function Ys(t={}){const e=void 0!==t.canvas?t.canvas:function(){const t=vt("canvas");return t.style.display="block",t}(),n=void 0!==t.context?t.context:null,i=void 0!==t.alpha&&t.alpha,r=void 0===t.depth||t.depth,s=void 0===t.stencil||t.stencil,a=void 0!==t.antialias&&t.antialias,o=void 0===t.premultipliedAlpha||t.premultipliedAlpha,l=void 0!==t.preserveDrawingBuffer&&t.preserveDrawingBuffer,c=void 0!==t.powerPreference?t.powerPreference:"default",h=void 0!==t.failIfMajorPerformanceCaveat&&t.failIfMajorPerformanceCaveat;let d=null,m=null;const f=[],g=[];this.domElement=e,this.debug={checkShaderErrors:!0},this.autoClear=!0,this.autoClearColor=!0,this.autoClearDepth=!0,this.autoClearStencil=!0,this.sortObjects=!0,this.clippingPlanes=[],this.localClippingEnabled=!1,this.outputEncoding=X,this.physicallyCorrectLights=!1,this.toneMapping=0,this.toneMappingExposure=1;const v=this;let _=!1,b=0,S=0,T=null,A=-1,L=null;const R=new wt,C=new wt;let P=null,D=e.width,I=e.height,N=1,z=null,B=null;const F=new wt(0,0,D,I),O=new wt(0,0,D,I);let U=!1;const H=[],G=new ni;let k=!1,V=!1,W=null;const j=new se,q=new Lt,J={background:null,fog:null,environment:null,overrideMaterial:null,isScene:!0};function Y(){return null===T?N:1}let Z,Q,K,$,tt,et,nt,it,rt,st,at,ot,lt,ct,ht,ut,dt,pt,mt,ft,gt,yt,xt,_t=n;function bt(t,n){for(let i=0;i{function n(){i.forEach((function(t){tt.get(t).currentProgram.isReady()&&i.delete(t)})),0!==i.size?setTimeout(n,10):e(t)}null!==Z.get("KHR_parallel_shader_compile")?n():setTimeout(n,10)}))};let Pt=null;function Dt(){Nt.stop()}function It(){Nt.start()}const Nt=new ii;function zt(t,e,n,i){if(!1===t.visible)return;if(t.layers.test(e.layers))if(t.isGroup)n=t.renderOrder;else if(t.isLOD)!0===t.autoUpdate&&t.update(e);else if(t.isLight)m.pushLight(t),t.castShadow&&m.pushShadow(t);else if(t.isSprite){if(!t.frustumCulled||G.intersectsSprite(t)){i&&q.setFromMatrixPosition(t.matrixWorld).applyMatrix4(j);const e=at.update(t),r=t.material;r.visible&&d.push(t,e,r,n,q.z,null)}}else if((t.isMesh||t.isLine||t.isPoints)&&(t.isSkinnedMesh&&t.skeleton.frame!==$.render.frame&&(t.skeleton.update(),t.skeleton.frame=$.render.frame),!t.frustumCulled||G.intersectsObject(t))){i&&q.setFromMatrixPosition(t.matrixWorld).applyMatrix4(j);const e=at.update(t),r=t.material;if(Array.isArray(r)){const i=e.groups;for(let s=0,a=i.length;s0&&function(t,e,n){if(null===W){const t=!0===a&&!0===Q.isWebGL2;W=new(t?Et:St)(1024,1024,{generateMipmaps:!0,type:null!==yt.convert(w)?w:x,minFilter:y,magFilter:p,wrapS:u,wrapT:u,useRenderToTexture:Z.has("WEBGL_multisampled_render_to_texture")})}const i=v.getRenderTarget();v.setRenderTarget(W),v.clear();const r=v.toneMapping;v.toneMapping=0,Ft(t,e,n),v.toneMapping=r,et.updateMultisampleRenderTarget(W),et.updateRenderTargetMipmap(W),v.setRenderTarget(i)}(r,e,n),i&&K.viewport(R.copy(i)),r.length>0&&Ft(r,e,n),s.length>0&&Ft(s,e,n),o.length>0&&Ft(o,e,n)}function Ft(t,e,n){const i=!0===e.isScene?e.overrideMaterial:null;for(let r=0,s=t.length;r0?g[g.length-1]:null,f.pop(),d=f.length>0?f[f.length-1]:null},this.getActiveCubeFace=function(){return b},this.getActiveMipmapLevel=function(){return S},this.getRenderTarget=function(){return T},this.setRenderTargetTextures=function(t,e,n){tt.get(t.texture).__webglTexture=e,tt.get(t.depthTexture).__webglTexture=n;const i=tt.get(t);i.__hasExternalTextures=!0,i.__hasExternalTextures&&(i.__autoAllocateDepthBuffer=void 0===n,i.__autoAllocateDepthBuffer||t.useRenderToTexture&&(console.warn("render-to-texture extension was disabled because an external texture was provided"),t.useRenderToTexture=!1,t.useRenderbuffer=!0))},this.setRenderTargetFramebuffer=function(t,e){const n=tt.get(t);n.__webglFramebuffer=e,n.__useDefaultFramebuffer=void 0===e},this.setRenderTarget=function(t,e=0,n=0){T=t,b=e,S=n;let i=!0;if(t){const e=tt.get(t);void 0!==e.__useDefaultFramebuffer?(K.bindFramebuffer(36160,null),i=!1):void 0===e.__webglFramebuffer?et.setupRenderTarget(t):e.__hasExternalTextures&&et.rebindTextures(t,tt.get(t.texture).__webglTexture,tt.get(t.depthTexture).__webglTexture)}let r=null,s=!1,a=!1;if(t){const n=t.texture;(n.isDataTexture3D||n.isDataTexture2DArray)&&(a=!0);const i=tt.get(t).__webglFramebuffer;t.isWebGLCubeRenderTarget?(r=i[e],s=!0):r=t.useRenderbuffer?tt.get(t).__webglMultisampledFramebuffer:i,R.copy(t.viewport),C.copy(t.scissor),P=t.scissorTest}else R.copy(F).multiplyScalar(N).floor(),C.copy(O).multiplyScalar(N).floor(),P=U;if(K.bindFramebuffer(36160,r)&&Q.drawBuffers&&i){let e=!1;if(t)if(t.isWebGLMultipleRenderTargets){const n=t.texture;if(H.length!==n.length||36064!==H[0]){for(let t=0,e=n.length;t=0&&e<=t.width-i&&n>=0&&n<=t.height-r&&_t.readPixels(e,n,i,r,yt.convert(o),yt.convert(l),s):console.error("THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.")}finally{const t=null!==T?tt.get(T).__webglFramebuffer:null;K.bindFramebuffer(36160,t)}}},this.copyFramebufferToTexture=function(t,e,n=0){if(!0!==e.isFramebufferTexture)return void console.error("THREE.WebGLRenderer: copyFramebufferToTexture() can only be used with FramebufferTexture.");const i=Math.pow(2,-n),r=Math.floor(e.image.width*i),s=Math.floor(e.image.height*i);et.setTexture2D(e,0),_t.copyTexSubImage2D(3553,n,0,0,t.x,t.y,r,s),K.unbindTexture()},this.copyTextureToTexture=function(t,e,n,i=0){const r=e.image.width,s=e.image.height,a=yt.convert(n.format),o=yt.convert(n.type);et.setTexture2D(n,0),_t.pixelStorei(37440,n.flipY),_t.pixelStorei(37441,n.premultiplyAlpha),_t.pixelStorei(3317,n.unpackAlignment),e.isDataTexture?_t.texSubImage2D(3553,i,t.x,t.y,r,s,a,o,e.image.data):e.isCompressedTexture?_t.compressedTexSubImage2D(3553,i,t.x,t.y,e.mipmaps[0].width,e.mipmaps[0].height,a,e.mipmaps[0].data):_t.texSubImage2D(3553,i,t.x,t.y,a,o,e.image),0===i&&n.generateMipmaps&&_t.generateMipmap(3553),K.unbindTexture()},this.copyTextureToTexture3D=function(t,e,n,i,r=0){if(v.isWebGL1Renderer)return void console.warn("THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.");const s=t.max.x-t.min.x+1,a=t.max.y-t.min.y+1,o=t.max.z-t.min.z+1,l=yt.convert(i.format),c=yt.convert(i.type);let h;if(i.isDataTexture3D)et.setTexture3D(i,0),h=32879;else{if(!i.isDataTexture2DArray)return void console.warn("THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.");et.setTexture2DArray(i,0),h=35866}_t.pixelStorei(37440,i.flipY),_t.pixelStorei(37441,i.premultiplyAlpha),_t.pixelStorei(3317,i.unpackAlignment);const u=_t.getParameter(3314),d=_t.getParameter(32878),p=_t.getParameter(3316),m=_t.getParameter(3315),f=_t.getParameter(32877),g=n.isCompressedTexture?n.mipmaps[0]:n.image;_t.pixelStorei(3314,g.width),_t.pixelStorei(32878,g.height),_t.pixelStorei(3316,t.min.x),_t.pixelStorei(3315,t.min.y),_t.pixelStorei(32877,t.min.z),n.isDataTexture||n.isDataTexture3D?_t.texSubImage3D(h,r,e.x,e.y,e.z,s,a,o,l,c,g.data):n.isCompressedTexture?(console.warn("THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture."),_t.compressedTexSubImage3D(h,r,e.x,e.y,e.z,s,a,o,l,g.data)):_t.texSubImage3D(h,r,e.x,e.y,e.z,s,a,o,l,c,g),_t.pixelStorei(3314,u),_t.pixelStorei(32878,d),_t.pixelStorei(3316,p),_t.pixelStorei(3315,m),_t.pixelStorei(32877,f),0===r&&i.generateMipmaps&&_t.generateMipmap(h),K.unbindTexture()},this.initTexture=function(t){et.setTexture2D(t,0),K.unbindTexture()},this.resetState=function(){b=0,S=0,T=null,K.reset(),xt.reset()},this.getWebGLAttributes=function(){return rt},"undefined"!=typeof __THREE_DEVTOOLS__&&__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent("observe",{detail:this}))}Ys.prototype.isWebGLRenderer=!0;class Zs extends Ys{}Zs.prototype.isWebGL1Renderer=!0;class Qs{constructor(t,e=25e-5){this.name="",this.color=new Ze(t),this.density=e}clone(){return new Qs(this.color,this.density)}toJSON(){return{type:"FogExp2",color:this.color.getHex(),density:this.density}}}Qs.prototype.isFogExp2=!0;class Ks{constructor(t,e=1,n=1e3){this.name="",this.color=new Ze(t),this.near=e,this.far=n}clone(){return new Ks(this.color,this.near,this.far)}toJSON(){return{type:"Fog",color:this.color.getHex(),near:this.near,far:this.far}}}Ks.prototype.isFog=!0;class $s extends Ce{constructor(){super(),this.type="Scene",this.background=null,this.environment=null,this.fog=null,this.overrideMaterial=null,this.autoUpdate=!0,"undefined"!=typeof __THREE_DEVTOOLS__&&__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent("observe",{detail:this}))}copy(t,e){return super.copy(t,e),null!==t.background&&(this.background=t.background.clone()),null!==t.environment&&(this.environment=t.environment.clone()),null!==t.fog&&(this.fog=t.fog.clone()),null!==t.overrideMaterial&&(this.overrideMaterial=t.overrideMaterial.clone()),this.autoUpdate=t.autoUpdate,this.matrixAutoUpdate=t.matrixAutoUpdate,this}toJSON(t){const e=super.toJSON(t);return null!==this.fog&&(e.object.fog=this.fog.toJSON()),e}}$s.prototype.isScene=!0;class ta{constructor(t,e){this.array=t,this.stride=e,this.count=void 0!==t?t.length/e:0,this.usage=Z,this.updateRange={offset:0,count:-1},this.version=0,this.uuid=rt()}onUploadCallback(){}set needsUpdate(t){!0===t&&this.version++}setUsage(t){return this.usage=t,this}copy(t){return this.array=new t.array.constructor(t.array),this.count=t.count,this.stride=t.stride,this.usage=t.usage,this}copyAt(t,e,n){t*=this.stride,n*=e.stride;for(let i=0,r=this.stride;it.far||e.push({distance:o,point:sa.clone(),uv:Ge.getUV(sa,ua,da,pa,ma,fa,ga,new dt),face:null,object:this})}copy(t){return super.copy(t),void 0!==t.center&&this.center.copy(t.center),this.material=t.material,this}}function ya(t,e,n,i,r,s){la.subVectors(t,n).addScalar(.5).multiply(i),void 0!==r?(ca.x=s*la.x-r*la.y,ca.y=r*la.x+s*la.y):ca.copy(la),t.copy(e),t.x+=ca.x,t.y+=ca.y,t.applyMatrix4(ha)}va.prototype.isSprite=!0;const xa=new Lt,_a=new Lt;class ba extends Ce{constructor(){super(),this._currentLevel=0,this.type="LOD",Object.defineProperties(this,{levels:{enumerable:!0,value:[]},isLOD:{value:!0}}),this.autoUpdate=!0}copy(t){super.copy(t,!1);const e=t.levels;for(let t=0,n=e.length;t0){let n,i;for(n=1,i=e.length;n0){xa.setFromMatrixPosition(this.matrixWorld);const n=t.ray.origin.distanceTo(xa);this.getObjectForDistance(n).raycast(t,e)}}update(t){const e=this.levels;if(e.length>1){xa.setFromMatrixPosition(t.matrixWorld),_a.setFromMatrixPosition(this.matrixWorld);const n=xa.distanceTo(_a)/t.zoom;let i,r;for(e[0].object.visible=!0,i=1,r=e.length;i=e[i].distance;i++)e[i-1].object.visible=!1,e[i].object.visible=!0;for(this._currentLevel=i-1;io)continue;u.applyMatrix4(this.matrixWorld);const d=t.ray.origin.distanceTo(u);dt.far||e.push({distance:d,point:h.clone().applyMatrix4(this.matrixWorld),index:n,face:null,faceIndex:null,object:this})}}else{for(let n=Math.max(0,s.start),i=Math.min(r.count,s.start+s.count)-1;no)continue;u.applyMatrix4(this.matrixWorld);const i=t.ray.origin.distanceTo(u);it.far||e.push({distance:i,point:h.clone().applyMatrix4(this.matrixWorld),index:n,face:null,faceIndex:null,object:this})}}}else n.isGeometry&&console.error("THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.")}updateMorphTargets(){const t=this.geometry;if(t.isBufferGeometry){const e=t.morphAttributes,n=Object.keys(e);if(n.length>0){const t=e[n[0]];if(void 0!==t){this.morphTargetInfluences=[],this.morphTargetDictionary={};for(let e=0,n=t.length;e0&&console.error("THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.")}}}ja.prototype.isLine=!0;const qa=new Lt,Xa=new Lt;class Ja extends ja{constructor(t,e){super(t,e),this.type="LineSegments"}computeLineDistances(){const t=this.geometry;if(t.isBufferGeometry)if(null===t.index){const e=t.attributes.position,n=[];for(let t=0,i=e.count;t0){const t=e[n[0]];if(void 0!==t){this.morphTargetInfluences=[],this.morphTargetDictionary={};for(let e=0,n=t.length;e0&&console.error("THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.")}}}function no(t,e,n,i,r,s,a){const o=Ka.distanceSqToPoint(t);if(or.far)return;s.push({distance:l,distanceToRay:Math.sqrt(o),point:n,index:e,face:null,object:a})}}eo.prototype.isPoints=!0;class io extends bt{constructor(t,e,n,i,r,s,a,o,l){super(t,e,n,i,r,s,a,o,l),this.format=void 0!==a?a:T,this.minFilter=void 0!==s?s:g,this.magFilter=void 0!==r?r:g,this.generateMipmaps=!1;const c=this;"requestVideoFrameCallback"in t&&t.requestVideoFrameCallback((function e(){c.needsUpdate=!0,t.requestVideoFrameCallback(e)}))}clone(){return new this.constructor(this.image).copy(this)}update(){const t=this.image;!1==="requestVideoFrameCallback"in t&&t.readyState>=t.HAVE_CURRENT_DATA&&(this.needsUpdate=!0)}}io.prototype.isVideoTexture=!0;class ro extends bt{constructor(t,e,n){super({width:t,height:e}),this.format=n,this.magFilter=p,this.minFilter=p,this.generateMipmaps=!1,this.needsUpdate=!0}}ro.prototype.isFramebufferTexture=!0;class so extends bt{constructor(t,e,n,i,r,s,a,o,l,c,h,u){super(null,s,a,o,l,c,i,r,h,u),this.image={width:e,height:n},this.mipmaps=t,this.flipY=!1,this.generateMipmaps=!1}}so.prototype.isCompressedTexture=!0;class ao extends bt{constructor(t,e,n,i,r,s,a,o,l){super(t,e,n,i,r,s,a,o,l),this.needsUpdate=!0}}ao.prototype.isCanvasTexture=!0;class oo extends xn{constructor(t=1,e=8,n=0,i=2*Math.PI){super(),this.type="CircleGeometry",this.parameters={radius:t,segments:e,thetaStart:n,thetaLength:i},e=Math.max(3,e);const r=[],s=[],a=[],o=[],l=new Lt,c=new dt;s.push(0,0,0),a.push(0,0,1),o.push(.5,.5);for(let r=0,h=3;r<=e;r++,h+=3){const u=n+r/e*i;l.x=t*Math.cos(u),l.y=t*Math.sin(u),s.push(l.x,l.y,l.z),a.push(0,0,1),c.x=(s[h]/t+1)/2,c.y=(s[h+1]/t+1)/2,o.push(c.x,c.y)}for(let t=1;t<=e;t++)r.push(t,t+1,0);this.setIndex(r),this.setAttribute("position",new hn(s,3)),this.setAttribute("normal",new hn(a,3)),this.setAttribute("uv",new hn(o,2))}static fromJSON(t){return new oo(t.radius,t.segments,t.thetaStart,t.thetaLength)}}class lo extends xn{constructor(t=1,e=1,n=1,i=8,r=1,s=!1,a=0,o=2*Math.PI){super(),this.type="CylinderGeometry",this.parameters={radiusTop:t,radiusBottom:e,height:n,radialSegments:i,heightSegments:r,openEnded:s,thetaStart:a,thetaLength:o};const l=this;i=Math.floor(i),r=Math.floor(r);const c=[],h=[],u=[],d=[];let p=0;const m=[],f=n/2;let g=0;function v(n){const r=p,s=new dt,m=new Lt;let v=0;const y=!0===n?t:e,x=!0===n?1:-1;for(let t=1;t<=i;t++)h.push(0,f*x,0),u.push(0,x,0),d.push(.5,.5),p++;const _=p;for(let t=0;t<=i;t++){const e=t/i*o+a,n=Math.cos(e),r=Math.sin(e);m.x=y*r,m.y=f*x,m.z=y*n,h.push(m.x,m.y,m.z),u.push(0,x,0),s.x=.5*n+.5,s.y=.5*r*x+.5,d.push(s.x,s.y),p++}for(let t=0;t0&&v(!0),e>0&&v(!1)),this.setIndex(c),this.setAttribute("position",new hn(h,3)),this.setAttribute("normal",new hn(u,3)),this.setAttribute("uv",new hn(d,2))}static fromJSON(t){return new lo(t.radiusTop,t.radiusBottom,t.height,t.radialSegments,t.heightSegments,t.openEnded,t.thetaStart,t.thetaLength)}}class co extends lo{constructor(t=1,e=1,n=8,i=1,r=!1,s=0,a=2*Math.PI){super(0,t,e,n,i,r,s,a),this.type="ConeGeometry",this.parameters={radius:t,height:e,radialSegments:n,heightSegments:i,openEnded:r,thetaStart:s,thetaLength:a}}static fromJSON(t){return new co(t.radius,t.height,t.radialSegments,t.heightSegments,t.openEnded,t.thetaStart,t.thetaLength)}}class ho extends xn{constructor(t=[],e=[],n=1,i=0){super(),this.type="PolyhedronGeometry",this.parameters={vertices:t,indices:e,radius:n,detail:i};const r=[],s=[];function a(t,e,n,i){const r=i+1,s=[];for(let i=0;i<=r;i++){s[i]=[];const a=t.clone().lerp(n,i/r),o=e.clone().lerp(n,i/r),l=r-i;for(let t=0;t<=l;t++)s[i][t]=0===t&&i===r?a:a.clone().lerp(o,t/l)}for(let t=0;t.9&&a<.1&&(e<.2&&(s[t+0]+=1),n<.2&&(s[t+2]+=1),i<.2&&(s[t+4]+=1))}}()}(),this.setAttribute("position",new hn(r,3)),this.setAttribute("normal",new hn(r.slice(),3)),this.setAttribute("uv",new hn(s,2)),0===i?this.computeVertexNormals():this.normalizeNormals()}static fromJSON(t){return new ho(t.vertices,t.indices,t.radius,t.details)}}class uo extends ho{constructor(t=1,e=0){const n=(1+Math.sqrt(5))/2,i=1/n;super([-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,0,-i,-n,0,-i,n,0,i,-n,0,i,n,-i,-n,0,-i,n,0,i,-n,0,i,n,0,-n,0,-i,n,0,-i,-n,0,i,n,0,i],[3,11,7,3,7,15,3,15,13,7,19,17,7,17,6,7,6,15,17,4,8,17,8,10,17,10,6,8,0,16,8,16,2,8,2,10,0,12,1,0,1,18,0,18,16,6,10,2,6,2,13,6,13,15,2,16,18,2,18,3,2,3,13,18,1,9,18,9,11,18,11,3,4,14,12,4,12,0,4,0,8,11,9,5,11,5,19,11,19,7,19,5,14,19,14,4,19,4,17,1,12,14,1,14,5,1,5,9],t,e),this.type="DodecahedronGeometry",this.parameters={radius:t,detail:e}}static fromJSON(t){return new uo(t.radius,t.detail)}}const po=new Lt,mo=new Lt,fo=new Lt,go=new Ge;class vo extends xn{constructor(t=null,e=1){if(super(),this.type="EdgesGeometry",this.parameters={geometry:t,thresholdAngle:e},null!==t){const n=4,i=Math.pow(10,n),r=Math.cos(nt*e),s=t.getIndex(),a=t.getAttribute("position"),o=s?s.count:a.count,l=[0,0,0],c=["a","b","c"],h=new Array(3),u={},d=[];for(let t=0;t0)){l=i;break}l=i-1}if(i=l,n[i]===s)return i/(r-1);const c=n[i];return(i+(s-c)/(n[i+1]-c))/(r-1)}getTangent(t,e){const n=1e-4;let i=t-n,r=t+n;i<0&&(i=0),r>1&&(r=1);const s=this.getPoint(i),a=this.getPoint(r),o=e||(s.isVector2?new dt:new Lt);return o.copy(a).sub(s).normalize(),o}getTangentAt(t,e){const n=this.getUtoTmapping(t);return this.getTangent(n,e)}computeFrenetFrames(t,e){const n=new Lt,i=[],r=[],s=[],a=new Lt,o=new se;for(let e=0;e<=t;e++){const n=e/t;i[e]=this.getTangentAt(n,new Lt)}r[0]=new Lt,s[0]=new Lt;let l=Number.MAX_VALUE;const c=Math.abs(i[0].x),h=Math.abs(i[0].y),u=Math.abs(i[0].z);c<=l&&(l=c,n.set(1,0,0)),h<=l&&(l=h,n.set(0,1,0)),u<=l&&n.set(0,0,1),a.crossVectors(i[0],n).normalize(),r[0].crossVectors(i[0],a),s[0].crossVectors(i[0],r[0]);for(let e=1;e<=t;e++){if(r[e]=r[e-1].clone(),s[e]=s[e-1].clone(),a.crossVectors(i[e-1],i[e]),a.length()>Number.EPSILON){a.normalize();const t=Math.acos(st(i[e-1].dot(i[e]),-1,1));r[e].applyMatrix4(o.makeRotationAxis(a,t))}s[e].crossVectors(i[e],r[e])}if(!0===e){let e=Math.acos(st(r[0].dot(r[t]),-1,1));e/=t,i[0].dot(a.crossVectors(r[0],r[t]))>0&&(e=-e);for(let n=1;n<=t;n++)r[n].applyMatrix4(o.makeRotationAxis(i[n],e*n)),s[n].crossVectors(i[n],r[n])}return{tangents:i,normals:r,binormals:s}}clone(){return(new this.constructor).copy(this)}copy(t){return this.arcLengthDivisions=t.arcLengthDivisions,this}toJSON(){const t={metadata:{version:4.5,type:"Curve",generator:"Curve.toJSON"}};return t.arcLengthDivisions=this.arcLengthDivisions,t.type=this.type,t}fromJSON(t){return this.arcLengthDivisions=t.arcLengthDivisions,this}}class xo extends yo{constructor(t=0,e=0,n=1,i=1,r=0,s=2*Math.PI,a=!1,o=0){super(),this.type="EllipseCurve",this.aX=t,this.aY=e,this.xRadius=n,this.yRadius=i,this.aStartAngle=r,this.aEndAngle=s,this.aClockwise=a,this.aRotation=o}getPoint(t,e){const n=e||new dt,i=2*Math.PI;let r=this.aEndAngle-this.aStartAngle;const s=Math.abs(r)i;)r-=i;r0?0:(Math.floor(Math.abs(l)/r)+1)*r:0===c&&l===r-1&&(l=r-2,c=1),this.closed||l>0?a=i[(l-1)%r]:(Mo.subVectors(i[0],i[1]).add(i[0]),a=Mo);const h=i[l%r],u=i[(l+1)%r];if(this.closed||l+2i.length-2?i.length-1:s+1],h=i[s>i.length-3?i.length-1:s+2];return n.set(Ao(a,o.x,l.x,c.x,h.x),Ao(a,o.y,l.y,c.y,h.y)),n}copy(t){super.copy(t),this.points=[];for(let e=0,n=t.points.length;e=n){const t=i[r]-n,s=this.curves[r],a=s.getLength(),o=0===a?0:1-t/a;return s.getPointAt(o,e)}r++}return null}getLength(){const t=this.getCurveLengths();return t[t.length-1]}updateArcLengths(){this.needsUpdate=!0,this.cacheLengths=null,this.getCurveLengths()}getCurveLengths(){if(this.cacheLengths&&this.cacheLengths.length===this.curves.length)return this.cacheLengths;const t=[];let e=0;for(let n=0,i=this.curves.length;n1&&!e[e.length-1].equals(e[0])&&e.push(e[0]),e}copy(t){super.copy(t),this.curves=[];for(let e=0,n=t.curves.length;e0){const t=l.getPoint(0);t.equals(this.currentPoint)||this.lineTo(t.x,t.y)}this.curves.push(l);const c=l.getPoint(1);return this.currentPoint.copy(c),this}copy(t){return super.copy(t),this.currentPoint.copy(t.currentPoint),this}toJSON(){const t=super.toJSON();return t.currentPoint=this.currentPoint.toArray(),t}fromJSON(t){return super.fromJSON(t),this.currentPoint.fromArray(t.currentPoint),this}}class Ho extends Uo{constructor(t){super(t),this.uuid=rt(),this.type="Shape",this.holes=[]}getPointsHoles(t){const e=[];for(let n=0,i=this.holes.length;n80*n){o=c=t[0],l=h=t[1];for(let e=n;ec&&(c=u),d>h&&(h=d);p=Math.max(c-o,h-l),p=0!==p?1/p:0}return Wo(s,a,n,o,l,p),a};function ko(t,e,n,i,r){let s,a;if(r===function(t,e,n,i){let r=0;for(let s=e,a=n-i;s0)for(s=e;s=e;s-=i)a=cl(s,t[s],t[s+1],a);return a&&il(a,a.next)&&(hl(a),a=a.next),a}function Vo(t,e){if(!t)return t;e||(e=t);let n,i=t;do{if(n=!1,i.steiner||!il(i,i.next)&&0!==nl(i.prev,i,i.next))i=i.next;else{if(hl(i),i=e=i.prev,i===i.next)break;n=!0}}while(n||i!==e);return e}function Wo(t,e,n,i,r,s,a){if(!t)return;!a&&s&&function(t,e,n,i){let r=t;do{null===r.z&&(r.z=Ko(r.x,r.y,e,n,i)),r.prevZ=r.prev,r.nextZ=r.next,r=r.next}while(r!==t);r.prevZ.nextZ=null,r.prevZ=null,function(t){let e,n,i,r,s,a,o,l,c=1;do{for(n=t,t=null,s=null,a=0;n;){for(a++,i=n,o=0,e=0;e0||l>0&&i;)0!==o&&(0===l||!i||n.z<=i.z)?(r=n,n=n.nextZ,o--):(r=i,i=i.nextZ,l--),s?s.nextZ=r:t=r,r.prevZ=s,s=r;n=i}s.nextZ=null,c*=2}while(a>1)}(r)}(t,i,r,s);let o,l,c=t;for(;t.prev!==t.next;)if(o=t.prev,l=t.next,s?qo(t,i,r,s):jo(t))e.push(o.i/n),e.push(t.i/n),e.push(l.i/n),hl(t),t=l.next,c=l.next;else if((t=l)===c){a?1===a?Wo(t=Xo(Vo(t),e,n),e,n,i,r,s,2):2===a&&Jo(t,e,n,i,r,s):Wo(Vo(t),e,n,i,r,s,1);break}}function jo(t){const e=t.prev,n=t,i=t.next;if(nl(e,n,i)>=0)return!1;let r=t.next.next;for(;r!==t.prev;){if(tl(e.x,e.y,n.x,n.y,i.x,i.y,r.x,r.y)&&nl(r.prev,r,r.next)>=0)return!1;r=r.next}return!0}function qo(t,e,n,i){const r=t.prev,s=t,a=t.next;if(nl(r,s,a)>=0)return!1;const o=r.xs.x?r.x>a.x?r.x:a.x:s.x>a.x?s.x:a.x,h=r.y>s.y?r.y>a.y?r.y:a.y:s.y>a.y?s.y:a.y,u=Ko(o,l,e,n,i),d=Ko(c,h,e,n,i);let p=t.prevZ,m=t.nextZ;for(;p&&p.z>=u&&m&&m.z<=d;){if(p!==t.prev&&p!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,p.x,p.y)&&nl(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,m!==t.prev&&m!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,m.x,m.y)&&nl(m.prev,m,m.next)>=0)return!1;m=m.nextZ}for(;p&&p.z>=u;){if(p!==t.prev&&p!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,p.x,p.y)&&nl(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;m&&m.z<=d;){if(m!==t.prev&&m!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,m.x,m.y)&&nl(m.prev,m,m.next)>=0)return!1;m=m.nextZ}return!0}function Xo(t,e,n){let i=t;do{const r=i.prev,s=i.next.next;!il(r,s)&&rl(r,i,i.next,s)&&ol(r,s)&&ol(s,r)&&(e.push(r.i/n),e.push(i.i/n),e.push(s.i/n),hl(i),hl(i.next),i=t=s),i=i.next}while(i!==t);return Vo(i)}function Jo(t,e,n,i,r,s){let a=t;do{let t=a.next.next;for(;t!==a.prev;){if(a.i!==t.i&&el(a,t)){let o=ll(a,t);return a=Vo(a,a.next),o=Vo(o,o.next),Wo(a,e,n,i,r,s),void Wo(o,e,n,i,r,s)}t=t.next}a=a.next}while(a!==t)}function Yo(t,e){return t.x-e.x}function Zo(t,e){if(e=function(t,e){let n=e;const i=t.x,r=t.y;let s,a=-1/0;do{if(r<=n.y&&r>=n.next.y&&n.next.y!==n.y){const t=n.x+(r-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(t<=i&&t>a){if(a=t,t===i){if(r===n.y)return n;if(r===n.next.y)return n.next}s=n.x=n.x&&n.x>=l&&i!==n.x&&tl(rs.x||n.x===s.x&&Qo(s,n)))&&(s=n,u=h)),n=n.next}while(n!==o);return s}(t,e),e){const n=ll(e,t);Vo(e,e.next),Vo(n,n.next)}}function Qo(t,e){return nl(t.prev,t,e.prev)<0&&nl(e.next,t,t.next)<0}function Ko(t,e,n,i,r){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-n)*r)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-i)*r)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function $o(t){let e=t,n=t;do{(e.x=0&&(t-a)*(i-o)-(n-a)*(e-o)>=0&&(n-a)*(s-o)-(r-a)*(i-o)>=0}function el(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){let n=t;do{if(n.i!==t.i&&n.next.i!==t.i&&n.i!==e.i&&n.next.i!==e.i&&rl(n,n.next,t,e))return!0;n=n.next}while(n!==t);return!1}(t,e)&&(ol(t,e)&&ol(e,t)&&function(t,e){let n=t,i=!1;const r=(t.x+e.x)/2,s=(t.y+e.y)/2;do{n.y>s!=n.next.y>s&&n.next.y!==n.y&&r<(n.next.x-n.x)*(s-n.y)/(n.next.y-n.y)+n.x&&(i=!i),n=n.next}while(n!==t);return i}(t,e)&&(nl(t.prev,t,e.prev)||nl(t,e.prev,e))||il(t,e)&&nl(t.prev,t,t.next)>0&&nl(e.prev,e,e.next)>0)}function nl(t,e,n){return(e.y-t.y)*(n.x-e.x)-(e.x-t.x)*(n.y-e.y)}function il(t,e){return t.x===e.x&&t.y===e.y}function rl(t,e,n,i){const r=al(nl(t,e,n)),s=al(nl(t,e,i)),a=al(nl(n,i,t)),o=al(nl(n,i,e));return r!==s&&a!==o||(!(0!==r||!sl(t,n,e))||(!(0!==s||!sl(t,i,e))||(!(0!==a||!sl(n,t,i))||!(0!==o||!sl(n,e,i)))))}function sl(t,e,n){return e.x<=Math.max(t.x,n.x)&&e.x>=Math.min(t.x,n.x)&&e.y<=Math.max(t.y,n.y)&&e.y>=Math.min(t.y,n.y)}function al(t){return t>0?1:t<0?-1:0}function ol(t,e){return nl(t.prev,t,t.next)<0?nl(t,e,t.next)>=0&&nl(t,t.prev,e)>=0:nl(t,e,t.prev)<0||nl(t,t.next,e)<0}function ll(t,e){const n=new ul(t.i,t.x,t.y),i=new ul(e.i,e.x,e.y),r=t.next,s=e.prev;return t.next=e,e.prev=t,n.next=r,r.prev=n,i.next=n,n.prev=i,s.next=i,i.prev=s,i}function cl(t,e,n,i){const r=new ul(t,e,n);return i?(r.next=i.next,r.prev=i,i.next.prev=r,i.next=r):(r.prev=r,r.next=r),r}function hl(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function ul(t,e,n){this.i=t,this.x=e,this.y=n,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}class dl{static area(t){const e=t.length;let n=0;for(let i=e-1,r=0;r2&&t[e-1].equals(t[0])&&t.pop()}function ml(t,e){for(let n=0;nNumber.EPSILON){const u=Math.sqrt(h),d=Math.sqrt(l*l+c*c),p=e.x-o/u,m=e.y+a/u,f=((n.x-c/d-p)*c-(n.y+l/d-m)*l)/(a*c-o*l);i=p+a*f-t.x,r=m+o*f-t.y;const g=i*i+r*r;if(g<=2)return new dt(i,r);s=Math.sqrt(g/2)}else{let t=!1;a>Number.EPSILON?l>Number.EPSILON&&(t=!0):a<-Number.EPSILON?l<-Number.EPSILON&&(t=!0):Math.sign(o)===Math.sign(c)&&(t=!0),t?(i=-o,r=a,s=Math.sqrt(h)):(i=a,r=o,s=Math.sqrt(h/2))}return new dt(i/s,r/s)}const P=[];for(let t=0,e=E.length,n=e-1,i=t+1;t=0;t--){const e=t/p,n=h*Math.cos(e*Math.PI/2),i=u*Math.sin(e*Math.PI/2)+d;for(let t=0,e=E.length;t=0;){const i=n;let r=n-1;r<0&&(r=t.length-1);for(let t=0,n=o+2*p;t0)&&d.push(e,r,l),(t!==n-1||o0!=t>0&&this.version++,this._sheen=t}get clearcoat(){return this._clearcoat}set clearcoat(t){this._clearcoat>0!=t>0&&this.version++,this._clearcoat=t}get transmission(){return this._transmission}set transmission(t){this._transmission>0!=t>0&&this.version++,this._transmission=t}copy(t){return super.copy(t),this.defines={STANDARD:"",PHYSICAL:""},this.clearcoat=t.clearcoat,this.clearcoatMap=t.clearcoatMap,this.clearcoatRoughness=t.clearcoatRoughness,this.clearcoatRoughnessMap=t.clearcoatRoughnessMap,this.clearcoatNormalMap=t.clearcoatNormalMap,this.clearcoatNormalScale.copy(t.clearcoatNormalScale),this.ior=t.ior,this.sheen=t.sheen,this.sheenColor.copy(t.sheenColor),this.sheenColorMap=t.sheenColorMap,this.sheenRoughness=t.sheenRoughness,this.sheenRoughnessMap=t.sheenRoughnessMap,this.transmission=t.transmission,this.transmissionMap=t.transmissionMap,this.thickness=t.thickness,this.thicknessMap=t.thicknessMap,this.attenuationDistance=t.attenuationDistance,this.attenuationColor.copy(t.attenuationColor),this.specularIntensity=t.specularIntensity,this.specularIntensityMap=t.specularIntensityMap,this.specularColor.copy(t.specularColor),this.specularColorMap=t.specularColorMap,this}}Dl.prototype.isMeshPhysicalMaterial=!0;class Il extends Ve{constructor(t){super(),this.type="MeshPhongMaterial",this.color=new Ze(16777215),this.specular=new Ze(1118481),this.shininess=30,this.map=null,this.lightMap=null,this.lightMapIntensity=1,this.aoMap=null,this.aoMapIntensity=1,this.emissive=new Ze(0),this.emissiveIntensity=1,this.emissiveMap=null,this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.specularMap=null,this.alphaMap=null,this.envMap=null,this.combine=0,this.reflectivity=1,this.refractionRatio=.98,this.wireframe=!1,this.wireframeLinewidth=1,this.wireframeLinecap="round",this.wireframeLinejoin="round",this.flatShading=!1,this.setValues(t)}copy(t){return super.copy(t),this.color.copy(t.color),this.specular.copy(t.specular),this.shininess=t.shininess,this.map=t.map,this.lightMap=t.lightMap,this.lightMapIntensity=t.lightMapIntensity,this.aoMap=t.aoMap,this.aoMapIntensity=t.aoMapIntensity,this.emissive.copy(t.emissive),this.emissiveMap=t.emissiveMap,this.emissiveIntensity=t.emissiveIntensity,this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.specularMap=t.specularMap,this.alphaMap=t.alphaMap,this.envMap=t.envMap,this.combine=t.combine,this.reflectivity=t.reflectivity,this.refractionRatio=t.refractionRatio,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.wireframeLinecap=t.wireframeLinecap,this.wireframeLinejoin=t.wireframeLinejoin,this.flatShading=t.flatShading,this}}Il.prototype.isMeshPhongMaterial=!0;class Nl extends Ve{constructor(t){super(),this.defines={TOON:""},this.type="MeshToonMaterial",this.color=new Ze(16777215),this.map=null,this.gradientMap=null,this.lightMap=null,this.lightMapIntensity=1,this.aoMap=null,this.aoMapIntensity=1,this.emissive=new Ze(0),this.emissiveIntensity=1,this.emissiveMap=null,this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.alphaMap=null,this.wireframe=!1,this.wireframeLinewidth=1,this.wireframeLinecap="round",this.wireframeLinejoin="round",this.setValues(t)}copy(t){return super.copy(t),this.color.copy(t.color),this.map=t.map,this.gradientMap=t.gradientMap,this.lightMap=t.lightMap,this.lightMapIntensity=t.lightMapIntensity,this.aoMap=t.aoMap,this.aoMapIntensity=t.aoMapIntensity,this.emissive.copy(t.emissive),this.emissiveMap=t.emissiveMap,this.emissiveIntensity=t.emissiveIntensity,this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.alphaMap=t.alphaMap,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.wireframeLinecap=t.wireframeLinecap,this.wireframeLinejoin=t.wireframeLinejoin,this}}Nl.prototype.isMeshToonMaterial=!0;class zl extends Ve{constructor(t){super(),this.type="MeshNormalMaterial",this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.wireframe=!1,this.wireframeLinewidth=1,this.fog=!1,this.flatShading=!1,this.setValues(t)}copy(t){return super.copy(t),this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.flatShading=t.flatShading,this}}zl.prototype.isMeshNormalMaterial=!0;class Bl extends Ve{constructor(t){super(),this.type="MeshLambertMaterial",this.color=new Ze(16777215),this.map=null,this.lightMap=null,this.lightMapIntensity=1,this.aoMap=null,this.aoMapIntensity=1,this.emissive=new Ze(0),this.emissiveIntensity=1,this.emissiveMap=null,this.specularMap=null,this.alphaMap=null,this.envMap=null,this.combine=0,this.reflectivity=1,this.refractionRatio=.98,this.wireframe=!1,this.wireframeLinewidth=1,this.wireframeLinecap="round",this.wireframeLinejoin="round",this.setValues(t)}copy(t){return super.copy(t),this.color.copy(t.color),this.map=t.map,this.lightMap=t.lightMap,this.lightMapIntensity=t.lightMapIntensity,this.aoMap=t.aoMap,this.aoMapIntensity=t.aoMapIntensity,this.emissive.copy(t.emissive),this.emissiveMap=t.emissiveMap,this.emissiveIntensity=t.emissiveIntensity,this.specularMap=t.specularMap,this.alphaMap=t.alphaMap,this.envMap=t.envMap,this.combine=t.combine,this.reflectivity=t.reflectivity,this.refractionRatio=t.refractionRatio,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.wireframeLinecap=t.wireframeLinecap,this.wireframeLinejoin=t.wireframeLinejoin,this}}Bl.prototype.isMeshLambertMaterial=!0;class Fl extends Ve{constructor(t){super(),this.defines={MATCAP:""},this.type="MeshMatcapMaterial",this.color=new Ze(16777215),this.matcap=null,this.map=null,this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.alphaMap=null,this.flatShading=!1,this.setValues(t)}copy(t){return super.copy(t),this.defines={MATCAP:""},this.color.copy(t.color),this.matcap=t.matcap,this.map=t.map,this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.alphaMap=t.alphaMap,this.flatShading=t.flatShading,this}}Fl.prototype.isMeshMatcapMaterial=!0;class Ol extends Ua{constructor(t){super(),this.type="LineDashedMaterial",this.scale=1,this.dashSize=3,this.gapSize=1,this.setValues(t)}copy(t){return super.copy(t),this.scale=t.scale,this.dashSize=t.dashSize,this.gapSize=t.gapSize,this}}Ol.prototype.isLineDashedMaterial=!0;var Ul=Object.freeze({__proto__:null,ShadowMaterial:Cl,SpriteMaterial:ia,RawShaderMaterial:gi,ShaderMaterial:Vn,PointsMaterial:Za,MeshPhysicalMaterial:Dl,MeshStandardMaterial:Pl,MeshPhongMaterial:Il,MeshToonMaterial:Nl,MeshNormalMaterial:zl,MeshLambertMaterial:Bl,MeshDepthMaterial:Bs,MeshDistanceMaterial:Fs,MeshBasicMaterial:Qe,MeshMatcapMaterial:Fl,LineDashedMaterial:Ol,LineBasicMaterial:Ua,Material:Ve});const Hl={arraySlice:function(t,e,n){return Hl.isTypedArray(t)?new t.constructor(t.subarray(e,void 0!==n?n:t.length)):t.slice(e,n)},convertArray:function(t,e,n){return!t||!n&&t.constructor===e?t:"number"==typeof e.BYTES_PER_ELEMENT?new e(t):Array.prototype.slice.call(t)},isTypedArray:function(t){return ArrayBuffer.isView(t)&&!(t instanceof DataView)},getKeyframeOrder:function(t){const e=t.length,n=new Array(e);for(let t=0;t!==e;++t)n[t]=t;return n.sort((function(e,n){return t[e]-t[n]})),n},sortedArray:function(t,e,n){const i=t.length,r=new t.constructor(i);for(let s=0,a=0;a!==i;++s){const i=n[s]*e;for(let n=0;n!==e;++n)r[a++]=t[i+n]}return r},flattenJSON:function(t,e,n,i){let r=1,s=t[0];for(;void 0!==s&&void 0===s[i];)s=t[r++];if(void 0===s)return;let a=s[i];if(void 0!==a)if(Array.isArray(a))do{a=s[i],void 0!==a&&(e.push(s.time),n.push.apply(n,a)),s=t[r++]}while(void 0!==s);else if(void 0!==a.toArray)do{a=s[i],void 0!==a&&(e.push(s.time),a.toArray(n,n.length)),s=t[r++]}while(void 0!==s);else do{a=s[i],void 0!==a&&(e.push(s.time),n.push(a)),s=t[r++]}while(void 0!==s)},subclip:function(t,e,n,i,r=30){const s=t.clone();s.name=e;const a=[];for(let t=0;t=i)){l.push(e.times[t]);for(let n=0;ns.tracks[t].times[0]&&(o=s.tracks[t].times[0]);for(let t=0;t=i.times[u]){const t=u*l+o,e=t+l-o;d=Hl.arraySlice(i.values,t,e)}else{const t=i.createInterpolant(),e=o,n=l-o;t.evaluate(s),d=Hl.arraySlice(t.resultBuffer,e,n)}if("quaternion"===r){(new At).fromArray(d).normalize().conjugate().toArray(d)}const p=a.times.length;for(let t=0;t=r)break t;{const a=e[1];t=r)break e}s=n,n=0}}for(;n>>1;te;)--s;if(++s,0!==r||s!==i){r>=s&&(s=Math.max(s,1),r=s-1);const t=this.getValueSize();this.times=Hl.arraySlice(n,r,s),this.values=Hl.arraySlice(this.values,r*t,s*t)}return this}validate(){let t=!0;const e=this.getValueSize();e-Math.floor(e)!=0&&(console.error("THREE.KeyframeTrack: Invalid value size in track.",this),t=!1);const n=this.times,i=this.values,r=n.length;0===r&&(console.error("THREE.KeyframeTrack: Track is empty.",this),t=!1);let s=null;for(let e=0;e!==r;e++){const i=n[e];if("number"==typeof i&&isNaN(i)){console.error("THREE.KeyframeTrack: Time is not a valid number.",this,e,i),t=!1;break}if(null!==s&&s>i){console.error("THREE.KeyframeTrack: Out of order keys.",this,e,i,s),t=!1;break}s=i}if(void 0!==i&&Hl.isTypedArray(i))for(let e=0,n=i.length;e!==n;++e){const n=i[e];if(isNaN(n)){console.error("THREE.KeyframeTrack: Value is not a valid number.",this,e,n),t=!1;break}}return t}optimize(){const t=Hl.arraySlice(this.times),e=Hl.arraySlice(this.values),n=this.getValueSize(),i=this.getInterpolation()===G,r=t.length-1;let s=1;for(let a=1;a0){t[s]=t[r];for(let t=r*n,i=s*n,a=0;a!==n;++a)e[i+a]=e[t+a];++s}return s!==t.length?(this.times=Hl.arraySlice(t,0,s),this.values=Hl.arraySlice(e,0,s*n)):(this.times=t,this.values=e),this}clone(){const t=Hl.arraySlice(this.times,0),e=Hl.arraySlice(this.values,0),n=new(0,this.constructor)(this.name,t,e);return n.createInterpolant=this.createInterpolant,n}}jl.prototype.TimeBufferType=Float32Array,jl.prototype.ValueBufferType=Float32Array,jl.prototype.DefaultInterpolation=H;class ql extends jl{}ql.prototype.ValueTypeName="bool",ql.prototype.ValueBufferType=Array,ql.prototype.DefaultInterpolation=U,ql.prototype.InterpolantFactoryMethodLinear=void 0,ql.prototype.InterpolantFactoryMethodSmooth=void 0;class Xl extends jl{}Xl.prototype.ValueTypeName="color";class Jl extends jl{}Jl.prototype.ValueTypeName="number";class Yl extends Gl{constructor(t,e,n,i){super(t,e,n,i)}interpolate_(t,e,n,i){const r=this.resultBuffer,s=this.sampleValues,a=this.valueSize,o=(n-e)/(i-e);let l=t*a;for(let t=l+a;l!==t;l+=4)At.slerpFlat(r,0,s,l-a,s,l,o);return r}}class Zl extends jl{InterpolantFactoryMethodLinear(t){return new Yl(this.times,this.values,this.getValueSize(),t)}}Zl.prototype.ValueTypeName="quaternion",Zl.prototype.DefaultInterpolation=H,Zl.prototype.InterpolantFactoryMethodSmooth=void 0;class Ql extends jl{}Ql.prototype.ValueTypeName="string",Ql.prototype.ValueBufferType=Array,Ql.prototype.DefaultInterpolation=U,Ql.prototype.InterpolantFactoryMethodLinear=void 0,Ql.prototype.InterpolantFactoryMethodSmooth=void 0;class Kl extends jl{}Kl.prototype.ValueTypeName="vector";class $l{constructor(t,e=-1,n,i=2500){this.name=t,this.tracks=n,this.duration=e,this.blendMode=i,this.uuid=rt(),this.duration<0&&this.resetDuration()}static parse(t){const e=[],n=t.tracks,i=1/(t.fps||1);for(let t=0,r=n.length;t!==r;++t)e.push(tc(n[t]).scale(i));const r=new this(t.name,t.duration,e,t.blendMode);return r.uuid=t.uuid,r}static toJSON(t){const e=[],n=t.tracks,i={name:t.name,duration:t.duration,tracks:e,uuid:t.uuid,blendMode:t.blendMode};for(let t=0,i=n.length;t!==i;++t)e.push(jl.toJSON(n[t]));return i}static CreateFromMorphTargetSequence(t,e,n,i){const r=e.length,s=[];for(let t=0;t1){const t=s[1];let e=i[t];e||(i[t]=e=[]),e.push(n)}}const s=[];for(const t in i)s.push(this.CreateFromMorphTargetSequence(t,i[t],e,n));return s}static parseAnimation(t,e){if(!t)return console.error("THREE.AnimationClip: No animation in JSONLoader data."),null;const n=function(t,e,n,i,r){if(0!==n.length){const s=[],a=[];Hl.flattenJSON(n,s,a,i),0!==s.length&&r.push(new t(e,s,a))}},i=[],r=t.name||"default",s=t.fps||30,a=t.blendMode;let o=t.length||-1;const l=t.hierarchy||[];for(let t=0;t{e&&e(r),this.manager.itemEnd(t)}),0),r;if(void 0!==sc[t])return void sc[t].push({onLoad:e,onProgress:n,onError:i});sc[t]=[],sc[t].push({onLoad:e,onProgress:n,onError:i});const s=new Request(t,{headers:new Headers(this.requestHeader),credentials:this.withCredentials?"include":"same-origin"});fetch(s).then((e=>{if(200===e.status||0===e.status){if(0===e.status&&console.warn("THREE.FileLoader: HTTP Status 0 received."),"undefined"==typeof ReadableStream||void 0===e.body.getReader)return e;const n=sc[t],i=e.body.getReader(),r=e.headers.get("Content-Length"),s=r?parseInt(r):0,a=0!==s;let o=0;const l=new ReadableStream({start(t){!function e(){i.read().then((({done:i,value:r})=>{if(i)t.close();else{o+=r.byteLength;const i=new ProgressEvent("progress",{lengthComputable:a,loaded:o,total:s});for(let t=0,e=n.length;t{switch(this.responseType){case"arraybuffer":return t.arrayBuffer();case"blob":return t.blob();case"document":return t.text().then((t=>(new DOMParser).parseFromString(t,this.mimeType)));case"json":return t.json();default:return t.text()}})).then((e=>{ec.add(t,e);const n=sc[t];delete sc[t];for(let t=0,i=n.length;t{const n=sc[t];if(void 0===n)throw this.manager.itemError(t),e;delete sc[t];for(let t=0,i=n.length;t{this.manager.itemEnd(t)})),this.manager.itemStart(t)}setResponseType(t){return this.responseType=t,this}setMimeType(t){return this.mimeType=t,this}}class oc extends rc{constructor(t){super(t)}load(t,e,n,i){void 0!==this.path&&(t=this.path+t),t=this.manager.resolveURL(t);const r=this,s=ec.get(t);if(void 0!==s)return r.manager.itemStart(t),setTimeout((function(){e&&e(s),r.manager.itemEnd(t)}),0),s;const a=vt("img");function o(){c(),ec.add(t,this),e&&e(this),r.manager.itemEnd(t)}function l(e){c(),i&&i(e),r.manager.itemError(t),r.manager.itemEnd(t)}function c(){a.removeEventListener("load",o,!1),a.removeEventListener("error",l,!1)}return a.addEventListener("load",o,!1),a.addEventListener("error",l,!1),"data:"!==t.substr(0,5)&&void 0!==this.crossOrigin&&(a.crossOrigin=this.crossOrigin),r.manager.itemStart(t),a.src=t,a}}class lc extends rc{constructor(t){super(t)}load(t,e,n,i){const r=new Jn,s=new oc(this.manager);s.setCrossOrigin(this.crossOrigin),s.setPath(this.path);let a=0;function o(n){s.load(t[n],(function(t){r.images[n]=t,a++,6===a&&(r.needsUpdate=!0,e&&e(r))}),void 0,i)}for(let e=0;e0:i.vertexColors=t.vertexColors),void 0!==t.uniforms)for(const e in t.uniforms){const r=t.uniforms[e];switch(i.uniforms[e]={},r.type){case"t":i.uniforms[e].value=n(r.value);break;case"c":i.uniforms[e].value=(new Ze).setHex(r.value);break;case"v2":i.uniforms[e].value=(new dt).fromArray(r.value);break;case"v3":i.uniforms[e].value=(new Lt).fromArray(r.value);break;case"v4":i.uniforms[e].value=(new wt).fromArray(r.value);break;case"m3":i.uniforms[e].value=(new pt).fromArray(r.value);break;case"m4":i.uniforms[e].value=(new se).fromArray(r.value);break;default:i.uniforms[e].value=r.value}}if(void 0!==t.defines&&(i.defines=t.defines),void 0!==t.vertexShader&&(i.vertexShader=t.vertexShader),void 0!==t.fragmentShader&&(i.fragmentShader=t.fragmentShader),void 0!==t.extensions)for(const e in t.extensions)i.extensions[e]=t.extensions[e];if(void 0!==t.shading&&(i.flatShading=1===t.shading),void 0!==t.size&&(i.size=t.size),void 0!==t.sizeAttenuation&&(i.sizeAttenuation=t.sizeAttenuation),void 0!==t.map&&(i.map=n(t.map)),void 0!==t.matcap&&(i.matcap=n(t.matcap)),void 0!==t.alphaMap&&(i.alphaMap=n(t.alphaMap)),void 0!==t.bumpMap&&(i.bumpMap=n(t.bumpMap)),void 0!==t.bumpScale&&(i.bumpScale=t.bumpScale),void 0!==t.normalMap&&(i.normalMap=n(t.normalMap)),void 0!==t.normalMapType&&(i.normalMapType=t.normalMapType),void 0!==t.normalScale){let e=t.normalScale;!1===Array.isArray(e)&&(e=[e,e]),i.normalScale=(new dt).fromArray(e)}return void 0!==t.displacementMap&&(i.displacementMap=n(t.displacementMap)),void 0!==t.displacementScale&&(i.displacementScale=t.displacementScale),void 0!==t.displacementBias&&(i.displacementBias=t.displacementBias),void 0!==t.roughnessMap&&(i.roughnessMap=n(t.roughnessMap)),void 0!==t.metalnessMap&&(i.metalnessMap=n(t.metalnessMap)),void 0!==t.emissiveMap&&(i.emissiveMap=n(t.emissiveMap)),void 0!==t.emissiveIntensity&&(i.emissiveIntensity=t.emissiveIntensity),void 0!==t.specularMap&&(i.specularMap=n(t.specularMap)),void 0!==t.specularIntensityMap&&(i.specularIntensityMap=n(t.specularIntensityMap)),void 0!==t.specularColorMap&&(i.specularColorMap=n(t.specularColorMap)),void 0!==t.envMap&&(i.envMap=n(t.envMap)),void 0!==t.envMapIntensity&&(i.envMapIntensity=t.envMapIntensity),void 0!==t.reflectivity&&(i.reflectivity=t.reflectivity),void 0!==t.refractionRatio&&(i.refractionRatio=t.refractionRatio),void 0!==t.lightMap&&(i.lightMap=n(t.lightMap)),void 0!==t.lightMapIntensity&&(i.lightMapIntensity=t.lightMapIntensity),void 0!==t.aoMap&&(i.aoMap=n(t.aoMap)),void 0!==t.aoMapIntensity&&(i.aoMapIntensity=t.aoMapIntensity),void 0!==t.gradientMap&&(i.gradientMap=n(t.gradientMap)),void 0!==t.clearcoatMap&&(i.clearcoatMap=n(t.clearcoatMap)),void 0!==t.clearcoatRoughnessMap&&(i.clearcoatRoughnessMap=n(t.clearcoatRoughnessMap)),void 0!==t.clearcoatNormalMap&&(i.clearcoatNormalMap=n(t.clearcoatNormalMap)),void 0!==t.clearcoatNormalScale&&(i.clearcoatNormalScale=(new dt).fromArray(t.clearcoatNormalScale)),void 0!==t.transmissionMap&&(i.transmissionMap=n(t.transmissionMap)),void 0!==t.thicknessMap&&(i.thicknessMap=n(t.thicknessMap)),void 0!==t.sheenColorMap&&(i.sheenColorMap=n(t.sheenColorMap)),void 0!==t.sheenRoughnessMap&&(i.sheenRoughnessMap=n(t.sheenRoughnessMap)),i}setTextures(t){return this.textures=t,this}}class Pc{static decodeText(t){if("undefined"!=typeof TextDecoder)return(new TextDecoder).decode(t);let e="";for(let n=0,i=t.length;n0){this.source.connect(this.filters[0]);for(let t=1,e=this.filters.length;t0){this.source.disconnect(this.filters[0]);for(let t=1,e=this.filters.length;t0&&this._mixBufferRegionAdditive(n,i,this._addIndex*e,1,e);for(let t=e,r=e+e;t!==r;++t)if(n[t]!==n[t+e]){a.setValue(n,i);break}}saveOriginalState(){const t=this.binding,e=this.buffer,n=this.valueSize,i=n*this._origIndex;t.getValue(e,i);for(let t=n,r=i;t!==r;++t)e[t]=e[i+t%n];this._setIdentity(),this.cumulativeWeight=0,this.cumulativeWeightAdditive=0}restoreOriginalState(){const t=3*this.valueSize;this.binding.setValue(this.buffer,t)}_setAdditiveIdentityNumeric(){const t=this._addIndex*this.valueSize,e=t+this.valueSize;for(let n=t;n=.5)for(let i=0;i!==r;++i)t[e+i]=t[n+i]}_slerp(t,e,n,i){At.slerpFlat(t,e,t,e,t,n,i)}_slerpAdditive(t,e,n,i,r){const s=this._workIndex*r;At.multiplyQuaternionsFlat(t,s,t,e,t,n),At.slerpFlat(t,e,t,e,t,s,i)}_lerp(t,e,n,i,r){const s=1-i;for(let a=0;a!==r;++a){const r=e+a;t[r]=t[r]*s+t[n+a]*i}}_lerpAdditive(t,e,n,i,r){for(let s=0;s!==r;++s){const r=e+s;t[r]=t[r]+t[n+s]*i}}}const sh="\\[\\]\\.:\\/",ah=new RegExp("[\\[\\]\\.:\\/]","g"),oh="[^\\[\\]\\.:\\/]",lh="[^"+sh.replace("\\.","")+"]",ch=/((?:WC+[\/:])*)/.source.replace("WC",oh),hh=/(WCOD+)?/.source.replace("WCOD",lh),uh=/(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace("WC",oh),dh=/\.(WC+)(?:\[(.+)\])?/.source.replace("WC",oh),ph=new RegExp("^"+ch+hh+uh+dh+"$"),mh=["material","materials","bones"];class fh{constructor(t,e,n){this.path=e,this.parsedPath=n||fh.parseTrackName(e),this.node=fh.findNode(t,this.parsedPath.nodeName)||t,this.rootNode=t,this.getValue=this._getValue_unbound,this.setValue=this._setValue_unbound}static create(t,e,n){return t&&t.isAnimationObjectGroup?new fh.Composite(t,e,n):new fh(t,e,n)}static sanitizeNodeName(t){return t.replace(/\s/g,"_").replace(ah,"")}static parseTrackName(t){const e=ph.exec(t);if(!e)throw new Error("PropertyBinding: Cannot parse trackName: "+t);const n={nodeName:e[2],objectName:e[3],objectIndex:e[4],propertyName:e[5],propertyIndex:e[6]},i=n.nodeName&&n.nodeName.lastIndexOf(".");if(void 0!==i&&-1!==i){const t=n.nodeName.substring(i+1);-1!==mh.indexOf(t)&&(n.nodeName=n.nodeName.substring(0,i),n.objectName=t)}if(null===n.propertyName||0===n.propertyName.length)throw new Error("PropertyBinding: can not parse propertyName from trackName: "+t);return n}static findNode(t,e){if(!e||""===e||"."===e||-1===e||e===t.name||e===t.uuid)return t;if(t.skeleton){const n=t.skeleton.getBoneByName(e);if(void 0!==n)return n}if(t.children){const n=function(t){for(let i=0;i=r){const s=r++,c=t[s];e[c.uuid]=l,t[l]=c,e[o]=s,t[s]=a;for(let t=0,e=i;t!==e;++t){const e=n[t],i=e[s],r=e[l];e[l]=i,e[s]=r}}}this.nCachedObjects_=r}uncache(){const t=this._objects,e=this._indicesByUUID,n=this._bindings,i=n.length;let r=this.nCachedObjects_,s=t.length;for(let a=0,o=arguments.length;a!==o;++a){const o=arguments[a].uuid,l=e[o];if(void 0!==l)if(delete e[o],l0&&(e[a.uuid]=l),t[l]=a,t.pop();for(let t=0,e=i;t!==e;++t){const e=n[t];e[l]=e[r],e.pop()}}}this.nCachedObjects_=r}subscribe_(t,e){const n=this._bindingsIndicesByPath;let i=n[t];const r=this._bindings;if(void 0!==i)return r[i];const s=this._paths,a=this._parsedPaths,o=this._objects,l=o.length,c=this.nCachedObjects_,h=new Array(l);i=r.length,n[t]=i,s.push(t),a.push(e),r.push(h);for(let n=c,i=o.length;n!==i;++n){const i=o[n];h[n]=new fh(i,t,e)}return h}unsubscribe_(t){const e=this._bindingsIndicesByPath,n=e[t];if(void 0!==n){const i=this._paths,r=this._parsedPaths,s=this._bindings,a=s.length-1,o=s[a];e[t[a]]=n,s[n]=o,s.pop(),r[n]=r[a],r.pop(),i[n]=i[a],i.pop()}}}gh.prototype.isAnimationObjectGroup=!0;class vh{constructor(t,e,n=null,i=e.blendMode){this._mixer=t,this._clip=e,this._localRoot=n,this.blendMode=i;const r=e.tracks,s=r.length,a=new Array(s),o={endingStart:k,endingEnd:k};for(let t=0;t!==s;++t){const e=r[t].createInterpolant(null);a[t]=e,e.settings=o}this._interpolantSettings=o,this._interpolants=a,this._propertyBindings=new Array(s),this._cacheIndex=null,this._byClipCacheIndex=null,this._timeScaleInterpolant=null,this._weightInterpolant=null,this.loop=2201,this._loopCount=-1,this._startTime=null,this.time=0,this.timeScale=1,this._effectiveTimeScale=1,this.weight=1,this._effectiveWeight=1,this.repetitions=1/0,this.paused=!1,this.enabled=!0,this.clampWhenFinished=!1,this.zeroSlopeAtStart=!0,this.zeroSlopeAtEnd=!0}play(){return this._mixer._activateAction(this),this}stop(){return this._mixer._deactivateAction(this),this.reset()}reset(){return this.paused=!1,this.enabled=!0,this.time=0,this._loopCount=-1,this._startTime=null,this.stopFading().stopWarping()}isRunning(){return this.enabled&&!this.paused&&0!==this.timeScale&&null===this._startTime&&this._mixer._isActiveAction(this)}isScheduled(){return this._mixer._isActiveAction(this)}startAt(t){return this._startTime=t,this}setLoop(t,e){return this.loop=t,this.repetitions=e,this}setEffectiveWeight(t){return this.weight=t,this._effectiveWeight=this.enabled?t:0,this.stopFading()}getEffectiveWeight(){return this._effectiveWeight}fadeIn(t){return this._scheduleFading(t,0,1)}fadeOut(t){return this._scheduleFading(t,1,0)}crossFadeFrom(t,e,n){if(t.fadeOut(e),this.fadeIn(e),n){const n=this._clip.duration,i=t._clip.duration,r=i/n,s=n/i;t.warp(1,r,e),this.warp(s,1,e)}return this}crossFadeTo(t,e,n){return t.crossFadeFrom(this,e,n)}stopFading(){const t=this._weightInterpolant;return null!==t&&(this._weightInterpolant=null,this._mixer._takeBackControlInterpolant(t)),this}setEffectiveTimeScale(t){return this.timeScale=t,this._effectiveTimeScale=this.paused?0:t,this.stopWarping()}getEffectiveTimeScale(){return this._effectiveTimeScale}setDuration(t){return this.timeScale=this._clip.duration/t,this.stopWarping()}syncWith(t){return this.time=t.time,this.timeScale=t.timeScale,this.stopWarping()}halt(t){return this.warp(this._effectiveTimeScale,0,t)}warp(t,e,n){const i=this._mixer,r=i.time,s=this.timeScale;let a=this._timeScaleInterpolant;null===a&&(a=i._lendControlInterpolant(),this._timeScaleInterpolant=a);const o=a.parameterPositions,l=a.sampleValues;return o[0]=r,o[1]=r+n,l[0]=t/s,l[1]=e/s,this}stopWarping(){const t=this._timeScaleInterpolant;return null!==t&&(this._timeScaleInterpolant=null,this._mixer._takeBackControlInterpolant(t)),this}getMixer(){return this._mixer}getClip(){return this._clip}getRoot(){return this._localRoot||this._mixer._root}_update(t,e,n,i){if(!this.enabled)return void this._updateWeight(t);const r=this._startTime;if(null!==r){const i=(t-r)*n;if(i<0||0===n)return;this._startTime=null,e=n*i}e*=this._updateTimeScale(t);const s=this._updateTime(e),a=this._updateWeight(t);if(a>0){const t=this._interpolants,e=this._propertyBindings;if(this.blendMode===q)for(let n=0,i=t.length;n!==i;++n)t[n].evaluate(s),e[n].accumulateAdditive(a);else for(let n=0,r=t.length;n!==r;++n)t[n].evaluate(s),e[n].accumulate(i,a)}}_updateWeight(t){let e=0;if(this.enabled){e=this.weight;const n=this._weightInterpolant;if(null!==n){const i=n.evaluate(t)[0];e*=i,t>n.parameterPositions[1]&&(this.stopFading(),0===i&&(this.enabled=!1))}}return this._effectiveWeight=e,e}_updateTimeScale(t){let e=0;if(!this.paused){e=this.timeScale;const n=this._timeScaleInterpolant;if(null!==n){e*=n.evaluate(t)[0],t>n.parameterPositions[1]&&(this.stopWarping(),0===e?this.paused=!0:this.timeScale=e)}}return this._effectiveTimeScale=e,e}_updateTime(t){const e=this._clip.duration,n=this.loop;let i=this.time+t,r=this._loopCount;const s=2202===n;if(0===t)return-1===r?i:s&&1==(1&r)?e-i:i;if(2200===n){-1===r&&(this._loopCount=0,this._setEndings(!0,!0,!1));t:{if(i>=e)i=e;else{if(!(i<0)){this.time=i;break t}i=0}this.clampWhenFinished?this.paused=!0:this.enabled=!1,this.time=i,this._mixer.dispatchEvent({type:"finished",action:this,direction:t<0?-1:1})}}else{if(-1===r&&(t>=0?(r=0,this._setEndings(!0,0===this.repetitions,s)):this._setEndings(0===this.repetitions,!0,s)),i>=e||i<0){const n=Math.floor(i/e);i-=e*n,r+=Math.abs(n);const a=this.repetitions-r;if(a<=0)this.clampWhenFinished?this.paused=!0:this.enabled=!1,i=t>0?e:0,this.time=i,this._mixer.dispatchEvent({type:"finished",action:this,direction:t>0?1:-1});else{if(1===a){const e=t<0;this._setEndings(e,!e,s)}else this._setEndings(!1,!1,s);this._loopCount=r,this.time=i,this._mixer.dispatchEvent({type:"loop",action:this,loopDelta:n})}}else this.time=i;if(s&&1==(1&r))return e-i}return i}_setEndings(t,e,n){const i=this._interpolantSettings;n?(i.endingStart=V,i.endingEnd=V):(i.endingStart=t?this.zeroSlopeAtStart?V:k:W,i.endingEnd=e?this.zeroSlopeAtEnd?V:k:W)}_scheduleFading(t,e,n){const i=this._mixer,r=i.time;let s=this._weightInterpolant;null===s&&(s=i._lendControlInterpolant(),this._weightInterpolant=s);const a=s.parameterPositions,o=s.sampleValues;return a[0]=r,o[0]=e,a[1]=r+t,o[1]=n,this}}class yh extends ${constructor(t){super(),this._root=t,this._initMemoryManager(),this._accuIndex=0,this.time=0,this.timeScale=1}_bindAction(t,e){const n=t._localRoot||this._root,i=t._clip.tracks,r=i.length,s=t._propertyBindings,a=t._interpolants,o=n.uuid,l=this._bindingsByRootAndName;let c=l[o];void 0===c&&(c={},l[o]=c);for(let t=0;t!==r;++t){const r=i[t],l=r.name;let h=c[l];if(void 0!==h)s[t]=h;else{if(h=s[t],void 0!==h){null===h._cacheIndex&&(++h.referenceCount,this._addInactiveBinding(h,o,l));continue}const i=e&&e._propertyBindings[t].binding.parsedPath;h=new rh(fh.create(n,l,i),r.ValueTypeName,r.getValueSize()),++h.referenceCount,this._addInactiveBinding(h,o,l),s[t]=h}a[t].resultBuffer=h.buffer}}_activateAction(t){if(!this._isActiveAction(t)){if(null===t._cacheIndex){const e=(t._localRoot||this._root).uuid,n=t._clip.uuid,i=this._actionsByClip[n];this._bindAction(t,i&&i.knownActions[0]),this._addInactiveAction(t,n,e)}const e=t._propertyBindings;for(let t=0,n=e.length;t!==n;++t){const n=e[t];0==n.useCount++&&(this._lendBinding(n),n.saveOriginalState())}this._lendAction(t)}}_deactivateAction(t){if(this._isActiveAction(t)){const e=t._propertyBindings;for(let t=0,n=e.length;t!==n;++t){const n=e[t];0==--n.useCount&&(n.restoreOriginalState(),this._takeBackBinding(n))}this._takeBackAction(t)}}_initMemoryManager(){this._actions=[],this._nActiveActions=0,this._actionsByClip={},this._bindings=[],this._nActiveBindings=0,this._bindingsByRootAndName={},this._controlInterpolants=[],this._nActiveControlInterpolants=0;const t=this;this.stats={actions:{get total(){return t._actions.length},get inUse(){return t._nActiveActions}},bindings:{get total(){return t._bindings.length},get inUse(){return t._nActiveBindings}},controlInterpolants:{get total(){return t._controlInterpolants.length},get inUse(){return t._nActiveControlInterpolants}}}}_isActiveAction(t){const e=t._cacheIndex;return null!==e&&e=0;--e)t[e].stop();return this}update(t){t*=this.timeScale;const e=this._actions,n=this._nActiveActions,i=this.time+=t,r=Math.sign(t),s=this._accuIndex^=1;for(let a=0;a!==n;++a){e[a]._update(i,t,r,s)}const a=this._bindings,o=this._nActiveBindings;for(let t=0;t!==o;++t)a[t].apply(s);return this}setTime(t){this.time=0;for(let t=0;tthis.max.x||t.ythis.max.y)}containsBox(t){return this.min.x<=t.min.x&&t.max.x<=this.max.x&&this.min.y<=t.min.y&&t.max.y<=this.max.y}getParameter(t,e){return e.set((t.x-this.min.x)/(this.max.x-this.min.x),(t.y-this.min.y)/(this.max.y-this.min.y))}intersectsBox(t){return!(t.max.xthis.max.x||t.max.ythis.max.y)}clampPoint(t,e){return e.copy(t).clamp(this.min,this.max)}distanceToPoint(t){return Sh.copy(t).clamp(this.min,this.max).sub(t).length()}intersect(t){return this.min.max(t.min),this.max.min(t.max),this}union(t){return this.min.min(t.min),this.max.max(t.max),this}translate(t){return this.min.add(t),this.max.add(t),this}equals(t){return t.min.equals(this.min)&&t.max.equals(this.max)}}Th.prototype.isBox2=!0;const Eh=new Lt,Ah=new Lt;class Lh{constructor(t=new Lt,e=new Lt){this.start=t,this.end=e}set(t,e){return this.start.copy(t),this.end.copy(e),this}copy(t){return this.start.copy(t.start),this.end.copy(t.end),this}getCenter(t){return t.addVectors(this.start,this.end).multiplyScalar(.5)}delta(t){return t.subVectors(this.end,this.start)}distanceSq(){return this.start.distanceToSquared(this.end)}distance(){return this.start.distanceTo(this.end)}at(t,e){return this.delta(e).multiplyScalar(t).add(this.start)}closestPointToPointParameter(t,e){Eh.subVectors(t,this.start),Ah.subVectors(this.end,this.start);const n=Ah.dot(Ah);let i=Ah.dot(Eh)/n;return e&&(i=st(i,0,1)),i}closestPointToPoint(t,e,n){const i=this.closestPointToPointParameter(t,e);return this.delta(n).multiplyScalar(i).add(this.start)}applyMatrix4(t){return this.start.applyMatrix4(t),this.end.applyMatrix4(t),this}equals(t){return t.start.equals(this.start)&&t.end.equals(this.end)}clone(){return(new this.constructor).copy(this)}}const Rh=new Lt;const Ch=new Lt,Ph=new se,Dh=new se;class Ih extends Ja{constructor(t){const e=Nh(t),n=new xn,i=[],r=[],s=new Ze(0,0,1),a=new Ze(0,1,0);for(let t=0;t.99999)this.quaternion.set(0,0,0,1);else if(t.y<-.99999)this.quaternion.set(1,0,0,0);else{Xh.set(t.z,0,-t.x).normalize();const e=Math.acos(t.y);this.quaternion.setFromAxisAngle(Xh,e)}}setLength(t,e=.2*t,n=.2*e){this.line.scale.set(1,Math.max(1e-4,t-e),1),this.line.updateMatrix(),this.cone.scale.set(n,e,n),this.cone.position.y=t,this.cone.updateMatrix()}setColor(t){this.line.material.color.set(t),this.cone.material.color.set(t)}copy(t){return super.copy(t,!1),this.line.copy(t.line),this.cone.copy(t.cone),this}},t.Audio=Kc,t.AudioAnalyser=ih,t.AudioContext=Uc,t.AudioListener=class extends Ce{constructor(){super(),this.type="AudioListener",this.context=Uc.getContext(),this.gain=this.context.createGain(),this.gain.connect(this.context.destination),this.filter=null,this.timeDelta=0,this._clock=new qc}getInput(){return this.gain}removeFilter(){return null!==this.filter&&(this.gain.disconnect(this.filter),this.filter.disconnect(this.context.destination),this.gain.connect(this.context.destination),this.filter=null),this}getFilter(){return this.filter}setFilter(t){return null!==this.filter?(this.gain.disconnect(this.filter),this.filter.disconnect(this.context.destination)):this.gain.disconnect(this.context.destination),this.filter=t,this.gain.connect(this.filter),this.filter.connect(this.context.destination),this}getMasterVolume(){return this.gain.gain.value}setMasterVolume(t){return this.gain.gain.setTargetAtTime(t,this.context.currentTime,.01),this}updateMatrixWorld(t){super.updateMatrixWorld(t);const e=this.context.listener,n=this.up;if(this.timeDelta=this._clock.getDelta(),this.matrixWorld.decompose(Jc,Yc,Zc),Qc.set(0,0,-1).applyQuaternion(Yc),e.positionX){const t=this.context.currentTime+this.timeDelta;e.positionX.linearRampToValueAtTime(Jc.x,t),e.positionY.linearRampToValueAtTime(Jc.y,t),e.positionZ.linearRampToValueAtTime(Jc.z,t),e.forwardX.linearRampToValueAtTime(Qc.x,t),e.forwardY.linearRampToValueAtTime(Qc.y,t),e.forwardZ.linearRampToValueAtTime(Qc.z,t),e.upX.linearRampToValueAtTime(n.x,t),e.upY.linearRampToValueAtTime(n.y,t),e.upZ.linearRampToValueAtTime(n.z,t)}else e.setPosition(Jc.x,Jc.y,Jc.z),e.setOrientation(Qc.x,Qc.y,Qc.z,n.x,n.y,n.z)}},t.AudioLoader=Hc,t.AxesHelper=Zh,t.AxisHelper=function(t){return console.warn("THREE.AxisHelper has been renamed to THREE.AxesHelper."),new Zh(t)},t.BackSide=1,t.BasicDepthPacking=3200,t.BasicShadowMap=0,t.BinaryTextureLoader=function(t){return console.warn("THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader."),new cc(t)},t.Bone=La,t.BooleanKeyframeTrack=ql,t.BoundingBoxHelper=function(t,e){return console.warn("THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead."),new qh(t,e)},t.Box2=Th,t.Box3=Pt,t.Box3Helper=class extends Ja{constructor(t,e=16776960){const n=new Uint16Array([0,1,1,2,2,3,3,0,4,5,5,6,6,7,7,4,0,4,1,5,2,6,3,7]),i=new xn;i.setIndex(new tn(n,1)),i.setAttribute("position",new hn([1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1],3)),super(i,new Ua({color:e,toneMapped:!1})),this.box=t,this.type="Box3Helper",this.geometry.computeBoundingSphere()}updateMatrixWorld(t){const e=this.box;e.isEmpty()||(e.getCenter(this.position),e.getSize(this.scale),this.scale.multiplyScalar(.5),super.updateMatrixWorld(t))}},t.BoxBufferGeometry=Un,t.BoxGeometry=Un,t.BoxHelper=qh,t.BufferAttribute=tn,t.BufferGeometry=xn,t.BufferGeometryLoader=Ic,t.ByteType=1010,t.Cache=ec,t.Camera=Wn,t.CameraHelper=class extends Ja{constructor(t){const e=new xn,n=new Ua({color:16777215,vertexColors:!0,toneMapped:!1}),i=[],r=[],s={},a=new Ze(16755200),o=new Ze(16711680),l=new Ze(43775),c=new Ze(16777215),h=new Ze(3355443);function u(t,e,n){d(t,n),d(e,n)}function d(t,e){i.push(0,0,0),r.push(e.r,e.g,e.b),void 0===s[t]&&(s[t]=[]),s[t].push(i.length/3-1)}u("n1","n2",a),u("n2","n4",a),u("n4","n3",a),u("n3","n1",a),u("f1","f2",a),u("f2","f4",a),u("f4","f3",a),u("f3","f1",a),u("n1","f1",a),u("n2","f2",a),u("n3","f3",a),u("n4","f4",a),u("p","n1",o),u("p","n2",o),u("p","n3",o),u("p","n4",o),u("u1","u2",l),u("u2","u3",l),u("u3","u1",l),u("c","t",c),u("p","c",h),u("cn1","cn2",h),u("cn3","cn4",h),u("cf1","cf2",h),u("cf3","cf4",h),e.setAttribute("position",new hn(i,3)),e.setAttribute("color",new hn(r,3)),super(e,n),this.type="CameraHelper",this.camera=t,this.camera.updateProjectionMatrix&&this.camera.updateProjectionMatrix(),this.matrix=t.matrixWorld,this.matrixAutoUpdate=!1,this.pointMap=s,this.update()}update(){const t=this.geometry,e=this.pointMap;Vh.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse),Wh("c",e,t,Vh,0,0,-1),Wh("t",e,t,Vh,0,0,1),Wh("n1",e,t,Vh,-1,-1,-1),Wh("n2",e,t,Vh,1,-1,-1),Wh("n3",e,t,Vh,-1,1,-1),Wh("n4",e,t,Vh,1,1,-1),Wh("f1",e,t,Vh,-1,-1,1),Wh("f2",e,t,Vh,1,-1,1),Wh("f3",e,t,Vh,-1,1,1),Wh("f4",e,t,Vh,1,1,1),Wh("u1",e,t,Vh,.7,1.1,-1),Wh("u2",e,t,Vh,-.7,1.1,-1),Wh("u3",e,t,Vh,0,2,-1),Wh("cf1",e,t,Vh,-1,0,1),Wh("cf2",e,t,Vh,1,0,1),Wh("cf3",e,t,Vh,0,-1,1),Wh("cf4",e,t,Vh,0,1,1),Wh("cn1",e,t,Vh,-1,0,-1),Wh("cn2",e,t,Vh,1,0,-1),Wh("cn3",e,t,Vh,0,-1,-1),Wh("cn4",e,t,Vh,0,1,-1),t.getAttribute("position").needsUpdate=!0}dispose(){this.geometry.dispose(),this.material.dispose()}},t.CanvasRenderer=function(){console.error("THREE.CanvasRenderer has been removed")},t.CanvasTexture=ao,t.CatmullRomCurve3=Eo,t.CineonToneMapping=3,t.CircleBufferGeometry=oo,t.CircleGeometry=oo,t.ClampToEdgeWrapping=u,t.Clock=qc,t.Color=Ze,t.ColorKeyframeTrack=Xl,t.CompressedTexture=so,t.CompressedTextureLoader=class extends rc{constructor(t){super(t)}load(t,e,n,i){const r=this,s=[],a=new so,o=new ac(this.manager);o.setPath(this.path),o.setResponseType("arraybuffer"),o.setRequestHeader(this.requestHeader),o.setWithCredentials(r.withCredentials);let l=0;function c(c){o.load(t[c],(function(t){const n=r.parse(t,!0);s[c]={width:n.width,height:n.height,format:n.format,mipmaps:n.mipmaps},l+=1,6===l&&(1===n.mipmapCount&&(a.minFilter=g),a.image=s,a.format=n.format,a.needsUpdate=!0,e&&e(a))}),n,i)}if(Array.isArray(t))for(let e=0,n=t.length;e65504&&(console.warn("THREE.DataUtils.toHalfFloat(): value exceeds 65504."),t=65504),Qh[0]=t;const e=Kh[0];let n=e>>16&32768,i=e>>12&2047;const r=e>>23&255;return r<103?n:r>142?(n|=31744,n|=(255==r?0:1)&&8388607&e,n):r<113?(i|=2048,n|=(i>>114-r)+(i>>113-r&1),n):(n|=r-112<<10|i>>1,n+=1&i,n)}},t.DecrementStencilOp=7683,t.DecrementWrapStencilOp=34056,t.DefaultLoadingManager=ic,t.DepthFormat=A,t.DepthStencilFormat=L,t.DepthTexture=qs,t.DirectionalLight=Tc,t.DirectionalLightHelper=class extends Ce{constructor(t,e,n){super(),this.light=t,this.light.updateMatrixWorld(),this.matrix=t.matrixWorld,this.matrixAutoUpdate=!1,this.color=n,void 0===e&&(e=1);let i=new xn;i.setAttribute("position",new hn([-e,e,0,e,e,0,e,-e,0,-e,-e,0,-e,e,0],3));const r=new Ua({fog:!1,toneMapped:!1});this.lightPlane=new ja(i,r),this.add(this.lightPlane),i=new xn,i.setAttribute("position",new hn([0,0,0,0,0,1],3)),this.targetLine=new ja(i,r),this.add(this.targetLine),this.update()}dispose(){this.lightPlane.geometry.dispose(),this.lightPlane.material.dispose(),this.targetLine.geometry.dispose(),this.targetLine.material.dispose()}update(){Uh.setFromMatrixPosition(this.light.matrixWorld),Hh.setFromMatrixPosition(this.light.target.matrixWorld),Gh.subVectors(Hh,Uh),this.lightPlane.lookAt(Hh),void 0!==this.color?(this.lightPlane.material.color.set(this.color),this.targetLine.material.color.set(this.color)):(this.lightPlane.material.color.copy(this.light.color),this.targetLine.material.color.copy(this.light.color)),this.targetLine.lookAt(Hh),this.targetLine.scale.z=Gh.length()}},t.DiscreteInterpolant=Wl,t.DodecahedronBufferGeometry=uo,t.DodecahedronGeometry=uo,t.DoubleSide=2,t.DstAlphaFactor=206,t.DstColorFactor=208,t.DynamicBufferAttribute=function(t,e){return console.warn("THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead."),new tn(t,e).setUsage(Q)},t.DynamicCopyUsage=35050,t.DynamicDrawUsage=Q,t.DynamicReadUsage=35049,t.EdgesGeometry=vo,t.EdgesHelper=function(t,e){return console.warn("THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead."),new Ja(new vo(t.geometry),new Ua({color:void 0!==e?e:16777215}))},t.EllipseCurve=xo,t.EqualDepth=4,t.EqualStencilFunc=514,t.EquirectangularReflectionMapping=a,t.EquirectangularRefractionMapping=o,t.Euler=fe,t.EventDispatcher=$,t.ExtrudeBufferGeometry=fl,t.ExtrudeGeometry=fl,t.FaceColors=1,t.FileLoader=ac,t.FlatShading=1,t.Float16BufferAttribute=cn,t.Float32Attribute=function(t,e){return console.warn("THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead."),new hn(t,e)},t.Float32BufferAttribute=hn,t.Float64Attribute=function(t,e){return console.warn("THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead."),new un(t,e)},t.Float64BufferAttribute=un,t.FloatType=M,t.Fog=Ks,t.FogExp2=Qs,t.Font=function(){console.error("THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js")},t.FontLoader=function(){console.error("THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js")},t.FramebufferTexture=ro,t.FrontSide=0,t.Frustum=ni,t.GLBufferAttribute=bh,t.GLSL1="100",t.GLSL3=K,t.GreaterDepth=6,t.GreaterEqualDepth=5,t.GreaterEqualStencilFunc=518,t.GreaterStencilFunc=516,t.GridHelper=Oh,t.Group=Vs,t.HalfFloatType=w,t.HemisphereLight=dc,t.HemisphereLightHelper=class extends Ce{constructor(t,e,n){super(),this.light=t,this.light.updateMatrixWorld(),this.matrix=t.matrixWorld,this.matrixAutoUpdate=!1,this.color=n;const i=new xl(e);i.rotateY(.5*Math.PI),this.material=new Qe({wireframe:!0,fog:!1,toneMapped:!1}),void 0===this.color&&(this.material.vertexColors=!0);const r=i.getAttribute("position"),s=new Float32Array(3*r.count);i.setAttribute("color",new tn(s,3)),this.add(new Fn(i,this.material)),this.update()}dispose(){this.children[0].geometry.dispose(),this.children[0].material.dispose()}update(){const t=this.children[0];if(void 0!==this.color)this.material.color.set(this.color);else{const e=t.geometry.getAttribute("color");Bh.copy(this.light.color),Fh.copy(this.light.groundColor);for(let t=0,n=e.count;t0){const n=new nc(e);r=new oc(n),r.setCrossOrigin(this.crossOrigin);for(let e=0,n=t.length;e0){i=new oc(this.manager),i.setCrossOrigin(this.crossOrigin);for(let e=0,i=t.length;eNumber.EPSILON){if(l<0&&(n=e[s],o=-o,a=e[r],l=-l),t.ya.y)continue;if(t.y===n.y){if(t.x===n.x)return!0}else{const e=l*(t.x-n.x)-o*(t.y-n.y);if(0===e)return!0;if(e<0)continue;i=!i}}else{if(t.y!==n.y)continue;if(a.x<=t.x&&t.x<=n.x||n.x<=t.x&&t.x<=a.x)return!0}}return i}const r=dl.isClockWise,s=this.subPaths;if(0===s.length)return[];if(!0===e)return n(s);let a,o,l;const c=[];if(1===s.length)return o=s[0],l=new Ho,l.curves=o.curves,c.push(l),c;let h=!r(s[0].getPoints());h=t?!h:h;const u=[],d=[];let p,m,f=[],g=0;d[g]=void 0,f[g]=[];for(let e=0,n=s.length;e1){let t=!1;const e=[];for(let t=0,e=d.length;t0&&(t||(f=u))}for(let t=0,e=d.length;t>8&255]+tt[t>>16&255]+tt[t>>24&255]+"-"+tt[255&e]+tt[e>>8&255]+"-"+tt[e>>16&15|64]+tt[e>>24&255]+"-"+tt[63&n|128]+tt[n>>8&255]+"-"+tt[n>>16&255]+tt[n>>24&255]+tt[255&i]+tt[i>>8&255]+tt[i>>16&255]+tt[i>>24&255]).toUpperCase()}function st(t,e,n){return Math.max(e,Math.min(n,t))}function at(t,e){return(t%e+e)%e}function ot(t,e,n){return(1-n)*t+n*e}function lt(t){return 0==(t&t-1)&&0!==t}function ct(t){return Math.pow(2,Math.ceil(Math.log(t)/Math.LN2))}function ht(t){return Math.pow(2,Math.floor(Math.log(t)/Math.LN2))}var ut=Object.freeze({__proto__:null,DEG2RAD:nt,RAD2DEG:it,generateUUID:rt,clamp:st,euclideanModulo:at,mapLinear:function(t,e,n,i,r){return i+(t-e)*(r-i)/(n-e)},inverseLerp:function(t,e,n){return t!==e?(n-t)/(e-t):0},lerp:ot,damp:function(t,e,n,i){return ot(t,e,1-Math.exp(-n*i))},pingpong:function(t,e=1){return e-Math.abs(at(t,2*e)-e)},smoothstep:function(t,e,n){return t<=e?0:t>=n?1:(t=(t-e)/(n-e))*t*(3-2*t)},smootherstep:function(t,e,n){return t<=e?0:t>=n?1:(t=(t-e)/(n-e))*t*t*(t*(6*t-15)+10)},randInt:function(t,e){return t+Math.floor(Math.random()*(e-t+1))},randFloat:function(t,e){return t+Math.random()*(e-t)},randFloatSpread:function(t){return t*(.5-Math.random())},seededRandom:function(t){return void 0!==t&&(et=t%2147483647),et=16807*et%2147483647,(et-1)/2147483646},degToRad:function(t){return t*nt},radToDeg:function(t){return t*it},isPowerOfTwo:lt,ceilPowerOfTwo:ct,floorPowerOfTwo:ht,setQuaternionFromProperEuler:function(t,e,n,i,r){const s=Math.cos,a=Math.sin,o=s(n/2),l=a(n/2),c=s((e+i)/2),h=a((e+i)/2),u=s((e-i)/2),d=a((e-i)/2),p=s((i-e)/2),m=a((i-e)/2);switch(r){case"XYX":t.set(o*h,l*u,l*d,o*c);break;case"YZY":t.set(l*d,o*h,l*u,o*c);break;case"ZXZ":t.set(l*u,l*d,o*h,o*c);break;case"XZX":t.set(o*h,l*m,l*p,o*c);break;case"YXY":t.set(l*p,o*h,l*m,o*c);break;case"ZYZ":t.set(l*m,l*p,o*h,o*c);break;default:console.warn("THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: "+r)}}});class dt{constructor(t=0,e=0){this.x=t,this.y=e}get width(){return this.x}set width(t){this.x=t}get height(){return this.y}set height(t){this.y=t}set(t,e){return this.x=t,this.y=e,this}setScalar(t){return this.x=t,this.y=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y)}copy(t){return this.x=t.x,this.y=t.y,this}add(t,e){return void 0!==e?(console.warn("THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead."),this.addVectors(t,e)):(this.x+=t.x,this.y+=t.y,this)}addScalar(t){return this.x+=t,this.y+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this}sub(t,e){return void 0!==e?(console.warn("THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."),this.subVectors(t,e)):(this.x-=t.x,this.y-=t.y,this)}subScalar(t){return this.x-=t,this.y-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this}multiply(t){return this.x*=t.x,this.y*=t.y,this}multiplyScalar(t){return this.x*=t,this.y*=t,this}divide(t){return this.x/=t.x,this.y/=t.y,this}divideScalar(t){return this.multiplyScalar(1/t)}applyMatrix3(t){const e=this.x,n=this.y,i=t.elements;return this.x=i[0]*e+i[3]*n+i[6],this.y=i[1]*e+i[4]*n+i[7],this}min(t){return this.x=Math.min(this.x,t.x),this.y=Math.min(this.y,t.y),this}max(t){return this.x=Math.max(this.x,t.x),this.y=Math.max(this.y,t.y),this}clamp(t,e){return this.x=Math.max(t.x,Math.min(e.x,this.x)),this.y=Math.max(t.y,Math.min(e.y,this.y)),this}clampScalar(t,e){return this.x=Math.max(t,Math.min(e,this.x)),this.y=Math.max(t,Math.min(e,this.y)),this}clampLength(t,e){const n=this.length();return this.divideScalar(n||1).multiplyScalar(Math.max(t,Math.min(e,n)))}floor(){return this.x=Math.floor(this.x),this.y=Math.floor(this.y),this}ceil(){return this.x=Math.ceil(this.x),this.y=Math.ceil(this.y),this}round(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this}roundToZero(){return this.x=this.x<0?Math.ceil(this.x):Math.floor(this.x),this.y=this.y<0?Math.ceil(this.y):Math.floor(this.y),this}negate(){return this.x=-this.x,this.y=-this.y,this}dot(t){return this.x*t.x+this.y*t.y}cross(t){return this.x*t.y-this.y*t.x}lengthSq(){return this.x*this.x+this.y*this.y}length(){return Math.sqrt(this.x*this.x+this.y*this.y)}manhattanLength(){return Math.abs(this.x)+Math.abs(this.y)}normalize(){return this.divideScalar(this.length()||1)}angle(){return Math.atan2(-this.y,-this.x)+Math.PI}distanceTo(t){return Math.sqrt(this.distanceToSquared(t))}distanceToSquared(t){const e=this.x-t.x,n=this.y-t.y;return e*e+n*n}manhattanDistanceTo(t){return Math.abs(this.x-t.x)+Math.abs(this.y-t.y)}setLength(t){return this.normalize().multiplyScalar(t)}lerp(t,e){return this.x+=(t.x-this.x)*e,this.y+=(t.y-this.y)*e,this}lerpVectors(t,e,n){return this.x=t.x+(e.x-t.x)*n,this.y=t.y+(e.y-t.y)*n,this}equals(t){return t.x===this.x&&t.y===this.y}fromArray(t,e=0){return this.x=t[e],this.y=t[e+1],this}toArray(t=[],e=0){return t[e]=this.x,t[e+1]=this.y,t}fromBufferAttribute(t,e,n){return void 0!==n&&console.warn("THREE.Vector2: offset has been removed from .fromBufferAttribute()."),this.x=t.getX(e),this.y=t.getY(e),this}rotateAround(t,e){const n=Math.cos(e),i=Math.sin(e),r=this.x-t.x,s=this.y-t.y;return this.x=r*n-s*i+t.x,this.y=r*i+s*n+t.y,this}random(){return this.x=Math.random(),this.y=Math.random(),this}*[Symbol.iterator](){yield this.x,yield this.y}}dt.prototype.isVector2=!0;class pt{constructor(){this.elements=[1,0,0,0,1,0,0,0,1],arguments.length>0&&console.error("THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.")}set(t,e,n,i,r,s,a,o,l){const c=this.elements;return c[0]=t,c[1]=i,c[2]=a,c[3]=e,c[4]=r,c[5]=o,c[6]=n,c[7]=s,c[8]=l,this}identity(){return this.set(1,0,0,0,1,0,0,0,1),this}copy(t){const e=this.elements,n=t.elements;return e[0]=n[0],e[1]=n[1],e[2]=n[2],e[3]=n[3],e[4]=n[4],e[5]=n[5],e[6]=n[6],e[7]=n[7],e[8]=n[8],this}extractBasis(t,e,n){return t.setFromMatrix3Column(this,0),e.setFromMatrix3Column(this,1),n.setFromMatrix3Column(this,2),this}setFromMatrix4(t){const e=t.elements;return this.set(e[0],e[4],e[8],e[1],e[5],e[9],e[2],e[6],e[10]),this}multiply(t){return this.multiplyMatrices(this,t)}premultiply(t){return this.multiplyMatrices(t,this)}multiplyMatrices(t,e){const n=t.elements,i=e.elements,r=this.elements,s=n[0],a=n[3],o=n[6],l=n[1],c=n[4],h=n[7],u=n[2],d=n[5],p=n[8],m=i[0],f=i[3],g=i[6],v=i[1],y=i[4],x=i[7],_=i[2],b=i[5],M=i[8];return r[0]=s*m+a*v+o*_,r[3]=s*f+a*y+o*b,r[6]=s*g+a*x+o*M,r[1]=l*m+c*v+h*_,r[4]=l*f+c*y+h*b,r[7]=l*g+c*x+h*M,r[2]=u*m+d*v+p*_,r[5]=u*f+d*y+p*b,r[8]=u*g+d*x+p*M,this}multiplyScalar(t){const e=this.elements;return e[0]*=t,e[3]*=t,e[6]*=t,e[1]*=t,e[4]*=t,e[7]*=t,e[2]*=t,e[5]*=t,e[8]*=t,this}determinant(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8];return e*s*c-e*a*l-n*r*c+n*a*o+i*r*l-i*s*o}invert(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8],h=c*s-a*l,u=a*o-c*r,d=l*r-s*o,p=e*h+n*u+i*d;if(0===p)return this.set(0,0,0,0,0,0,0,0,0);const m=1/p;return t[0]=h*m,t[1]=(i*l-c*n)*m,t[2]=(a*n-i*s)*m,t[3]=u*m,t[4]=(c*e-i*o)*m,t[5]=(i*r-a*e)*m,t[6]=d*m,t[7]=(n*o-l*e)*m,t[8]=(s*e-n*r)*m,this}transpose(){let t;const e=this.elements;return t=e[1],e[1]=e[3],e[3]=t,t=e[2],e[2]=e[6],e[6]=t,t=e[5],e[5]=e[7],e[7]=t,this}getNormalMatrix(t){return this.setFromMatrix4(t).invert().transpose()}transposeIntoArray(t){const e=this.elements;return t[0]=e[0],t[1]=e[3],t[2]=e[6],t[3]=e[1],t[4]=e[4],t[5]=e[7],t[6]=e[2],t[7]=e[5],t[8]=e[8],this}setUvTransform(t,e,n,i,r,s,a){const o=Math.cos(r),l=Math.sin(r);return this.set(n*o,n*l,-n*(o*s+l*a)+s+t,-i*l,i*o,-i*(-l*s+o*a)+a+e,0,0,1),this}scale(t,e){const n=this.elements;return n[0]*=t,n[3]*=t,n[6]*=t,n[1]*=e,n[4]*=e,n[7]*=e,this}rotate(t){const e=Math.cos(t),n=Math.sin(t),i=this.elements,r=i[0],s=i[3],a=i[6],o=i[1],l=i[4],c=i[7];return i[0]=e*r+n*o,i[3]=e*s+n*l,i[6]=e*a+n*c,i[1]=-n*r+e*o,i[4]=-n*s+e*l,i[7]=-n*a+e*c,this}translate(t,e){const n=this.elements;return n[0]+=t*n[2],n[3]+=t*n[5],n[6]+=t*n[8],n[1]+=e*n[2],n[4]+=e*n[5],n[7]+=e*n[8],this}equals(t){const e=this.elements,n=t.elements;for(let t=0;t<9;t++)if(e[t]!==n[t])return!1;return!0}fromArray(t,e=0){for(let n=0;n<9;n++)this.elements[n]=t[n+e];return this}toArray(t=[],e=0){const n=this.elements;return t[e]=n[0],t[e+1]=n[1],t[e+2]=n[2],t[e+3]=n[3],t[e+4]=n[4],t[e+5]=n[5],t[e+6]=n[6],t[e+7]=n[7],t[e+8]=n[8],t}clone(){return(new this.constructor).fromArray(this.elements)}}function mt(t){if(0===t.length)return-1/0;let e=t[0];for(let n=1,i=t.length;ne&&(e=t[n]);return e}pt.prototype.isMatrix3=!0;const ft={Int8Array:Int8Array,Uint8Array:Uint8Array,Uint8ClampedArray:Uint8ClampedArray,Int16Array:Int16Array,Uint16Array:Uint16Array,Int32Array:Int32Array,Uint32Array:Uint32Array,Float32Array:Float32Array,Float64Array:Float64Array};function gt(t,e){return new ft[t](e)}function vt(t){return document.createElementNS("http://www.w3.org/1999/xhtml",t)}let yt;class xt{static getDataURL(t){if(/^data:/i.test(t.src))return t.src;if("undefined"==typeof HTMLCanvasElement)return t.src;let e;if(t instanceof HTMLCanvasElement)e=t;else{void 0===yt&&(yt=vt("canvas")),yt.width=t.width,yt.height=t.height;const n=yt.getContext("2d");t instanceof ImageData?n.putImageData(t,0,0):n.drawImage(t,0,0,t.width,t.height),e=yt}return e.width>2048||e.height>2048?(console.warn("THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons",t),e.toDataURL("image/jpeg",.6)):e.toDataURL("image/png")}}let _t=0;class bt extends ${constructor(t=bt.DEFAULT_IMAGE,e=bt.DEFAULT_MAPPING,n=1001,i=1001,r=1006,s=1008,a=1023,o=1009,l=1,c=3e3){super(),Object.defineProperty(this,"id",{value:_t++}),this.uuid=rt(),this.name="",this.image=t,this.mipmaps=[],this.mapping=e,this.wrapS=n,this.wrapT=i,this.magFilter=r,this.minFilter=s,this.anisotropy=l,this.format=a,this.internalFormat=null,this.type=o,this.offset=new dt(0,0),this.repeat=new dt(1,1),this.center=new dt(0,0),this.rotation=0,this.matrixAutoUpdate=!0,this.matrix=new pt,this.generateMipmaps=!0,this.premultiplyAlpha=!1,this.flipY=!0,this.unpackAlignment=4,this.encoding=c,this.userData={},this.version=0,this.onUpdate=null,this.isRenderTargetTexture=!1}updateMatrix(){this.matrix.setUvTransform(this.offset.x,this.offset.y,this.repeat.x,this.repeat.y,this.rotation,this.center.x,this.center.y)}clone(){return(new this.constructor).copy(this)}copy(t){return this.name=t.name,this.image=t.image,this.mipmaps=t.mipmaps.slice(0),this.mapping=t.mapping,this.wrapS=t.wrapS,this.wrapT=t.wrapT,this.magFilter=t.magFilter,this.minFilter=t.minFilter,this.anisotropy=t.anisotropy,this.format=t.format,this.internalFormat=t.internalFormat,this.type=t.type,this.offset.copy(t.offset),this.repeat.copy(t.repeat),this.center.copy(t.center),this.rotation=t.rotation,this.matrixAutoUpdate=t.matrixAutoUpdate,this.matrix.copy(t.matrix),this.generateMipmaps=t.generateMipmaps,this.premultiplyAlpha=t.premultiplyAlpha,this.flipY=t.flipY,this.unpackAlignment=t.unpackAlignment,this.encoding=t.encoding,this.userData=JSON.parse(JSON.stringify(t.userData)),this}toJSON(t){const e=void 0===t||"string"==typeof t;if(!e&&void 0!==t.textures[this.uuid])return t.textures[this.uuid];const n={metadata:{version:4.5,type:"Texture",generator:"Texture.toJSON"},uuid:this.uuid,name:this.name,mapping:this.mapping,repeat:[this.repeat.x,this.repeat.y],offset:[this.offset.x,this.offset.y],center:[this.center.x,this.center.y],rotation:this.rotation,wrap:[this.wrapS,this.wrapT],format:this.format,type:this.type,encoding:this.encoding,minFilter:this.minFilter,magFilter:this.magFilter,anisotropy:this.anisotropy,flipY:this.flipY,premultiplyAlpha:this.premultiplyAlpha,unpackAlignment:this.unpackAlignment};if(void 0!==this.image){const i=this.image;if(void 0===i.uuid&&(i.uuid=rt()),!e&&void 0===t.images[i.uuid]){let e;if(Array.isArray(i)){e=[];for(let t=0,n=i.length;t1)switch(this.wrapS){case h:t.x=t.x-Math.floor(t.x);break;case u:t.x=t.x<0?0:1;break;case d:1===Math.abs(Math.floor(t.x)%2)?t.x=Math.ceil(t.x)-t.x:t.x=t.x-Math.floor(t.x)}if(t.y<0||t.y>1)switch(this.wrapT){case h:t.y=t.y-Math.floor(t.y);break;case u:t.y=t.y<0?0:1;break;case d:1===Math.abs(Math.floor(t.y)%2)?t.y=Math.ceil(t.y)-t.y:t.y=t.y-Math.floor(t.y)}return this.flipY&&(t.y=1-t.y),t}set needsUpdate(t){!0===t&&this.version++}}function Mt(t){return"undefined"!=typeof HTMLImageElement&&t instanceof HTMLImageElement||"undefined"!=typeof HTMLCanvasElement&&t instanceof HTMLCanvasElement||"undefined"!=typeof ImageBitmap&&t instanceof ImageBitmap?xt.getDataURL(t):t.data?{data:Array.prototype.slice.call(t.data),width:t.width,height:t.height,type:t.data.constructor.name}:(console.warn("THREE.Texture: Unable to serialize Texture."),{})}bt.DEFAULT_IMAGE=void 0,bt.DEFAULT_MAPPING=i,bt.prototype.isTexture=!0;class wt{constructor(t=0,e=0,n=0,i=1){this.x=t,this.y=e,this.z=n,this.w=i}get width(){return this.z}set width(t){this.z=t}get height(){return this.w}set height(t){this.w=t}set(t,e,n,i){return this.x=t,this.y=e,this.z=n,this.w=i,this}setScalar(t){return this.x=t,this.y=t,this.z=t,this.w=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setZ(t){return this.z=t,this}setW(t){return this.w=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;case 2:this.z=e;break;case 3:this.w=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;case 2:return this.z;case 3:return this.w;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y,this.z,this.w)}copy(t){return this.x=t.x,this.y=t.y,this.z=t.z,this.w=void 0!==t.w?t.w:1,this}add(t,e){return void 0!==e?(console.warn("THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead."),this.addVectors(t,e)):(this.x+=t.x,this.y+=t.y,this.z+=t.z,this.w+=t.w,this)}addScalar(t){return this.x+=t,this.y+=t,this.z+=t,this.w+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this.z=t.z+e.z,this.w=t.w+e.w,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this.z+=t.z*e,this.w+=t.w*e,this}sub(t,e){return void 0!==e?(console.warn("THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."),this.subVectors(t,e)):(this.x-=t.x,this.y-=t.y,this.z-=t.z,this.w-=t.w,this)}subScalar(t){return this.x-=t,this.y-=t,this.z-=t,this.w-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this.z=t.z-e.z,this.w=t.w-e.w,this}multiply(t){return this.x*=t.x,this.y*=t.y,this.z*=t.z,this.w*=t.w,this}multiplyScalar(t){return this.x*=t,this.y*=t,this.z*=t,this.w*=t,this}applyMatrix4(t){const e=this.x,n=this.y,i=this.z,r=this.w,s=t.elements;return this.x=s[0]*e+s[4]*n+s[8]*i+s[12]*r,this.y=s[1]*e+s[5]*n+s[9]*i+s[13]*r,this.z=s[2]*e+s[6]*n+s[10]*i+s[14]*r,this.w=s[3]*e+s[7]*n+s[11]*i+s[15]*r,this}divideScalar(t){return this.multiplyScalar(1/t)}setAxisAngleFromQuaternion(t){this.w=2*Math.acos(t.w);const e=Math.sqrt(1-t.w*t.w);return e<1e-4?(this.x=1,this.y=0,this.z=0):(this.x=t.x/e,this.y=t.y/e,this.z=t.z/e),this}setAxisAngleFromRotationMatrix(t){let e,n,i,r;const s=.01,a=.1,o=t.elements,l=o[0],c=o[4],h=o[8],u=o[1],d=o[5],p=o[9],m=o[2],f=o[6],g=o[10];if(Math.abs(c-u)o&&t>v?tv?o=0?1:-1,i=1-e*e;if(i>Number.EPSILON){const r=Math.sqrt(i),s=Math.atan2(r,e*n);t=Math.sin(t*s)/r,a=Math.sin(a*s)/r}const r=a*n;if(o=o*t+u*r,l=l*t+d*r,c=c*t+p*r,h=h*t+m*r,t===1-a){const t=1/Math.sqrt(o*o+l*l+c*c+h*h);o*=t,l*=t,c*=t,h*=t}}t[e]=o,t[e+1]=l,t[e+2]=c,t[e+3]=h}static multiplyQuaternionsFlat(t,e,n,i,r,s){const a=n[i],o=n[i+1],l=n[i+2],c=n[i+3],h=r[s],u=r[s+1],d=r[s+2],p=r[s+3];return t[e]=a*p+c*h+o*d-l*u,t[e+1]=o*p+c*u+l*h-a*d,t[e+2]=l*p+c*d+a*u-o*h,t[e+3]=c*p-a*h-o*u-l*d,t}get x(){return this._x}set x(t){this._x=t,this._onChangeCallback()}get y(){return this._y}set y(t){this._y=t,this._onChangeCallback()}get z(){return this._z}set z(t){this._z=t,this._onChangeCallback()}get w(){return this._w}set w(t){this._w=t,this._onChangeCallback()}set(t,e,n,i){return this._x=t,this._y=e,this._z=n,this._w=i,this._onChangeCallback(),this}clone(){return new this.constructor(this._x,this._y,this._z,this._w)}copy(t){return this._x=t.x,this._y=t.y,this._z=t.z,this._w=t.w,this._onChangeCallback(),this}setFromEuler(t,e){if(!t||!t.isEuler)throw new Error("THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.");const n=t._x,i=t._y,r=t._z,s=t._order,a=Math.cos,o=Math.sin,l=a(n/2),c=a(i/2),h=a(r/2),u=o(n/2),d=o(i/2),p=o(r/2);switch(s){case"XYZ":this._x=u*c*h+l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h-u*d*p;break;case"YXZ":this._x=u*c*h+l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h+u*d*p;break;case"ZXY":this._x=u*c*h-l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h-u*d*p;break;case"ZYX":this._x=u*c*h-l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h+u*d*p;break;case"YZX":this._x=u*c*h+l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h-u*d*p;break;case"XZY":this._x=u*c*h-l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h+u*d*p;break;default:console.warn("THREE.Quaternion: .setFromEuler() encountered an unknown order: "+s)}return!1!==e&&this._onChangeCallback(),this}setFromAxisAngle(t,e){const n=e/2,i=Math.sin(n);return this._x=t.x*i,this._y=t.y*i,this._z=t.z*i,this._w=Math.cos(n),this._onChangeCallback(),this}setFromRotationMatrix(t){const e=t.elements,n=e[0],i=e[4],r=e[8],s=e[1],a=e[5],o=e[9],l=e[2],c=e[6],h=e[10],u=n+a+h;if(u>0){const t=.5/Math.sqrt(u+1);this._w=.25/t,this._x=(c-o)*t,this._y=(r-l)*t,this._z=(s-i)*t}else if(n>a&&n>h){const t=2*Math.sqrt(1+n-a-h);this._w=(c-o)/t,this._x=.25*t,this._y=(i+s)/t,this._z=(r+l)/t}else if(a>h){const t=2*Math.sqrt(1+a-n-h);this._w=(r-l)/t,this._x=(i+s)/t,this._y=.25*t,this._z=(o+c)/t}else{const t=2*Math.sqrt(1+h-n-a);this._w=(s-i)/t,this._x=(r+l)/t,this._y=(o+c)/t,this._z=.25*t}return this._onChangeCallback(),this}setFromUnitVectors(t,e){let n=t.dot(e)+1;return nMath.abs(t.z)?(this._x=-t.y,this._y=t.x,this._z=0,this._w=n):(this._x=0,this._y=-t.z,this._z=t.y,this._w=n)):(this._x=t.y*e.z-t.z*e.y,this._y=t.z*e.x-t.x*e.z,this._z=t.x*e.y-t.y*e.x,this._w=n),this.normalize()}angleTo(t){return 2*Math.acos(Math.abs(st(this.dot(t),-1,1)))}rotateTowards(t,e){const n=this.angleTo(t);if(0===n)return this;const i=Math.min(1,e/n);return this.slerp(t,i),this}identity(){return this.set(0,0,0,1)}invert(){return this.conjugate()}conjugate(){return this._x*=-1,this._y*=-1,this._z*=-1,this._onChangeCallback(),this}dot(t){return this._x*t._x+this._y*t._y+this._z*t._z+this._w*t._w}lengthSq(){return this._x*this._x+this._y*this._y+this._z*this._z+this._w*this._w}length(){return Math.sqrt(this._x*this._x+this._y*this._y+this._z*this._z+this._w*this._w)}normalize(){let t=this.length();return 0===t?(this._x=0,this._y=0,this._z=0,this._w=1):(t=1/t,this._x=this._x*t,this._y=this._y*t,this._z=this._z*t,this._w=this._w*t),this._onChangeCallback(),this}multiply(t,e){return void 0!==e?(console.warn("THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead."),this.multiplyQuaternions(t,e)):this.multiplyQuaternions(this,t)}premultiply(t){return this.multiplyQuaternions(t,this)}multiplyQuaternions(t,e){const n=t._x,i=t._y,r=t._z,s=t._w,a=e._x,o=e._y,l=e._z,c=e._w;return this._x=n*c+s*a+i*l-r*o,this._y=i*c+s*o+r*a-n*l,this._z=r*c+s*l+n*o-i*a,this._w=s*c-n*a-i*o-r*l,this._onChangeCallback(),this}slerp(t,e){if(0===e)return this;if(1===e)return this.copy(t);const n=this._x,i=this._y,r=this._z,s=this._w;let a=s*t._w+n*t._x+i*t._y+r*t._z;if(a<0?(this._w=-t._w,this._x=-t._x,this._y=-t._y,this._z=-t._z,a=-a):this.copy(t),a>=1)return this._w=s,this._x=n,this._y=i,this._z=r,this;const o=1-a*a;if(o<=Number.EPSILON){const t=1-e;return this._w=t*s+e*this._w,this._x=t*n+e*this._x,this._y=t*i+e*this._y,this._z=t*r+e*this._z,this.normalize(),this._onChangeCallback(),this}const l=Math.sqrt(o),c=Math.atan2(l,a),h=Math.sin((1-e)*c)/l,u=Math.sin(e*c)/l;return this._w=s*h+this._w*u,this._x=n*h+this._x*u,this._y=i*h+this._y*u,this._z=r*h+this._z*u,this._onChangeCallback(),this}slerpQuaternions(t,e,n){this.copy(t).slerp(e,n)}random(){const t=Math.random(),e=Math.sqrt(1-t),n=Math.sqrt(t),i=2*Math.PI*Math.random(),r=2*Math.PI*Math.random();return this.set(e*Math.cos(i),n*Math.sin(r),n*Math.cos(r),e*Math.sin(i))}equals(t){return t._x===this._x&&t._y===this._y&&t._z===this._z&&t._w===this._w}fromArray(t,e=0){return this._x=t[e],this._y=t[e+1],this._z=t[e+2],this._w=t[e+3],this._onChangeCallback(),this}toArray(t=[],e=0){return t[e]=this._x,t[e+1]=this._y,t[e+2]=this._z,t[e+3]=this._w,t}fromBufferAttribute(t,e){return this._x=t.getX(e),this._y=t.getY(e),this._z=t.getZ(e),this._w=t.getW(e),this}_onChange(t){return this._onChangeCallback=t,this}_onChangeCallback(){}}At.prototype.isQuaternion=!0;class Lt{constructor(t=0,e=0,n=0){this.x=t,this.y=e,this.z=n}set(t,e,n){return void 0===n&&(n=this.z),this.x=t,this.y=e,this.z=n,this}setScalar(t){return this.x=t,this.y=t,this.z=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setZ(t){return this.z=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;case 2:this.z=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;case 2:return this.z;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y,this.z)}copy(t){return this.x=t.x,this.y=t.y,this.z=t.z,this}add(t,e){return void 0!==e?(console.warn("THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead."),this.addVectors(t,e)):(this.x+=t.x,this.y+=t.y,this.z+=t.z,this)}addScalar(t){return this.x+=t,this.y+=t,this.z+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this.z=t.z+e.z,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this.z+=t.z*e,this}sub(t,e){return void 0!==e?(console.warn("THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."),this.subVectors(t,e)):(this.x-=t.x,this.y-=t.y,this.z-=t.z,this)}subScalar(t){return this.x-=t,this.y-=t,this.z-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this.z=t.z-e.z,this}multiply(t,e){return void 0!==e?(console.warn("THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead."),this.multiplyVectors(t,e)):(this.x*=t.x,this.y*=t.y,this.z*=t.z,this)}multiplyScalar(t){return this.x*=t,this.y*=t,this.z*=t,this}multiplyVectors(t,e){return this.x=t.x*e.x,this.y=t.y*e.y,this.z=t.z*e.z,this}applyEuler(t){return t&&t.isEuler||console.error("THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order."),this.applyQuaternion(Ct.setFromEuler(t))}applyAxisAngle(t,e){return this.applyQuaternion(Ct.setFromAxisAngle(t,e))}applyMatrix3(t){const e=this.x,n=this.y,i=this.z,r=t.elements;return this.x=r[0]*e+r[3]*n+r[6]*i,this.y=r[1]*e+r[4]*n+r[7]*i,this.z=r[2]*e+r[5]*n+r[8]*i,this}applyNormalMatrix(t){return this.applyMatrix3(t).normalize()}applyMatrix4(t){const e=this.x,n=this.y,i=this.z,r=t.elements,s=1/(r[3]*e+r[7]*n+r[11]*i+r[15]);return this.x=(r[0]*e+r[4]*n+r[8]*i+r[12])*s,this.y=(r[1]*e+r[5]*n+r[9]*i+r[13])*s,this.z=(r[2]*e+r[6]*n+r[10]*i+r[14])*s,this}applyQuaternion(t){const e=this.x,n=this.y,i=this.z,r=t.x,s=t.y,a=t.z,o=t.w,l=o*e+s*i-a*n,c=o*n+a*e-r*i,h=o*i+r*n-s*e,u=-r*e-s*n-a*i;return this.x=l*o+u*-r+c*-a-h*-s,this.y=c*o+u*-s+h*-r-l*-a,this.z=h*o+u*-a+l*-s-c*-r,this}project(t){return this.applyMatrix4(t.matrixWorldInverse).applyMatrix4(t.projectionMatrix)}unproject(t){return this.applyMatrix4(t.projectionMatrixInverse).applyMatrix4(t.matrixWorld)}transformDirection(t){const e=this.x,n=this.y,i=this.z,r=t.elements;return this.x=r[0]*e+r[4]*n+r[8]*i,this.y=r[1]*e+r[5]*n+r[9]*i,this.z=r[2]*e+r[6]*n+r[10]*i,this.normalize()}divide(t){return this.x/=t.x,this.y/=t.y,this.z/=t.z,this}divideScalar(t){return this.multiplyScalar(1/t)}min(t){return this.x=Math.min(this.x,t.x),this.y=Math.min(this.y,t.y),this.z=Math.min(this.z,t.z),this}max(t){return this.x=Math.max(this.x,t.x),this.y=Math.max(this.y,t.y),this.z=Math.max(this.z,t.z),this}clamp(t,e){return this.x=Math.max(t.x,Math.min(e.x,this.x)),this.y=Math.max(t.y,Math.min(e.y,this.y)),this.z=Math.max(t.z,Math.min(e.z,this.z)),this}clampScalar(t,e){return this.x=Math.max(t,Math.min(e,this.x)),this.y=Math.max(t,Math.min(e,this.y)),this.z=Math.max(t,Math.min(e,this.z)),this}clampLength(t,e){const n=this.length();return this.divideScalar(n||1).multiplyScalar(Math.max(t,Math.min(e,n)))}floor(){return this.x=Math.floor(this.x),this.y=Math.floor(this.y),this.z=Math.floor(this.z),this}ceil(){return this.x=Math.ceil(this.x),this.y=Math.ceil(this.y),this.z=Math.ceil(this.z),this}round(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this.z=Math.round(this.z),this}roundToZero(){return this.x=this.x<0?Math.ceil(this.x):Math.floor(this.x),this.y=this.y<0?Math.ceil(this.y):Math.floor(this.y),this.z=this.z<0?Math.ceil(this.z):Math.floor(this.z),this}negate(){return this.x=-this.x,this.y=-this.y,this.z=-this.z,this}dot(t){return this.x*t.x+this.y*t.y+this.z*t.z}lengthSq(){return this.x*this.x+this.y*this.y+this.z*this.z}length(){return Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z)}manhattanLength(){return Math.abs(this.x)+Math.abs(this.y)+Math.abs(this.z)}normalize(){return this.divideScalar(this.length()||1)}setLength(t){return this.normalize().multiplyScalar(t)}lerp(t,e){return this.x+=(t.x-this.x)*e,this.y+=(t.y-this.y)*e,this.z+=(t.z-this.z)*e,this}lerpVectors(t,e,n){return this.x=t.x+(e.x-t.x)*n,this.y=t.y+(e.y-t.y)*n,this.z=t.z+(e.z-t.z)*n,this}cross(t,e){return void 0!==e?(console.warn("THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead."),this.crossVectors(t,e)):this.crossVectors(this,t)}crossVectors(t,e){const n=t.x,i=t.y,r=t.z,s=e.x,a=e.y,o=e.z;return this.x=i*o-r*a,this.y=r*s-n*o,this.z=n*a-i*s,this}projectOnVector(t){const e=t.lengthSq();if(0===e)return this.set(0,0,0);const n=t.dot(this)/e;return this.copy(t).multiplyScalar(n)}projectOnPlane(t){return Rt.copy(this).projectOnVector(t),this.sub(Rt)}reflect(t){return this.sub(Rt.copy(t).multiplyScalar(2*this.dot(t)))}angleTo(t){const e=Math.sqrt(this.lengthSq()*t.lengthSq());if(0===e)return Math.PI/2;const n=this.dot(t)/e;return Math.acos(st(n,-1,1))}distanceTo(t){return Math.sqrt(this.distanceToSquared(t))}distanceToSquared(t){const e=this.x-t.x,n=this.y-t.y,i=this.z-t.z;return e*e+n*n+i*i}manhattanDistanceTo(t){return Math.abs(this.x-t.x)+Math.abs(this.y-t.y)+Math.abs(this.z-t.z)}setFromSpherical(t){return this.setFromSphericalCoords(t.radius,t.phi,t.theta)}setFromSphericalCoords(t,e,n){const i=Math.sin(e)*t;return this.x=i*Math.sin(n),this.y=Math.cos(e)*t,this.z=i*Math.cos(n),this}setFromCylindrical(t){return this.setFromCylindricalCoords(t.radius,t.theta,t.y)}setFromCylindricalCoords(t,e,n){return this.x=t*Math.sin(e),this.y=n,this.z=t*Math.cos(e),this}setFromMatrixPosition(t){const e=t.elements;return this.x=e[12],this.y=e[13],this.z=e[14],this}setFromMatrixScale(t){const e=this.setFromMatrixColumn(t,0).length(),n=this.setFromMatrixColumn(t,1).length(),i=this.setFromMatrixColumn(t,2).length();return this.x=e,this.y=n,this.z=i,this}setFromMatrixColumn(t,e){return this.fromArray(t.elements,4*e)}setFromMatrix3Column(t,e){return this.fromArray(t.elements,3*e)}equals(t){return t.x===this.x&&t.y===this.y&&t.z===this.z}fromArray(t,e=0){return this.x=t[e],this.y=t[e+1],this.z=t[e+2],this}toArray(t=[],e=0){return t[e]=this.x,t[e+1]=this.y,t[e+2]=this.z,t}fromBufferAttribute(t,e,n){return void 0!==n&&console.warn("THREE.Vector3: offset has been removed from .fromBufferAttribute()."),this.x=t.getX(e),this.y=t.getY(e),this.z=t.getZ(e),this}random(){return this.x=Math.random(),this.y=Math.random(),this.z=Math.random(),this}randomDirection(){const t=2*(Math.random()-.5),e=Math.random()*Math.PI*2,n=Math.sqrt(1-t**2);return this.x=n*Math.cos(e),this.y=n*Math.sin(e),this.z=t,this}*[Symbol.iterator](){yield this.x,yield this.y,yield this.z}}Lt.prototype.isVector3=!0;const Rt=new Lt,Ct=new At;class Pt{constructor(t=new Lt(1/0,1/0,1/0),e=new Lt(-1/0,-1/0,-1/0)){this.min=t,this.max=e}set(t,e){return this.min.copy(t),this.max.copy(e),this}setFromArray(t){let e=1/0,n=1/0,i=1/0,r=-1/0,s=-1/0,a=-1/0;for(let o=0,l=t.length;or&&(r=l),c>s&&(s=c),h>a&&(a=h)}return this.min.set(e,n,i),this.max.set(r,s,a),this}setFromBufferAttribute(t){let e=1/0,n=1/0,i=1/0,r=-1/0,s=-1/0,a=-1/0;for(let o=0,l=t.count;or&&(r=l),c>s&&(s=c),h>a&&(a=h)}return this.min.set(e,n,i),this.max.set(r,s,a),this}setFromPoints(t){this.makeEmpty();for(let e=0,n=t.length;ethis.max.x||t.ythis.max.y||t.zthis.max.z)}containsBox(t){return this.min.x<=t.min.x&&t.max.x<=this.max.x&&this.min.y<=t.min.y&&t.max.y<=this.max.y&&this.min.z<=t.min.z&&t.max.z<=this.max.z}getParameter(t,e){return e.set((t.x-this.min.x)/(this.max.x-this.min.x),(t.y-this.min.y)/(this.max.y-this.min.y),(t.z-this.min.z)/(this.max.z-this.min.z))}intersectsBox(t){return!(t.max.xthis.max.x||t.max.ythis.max.y||t.max.zthis.max.z)}intersectsSphere(t){return this.clampPoint(t.center,It),It.distanceToSquared(t.center)<=t.radius*t.radius}intersectsPlane(t){let e,n;return t.normal.x>0?(e=t.normal.x*this.min.x,n=t.normal.x*this.max.x):(e=t.normal.x*this.max.x,n=t.normal.x*this.min.x),t.normal.y>0?(e+=t.normal.y*this.min.y,n+=t.normal.y*this.max.y):(e+=t.normal.y*this.max.y,n+=t.normal.y*this.min.y),t.normal.z>0?(e+=t.normal.z*this.min.z,n+=t.normal.z*this.max.z):(e+=t.normal.z*this.max.z,n+=t.normal.z*this.min.z),e<=-t.constant&&n>=-t.constant}intersectsTriangle(t){if(this.isEmpty())return!1;this.getCenter(Gt),kt.subVectors(this.max,Gt),zt.subVectors(t.a,Gt),Bt.subVectors(t.b,Gt),Ft.subVectors(t.c,Gt),Ot.subVectors(Bt,zt),Ut.subVectors(Ft,Bt),Ht.subVectors(zt,Ft);let e=[0,-Ot.z,Ot.y,0,-Ut.z,Ut.y,0,-Ht.z,Ht.y,Ot.z,0,-Ot.x,Ut.z,0,-Ut.x,Ht.z,0,-Ht.x,-Ot.y,Ot.x,0,-Ut.y,Ut.x,0,-Ht.y,Ht.x,0];return!!jt(e,zt,Bt,Ft,kt)&&(e=[1,0,0,0,1,0,0,0,1],!!jt(e,zt,Bt,Ft,kt)&&(Vt.crossVectors(Ot,Ut),e=[Vt.x,Vt.y,Vt.z],jt(e,zt,Bt,Ft,kt)))}clampPoint(t,e){return e.copy(t).clamp(this.min,this.max)}distanceToPoint(t){return It.copy(t).clamp(this.min,this.max).sub(t).length()}getBoundingSphere(t){return this.getCenter(t.center),t.radius=.5*this.getSize(It).length(),t}intersect(t){return this.min.max(t.min),this.max.min(t.max),this.isEmpty()&&this.makeEmpty(),this}union(t){return this.min.min(t.min),this.max.max(t.max),this}applyMatrix4(t){return this.isEmpty()||(Dt[0].set(this.min.x,this.min.y,this.min.z).applyMatrix4(t),Dt[1].set(this.min.x,this.min.y,this.max.z).applyMatrix4(t),Dt[2].set(this.min.x,this.max.y,this.min.z).applyMatrix4(t),Dt[3].set(this.min.x,this.max.y,this.max.z).applyMatrix4(t),Dt[4].set(this.max.x,this.min.y,this.min.z).applyMatrix4(t),Dt[5].set(this.max.x,this.min.y,this.max.z).applyMatrix4(t),Dt[6].set(this.max.x,this.max.y,this.min.z).applyMatrix4(t),Dt[7].set(this.max.x,this.max.y,this.max.z).applyMatrix4(t),this.setFromPoints(Dt)),this}translate(t){return this.min.add(t),this.max.add(t),this}equals(t){return t.min.equals(this.min)&&t.max.equals(this.max)}}Pt.prototype.isBox3=!0;const Dt=[new Lt,new Lt,new Lt,new Lt,new Lt,new Lt,new Lt,new Lt],It=new Lt,Nt=new Pt,zt=new Lt,Bt=new Lt,Ft=new Lt,Ot=new Lt,Ut=new Lt,Ht=new Lt,Gt=new Lt,kt=new Lt,Vt=new Lt,Wt=new Lt;function jt(t,e,n,i,r){for(let s=0,a=t.length-3;s<=a;s+=3){Wt.fromArray(t,s);const a=r.x*Math.abs(Wt.x)+r.y*Math.abs(Wt.y)+r.z*Math.abs(Wt.z),o=e.dot(Wt),l=n.dot(Wt),c=i.dot(Wt);if(Math.max(-Math.max(o,l,c),Math.min(o,l,c))>a)return!1}return!0}const qt=new Pt,Xt=new Lt,Jt=new Lt,Yt=new Lt;class Zt{constructor(t=new Lt,e=-1){this.center=t,this.radius=e}set(t,e){return this.center.copy(t),this.radius=e,this}setFromPoints(t,e){const n=this.center;void 0!==e?n.copy(e):qt.setFromPoints(t).getCenter(n);let i=0;for(let e=0,r=t.length;ethis.radius*this.radius&&(e.sub(this.center).normalize(),e.multiplyScalar(this.radius).add(this.center)),e}getBoundingBox(t){return this.isEmpty()?(t.makeEmpty(),t):(t.set(this.center,this.center),t.expandByScalar(this.radius),t)}applyMatrix4(t){return this.center.applyMatrix4(t),this.radius=this.radius*t.getMaxScaleOnAxis(),this}translate(t){return this.center.add(t),this}expandByPoint(t){Yt.subVectors(t,this.center);const e=Yt.lengthSq();if(e>this.radius*this.radius){const t=Math.sqrt(e),n=.5*(t-this.radius);this.center.add(Yt.multiplyScalar(n/t)),this.radius+=n}return this}union(t){return!0===this.center.equals(t.center)?Jt.set(0,0,1).multiplyScalar(t.radius):Jt.subVectors(t.center,this.center).normalize().multiplyScalar(t.radius),this.expandByPoint(Xt.copy(t.center).add(Jt)),this.expandByPoint(Xt.copy(t.center).sub(Jt)),this}equals(t){return t.center.equals(this.center)&&t.radius===this.radius}clone(){return(new this.constructor).copy(this)}}const Qt=new Lt,Kt=new Lt,$t=new Lt,te=new Lt,ee=new Lt,ne=new Lt,ie=new Lt;class re{constructor(t=new Lt,e=new Lt(0,0,-1)){this.origin=t,this.direction=e}set(t,e){return this.origin.copy(t),this.direction.copy(e),this}copy(t){return this.origin.copy(t.origin),this.direction.copy(t.direction),this}at(t,e){return e.copy(this.direction).multiplyScalar(t).add(this.origin)}lookAt(t){return this.direction.copy(t).sub(this.origin).normalize(),this}recast(t){return this.origin.copy(this.at(t,Qt)),this}closestPointToPoint(t,e){e.subVectors(t,this.origin);const n=e.dot(this.direction);return n<0?e.copy(this.origin):e.copy(this.direction).multiplyScalar(n).add(this.origin)}distanceToPoint(t){return Math.sqrt(this.distanceSqToPoint(t))}distanceSqToPoint(t){const e=Qt.subVectors(t,this.origin).dot(this.direction);return e<0?this.origin.distanceToSquared(t):(Qt.copy(this.direction).multiplyScalar(e).add(this.origin),Qt.distanceToSquared(t))}distanceSqToSegment(t,e,n,i){Kt.copy(t).add(e).multiplyScalar(.5),$t.copy(e).sub(t).normalize(),te.copy(this.origin).sub(Kt);const r=.5*t.distanceTo(e),s=-this.direction.dot($t),a=te.dot(this.direction),o=-te.dot($t),l=te.lengthSq(),c=Math.abs(1-s*s);let h,u,d,p;if(c>0)if(h=s*o-a,u=s*a-o,p=r*c,h>=0)if(u>=-p)if(u<=p){const t=1/c;h*=t,u*=t,d=h*(h+s*u+2*a)+u*(s*h+u+2*o)+l}else u=r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;else u=-r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;else u<=-p?(h=Math.max(0,-(-s*r+a)),u=h>0?-r:Math.min(Math.max(-r,-o),r),d=-h*h+u*(u+2*o)+l):u<=p?(h=0,u=Math.min(Math.max(-r,-o),r),d=u*(u+2*o)+l):(h=Math.max(0,-(s*r+a)),u=h>0?r:Math.min(Math.max(-r,-o),r),d=-h*h+u*(u+2*o)+l);else u=s>0?-r:r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;return n&&n.copy(this.direction).multiplyScalar(h).add(this.origin),i&&i.copy($t).multiplyScalar(u).add(Kt),d}intersectSphere(t,e){Qt.subVectors(t.center,this.origin);const n=Qt.dot(this.direction),i=Qt.dot(Qt)-n*n,r=t.radius*t.radius;if(i>r)return null;const s=Math.sqrt(r-i),a=n-s,o=n+s;return a<0&&o<0?null:a<0?this.at(o,e):this.at(a,e)}intersectsSphere(t){return this.distanceSqToPoint(t.center)<=t.radius*t.radius}distanceToPlane(t){const e=t.normal.dot(this.direction);if(0===e)return 0===t.distanceToPoint(this.origin)?0:null;const n=-(this.origin.dot(t.normal)+t.constant)/e;return n>=0?n:null}intersectPlane(t,e){const n=this.distanceToPlane(t);return null===n?null:this.at(n,e)}intersectsPlane(t){const e=t.distanceToPoint(this.origin);if(0===e)return!0;return t.normal.dot(this.direction)*e<0}intersectBox(t,e){let n,i,r,s,a,o;const l=1/this.direction.x,c=1/this.direction.y,h=1/this.direction.z,u=this.origin;return l>=0?(n=(t.min.x-u.x)*l,i=(t.max.x-u.x)*l):(n=(t.max.x-u.x)*l,i=(t.min.x-u.x)*l),c>=0?(r=(t.min.y-u.y)*c,s=(t.max.y-u.y)*c):(r=(t.max.y-u.y)*c,s=(t.min.y-u.y)*c),n>s||r>i?null:((r>n||n!=n)&&(n=r),(s=0?(a=(t.min.z-u.z)*h,o=(t.max.z-u.z)*h):(a=(t.max.z-u.z)*h,o=(t.min.z-u.z)*h),n>o||a>i?null:((a>n||n!=n)&&(n=a),(o=0?n:i,e)))}intersectsBox(t){return null!==this.intersectBox(t,Qt)}intersectTriangle(t,e,n,i,r){ee.subVectors(e,t),ne.subVectors(n,t),ie.crossVectors(ee,ne);let s,a=this.direction.dot(ie);if(a>0){if(i)return null;s=1}else{if(!(a<0))return null;s=-1,a=-a}te.subVectors(this.origin,t);const o=s*this.direction.dot(ne.crossVectors(te,ne));if(o<0)return null;const l=s*this.direction.dot(ee.cross(te));if(l<0)return null;if(o+l>a)return null;const c=-s*te.dot(ie);return c<0?null:this.at(c/a,r)}applyMatrix4(t){return this.origin.applyMatrix4(t),this.direction.transformDirection(t),this}equals(t){return t.origin.equals(this.origin)&&t.direction.equals(this.direction)}clone(){return(new this.constructor).copy(this)}}class se{constructor(){this.elements=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],arguments.length>0&&console.error("THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.")}set(t,e,n,i,r,s,a,o,l,c,h,u,d,p,m,f){const g=this.elements;return g[0]=t,g[4]=e,g[8]=n,g[12]=i,g[1]=r,g[5]=s,g[9]=a,g[13]=o,g[2]=l,g[6]=c,g[10]=h,g[14]=u,g[3]=d,g[7]=p,g[11]=m,g[15]=f,this}identity(){return this.set(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),this}clone(){return(new se).fromArray(this.elements)}copy(t){const e=this.elements,n=t.elements;return e[0]=n[0],e[1]=n[1],e[2]=n[2],e[3]=n[3],e[4]=n[4],e[5]=n[5],e[6]=n[6],e[7]=n[7],e[8]=n[8],e[9]=n[9],e[10]=n[10],e[11]=n[11],e[12]=n[12],e[13]=n[13],e[14]=n[14],e[15]=n[15],this}copyPosition(t){const e=this.elements,n=t.elements;return e[12]=n[12],e[13]=n[13],e[14]=n[14],this}setFromMatrix3(t){const e=t.elements;return this.set(e[0],e[3],e[6],0,e[1],e[4],e[7],0,e[2],e[5],e[8],0,0,0,0,1),this}extractBasis(t,e,n){return t.setFromMatrixColumn(this,0),e.setFromMatrixColumn(this,1),n.setFromMatrixColumn(this,2),this}makeBasis(t,e,n){return this.set(t.x,e.x,n.x,0,t.y,e.y,n.y,0,t.z,e.z,n.z,0,0,0,0,1),this}extractRotation(t){const e=this.elements,n=t.elements,i=1/ae.setFromMatrixColumn(t,0).length(),r=1/ae.setFromMatrixColumn(t,1).length(),s=1/ae.setFromMatrixColumn(t,2).length();return e[0]=n[0]*i,e[1]=n[1]*i,e[2]=n[2]*i,e[3]=0,e[4]=n[4]*r,e[5]=n[5]*r,e[6]=n[6]*r,e[7]=0,e[8]=n[8]*s,e[9]=n[9]*s,e[10]=n[10]*s,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,this}makeRotationFromEuler(t){t&&t.isEuler||console.error("THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.");const e=this.elements,n=t.x,i=t.y,r=t.z,s=Math.cos(n),a=Math.sin(n),o=Math.cos(i),l=Math.sin(i),c=Math.cos(r),h=Math.sin(r);if("XYZ"===t.order){const t=s*c,n=s*h,i=a*c,r=a*h;e[0]=o*c,e[4]=-o*h,e[8]=l,e[1]=n+i*l,e[5]=t-r*l,e[9]=-a*o,e[2]=r-t*l,e[6]=i+n*l,e[10]=s*o}else if("YXZ"===t.order){const t=o*c,n=o*h,i=l*c,r=l*h;e[0]=t+r*a,e[4]=i*a-n,e[8]=s*l,e[1]=s*h,e[5]=s*c,e[9]=-a,e[2]=n*a-i,e[6]=r+t*a,e[10]=s*o}else if("ZXY"===t.order){const t=o*c,n=o*h,i=l*c,r=l*h;e[0]=t-r*a,e[4]=-s*h,e[8]=i+n*a,e[1]=n+i*a,e[5]=s*c,e[9]=r-t*a,e[2]=-s*l,e[6]=a,e[10]=s*o}else if("ZYX"===t.order){const t=s*c,n=s*h,i=a*c,r=a*h;e[0]=o*c,e[4]=i*l-n,e[8]=t*l+r,e[1]=o*h,e[5]=r*l+t,e[9]=n*l-i,e[2]=-l,e[6]=a*o,e[10]=s*o}else if("YZX"===t.order){const t=s*o,n=s*l,i=a*o,r=a*l;e[0]=o*c,e[4]=r-t*h,e[8]=i*h+n,e[1]=h,e[5]=s*c,e[9]=-a*c,e[2]=-l*c,e[6]=n*h+i,e[10]=t-r*h}else if("XZY"===t.order){const t=s*o,n=s*l,i=a*o,r=a*l;e[0]=o*c,e[4]=-h,e[8]=l*c,e[1]=t*h+r,e[5]=s*c,e[9]=n*h-i,e[2]=i*h-n,e[6]=a*c,e[10]=r*h+t}return e[3]=0,e[7]=0,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,this}makeRotationFromQuaternion(t){return this.compose(le,t,ce)}lookAt(t,e,n){const i=this.elements;return de.subVectors(t,e),0===de.lengthSq()&&(de.z=1),de.normalize(),he.crossVectors(n,de),0===he.lengthSq()&&(1===Math.abs(n.z)?de.x+=1e-4:de.z+=1e-4,de.normalize(),he.crossVectors(n,de)),he.normalize(),ue.crossVectors(de,he),i[0]=he.x,i[4]=ue.x,i[8]=de.x,i[1]=he.y,i[5]=ue.y,i[9]=de.y,i[2]=he.z,i[6]=ue.z,i[10]=de.z,this}multiply(t,e){return void 0!==e?(console.warn("THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead."),this.multiplyMatrices(t,e)):this.multiplyMatrices(this,t)}premultiply(t){return this.multiplyMatrices(t,this)}multiplyMatrices(t,e){const n=t.elements,i=e.elements,r=this.elements,s=n[0],a=n[4],o=n[8],l=n[12],c=n[1],h=n[5],u=n[9],d=n[13],p=n[2],m=n[6],f=n[10],g=n[14],v=n[3],y=n[7],x=n[11],_=n[15],b=i[0],M=i[4],w=i[8],S=i[12],T=i[1],E=i[5],A=i[9],L=i[13],R=i[2],C=i[6],P=i[10],D=i[14],I=i[3],N=i[7],z=i[11],B=i[15];return r[0]=s*b+a*T+o*R+l*I,r[4]=s*M+a*E+o*C+l*N,r[8]=s*w+a*A+o*P+l*z,r[12]=s*S+a*L+o*D+l*B,r[1]=c*b+h*T+u*R+d*I,r[5]=c*M+h*E+u*C+d*N,r[9]=c*w+h*A+u*P+d*z,r[13]=c*S+h*L+u*D+d*B,r[2]=p*b+m*T+f*R+g*I,r[6]=p*M+m*E+f*C+g*N,r[10]=p*w+m*A+f*P+g*z,r[14]=p*S+m*L+f*D+g*B,r[3]=v*b+y*T+x*R+_*I,r[7]=v*M+y*E+x*C+_*N,r[11]=v*w+y*A+x*P+_*z,r[15]=v*S+y*L+x*D+_*B,this}multiplyScalar(t){const e=this.elements;return e[0]*=t,e[4]*=t,e[8]*=t,e[12]*=t,e[1]*=t,e[5]*=t,e[9]*=t,e[13]*=t,e[2]*=t,e[6]*=t,e[10]*=t,e[14]*=t,e[3]*=t,e[7]*=t,e[11]*=t,e[15]*=t,this}determinant(){const t=this.elements,e=t[0],n=t[4],i=t[8],r=t[12],s=t[1],a=t[5],o=t[9],l=t[13],c=t[2],h=t[6],u=t[10],d=t[14];return t[3]*(+r*o*h-i*l*h-r*a*u+n*l*u+i*a*d-n*o*d)+t[7]*(+e*o*d-e*l*u+r*s*u-i*s*d+i*l*c-r*o*c)+t[11]*(+e*l*h-e*a*d-r*s*h+n*s*d+r*a*c-n*l*c)+t[15]*(-i*a*c-e*o*h+e*a*u+i*s*h-n*s*u+n*o*c)}transpose(){const t=this.elements;let e;return e=t[1],t[1]=t[4],t[4]=e,e=t[2],t[2]=t[8],t[8]=e,e=t[6],t[6]=t[9],t[9]=e,e=t[3],t[3]=t[12],t[12]=e,e=t[7],t[7]=t[13],t[13]=e,e=t[11],t[11]=t[14],t[14]=e,this}setPosition(t,e,n){const i=this.elements;return t.isVector3?(i[12]=t.x,i[13]=t.y,i[14]=t.z):(i[12]=t,i[13]=e,i[14]=n),this}invert(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8],h=t[9],u=t[10],d=t[11],p=t[12],m=t[13],f=t[14],g=t[15],v=h*f*l-m*u*l+m*o*d-a*f*d-h*o*g+a*u*g,y=p*u*l-c*f*l-p*o*d+s*f*d+c*o*g-s*u*g,x=c*m*l-p*h*l+p*a*d-s*m*d-c*a*g+s*h*g,_=p*h*o-c*m*o-p*a*u+s*m*u+c*a*f-s*h*f,b=e*v+n*y+i*x+r*_;if(0===b)return this.set(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);const M=1/b;return t[0]=v*M,t[1]=(m*u*r-h*f*r-m*i*d+n*f*d+h*i*g-n*u*g)*M,t[2]=(a*f*r-m*o*r+m*i*l-n*f*l-a*i*g+n*o*g)*M,t[3]=(h*o*r-a*u*r-h*i*l+n*u*l+a*i*d-n*o*d)*M,t[4]=y*M,t[5]=(c*f*r-p*u*r+p*i*d-e*f*d-c*i*g+e*u*g)*M,t[6]=(p*o*r-s*f*r-p*i*l+e*f*l+s*i*g-e*o*g)*M,t[7]=(s*u*r-c*o*r+c*i*l-e*u*l-s*i*d+e*o*d)*M,t[8]=x*M,t[9]=(p*h*r-c*m*r-p*n*d+e*m*d+c*n*g-e*h*g)*M,t[10]=(s*m*r-p*a*r+p*n*l-e*m*l-s*n*g+e*a*g)*M,t[11]=(c*a*r-s*h*r-c*n*l+e*h*l+s*n*d-e*a*d)*M,t[12]=_*M,t[13]=(c*m*i-p*h*i+p*n*u-e*m*u-c*n*f+e*h*f)*M,t[14]=(p*a*i-s*m*i-p*n*o+e*m*o+s*n*f-e*a*f)*M,t[15]=(s*h*i-c*a*i+c*n*o-e*h*o-s*n*u+e*a*u)*M,this}scale(t){const e=this.elements,n=t.x,i=t.y,r=t.z;return e[0]*=n,e[4]*=i,e[8]*=r,e[1]*=n,e[5]*=i,e[9]*=r,e[2]*=n,e[6]*=i,e[10]*=r,e[3]*=n,e[7]*=i,e[11]*=r,this}getMaxScaleOnAxis(){const t=this.elements,e=t[0]*t[0]+t[1]*t[1]+t[2]*t[2],n=t[4]*t[4]+t[5]*t[5]+t[6]*t[6],i=t[8]*t[8]+t[9]*t[9]+t[10]*t[10];return Math.sqrt(Math.max(e,n,i))}makeTranslation(t,e,n){return this.set(1,0,0,t,0,1,0,e,0,0,1,n,0,0,0,1),this}makeRotationX(t){const e=Math.cos(t),n=Math.sin(t);return this.set(1,0,0,0,0,e,-n,0,0,n,e,0,0,0,0,1),this}makeRotationY(t){const e=Math.cos(t),n=Math.sin(t);return this.set(e,0,n,0,0,1,0,0,-n,0,e,0,0,0,0,1),this}makeRotationZ(t){const e=Math.cos(t),n=Math.sin(t);return this.set(e,-n,0,0,n,e,0,0,0,0,1,0,0,0,0,1),this}makeRotationAxis(t,e){const n=Math.cos(e),i=Math.sin(e),r=1-n,s=t.x,a=t.y,o=t.z,l=r*s,c=r*a;return this.set(l*s+n,l*a-i*o,l*o+i*a,0,l*a+i*o,c*a+n,c*o-i*s,0,l*o-i*a,c*o+i*s,r*o*o+n,0,0,0,0,1),this}makeScale(t,e,n){return this.set(t,0,0,0,0,e,0,0,0,0,n,0,0,0,0,1),this}makeShear(t,e,n,i,r,s){return this.set(1,n,r,0,t,1,s,0,e,i,1,0,0,0,0,1),this}compose(t,e,n){const i=this.elements,r=e._x,s=e._y,a=e._z,o=e._w,l=r+r,c=s+s,h=a+a,u=r*l,d=r*c,p=r*h,m=s*c,f=s*h,g=a*h,v=o*l,y=o*c,x=o*h,_=n.x,b=n.y,M=n.z;return i[0]=(1-(m+g))*_,i[1]=(d+x)*_,i[2]=(p-y)*_,i[3]=0,i[4]=(d-x)*b,i[5]=(1-(u+g))*b,i[6]=(f+v)*b,i[7]=0,i[8]=(p+y)*M,i[9]=(f-v)*M,i[10]=(1-(u+m))*M,i[11]=0,i[12]=t.x,i[13]=t.y,i[14]=t.z,i[15]=1,this}decompose(t,e,n){const i=this.elements;let r=ae.set(i[0],i[1],i[2]).length();const s=ae.set(i[4],i[5],i[6]).length(),a=ae.set(i[8],i[9],i[10]).length();this.determinant()<0&&(r=-r),t.x=i[12],t.y=i[13],t.z=i[14],oe.copy(this);const o=1/r,l=1/s,c=1/a;return oe.elements[0]*=o,oe.elements[1]*=o,oe.elements[2]*=o,oe.elements[4]*=l,oe.elements[5]*=l,oe.elements[6]*=l,oe.elements[8]*=c,oe.elements[9]*=c,oe.elements[10]*=c,e.setFromRotationMatrix(oe),n.x=r,n.y=s,n.z=a,this}makePerspective(t,e,n,i,r,s){void 0===s&&console.warn("THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.");const a=this.elements,o=2*r/(e-t),l=2*r/(n-i),c=(e+t)/(e-t),h=(n+i)/(n-i),u=-(s+r)/(s-r),d=-2*s*r/(s-r);return a[0]=o,a[4]=0,a[8]=c,a[12]=0,a[1]=0,a[5]=l,a[9]=h,a[13]=0,a[2]=0,a[6]=0,a[10]=u,a[14]=d,a[3]=0,a[7]=0,a[11]=-1,a[15]=0,this}makeOrthographic(t,e,n,i,r,s){const a=this.elements,o=1/(e-t),l=1/(n-i),c=1/(s-r),h=(e+t)*o,u=(n+i)*l,d=(s+r)*c;return a[0]=2*o,a[4]=0,a[8]=0,a[12]=-h,a[1]=0,a[5]=2*l,a[9]=0,a[13]=-u,a[2]=0,a[6]=0,a[10]=-2*c,a[14]=-d,a[3]=0,a[7]=0,a[11]=0,a[15]=1,this}equals(t){const e=this.elements,n=t.elements;for(let t=0;t<16;t++)if(e[t]!==n[t])return!1;return!0}fromArray(t,e=0){for(let n=0;n<16;n++)this.elements[n]=t[n+e];return this}toArray(t=[],e=0){const n=this.elements;return t[e]=n[0],t[e+1]=n[1],t[e+2]=n[2],t[e+3]=n[3],t[e+4]=n[4],t[e+5]=n[5],t[e+6]=n[6],t[e+7]=n[7],t[e+8]=n[8],t[e+9]=n[9],t[e+10]=n[10],t[e+11]=n[11],t[e+12]=n[12],t[e+13]=n[13],t[e+14]=n[14],t[e+15]=n[15],t}}se.prototype.isMatrix4=!0;const ae=new Lt,oe=new se,le=new Lt(0,0,0),ce=new Lt(1,1,1),he=new Lt,ue=new Lt,de=new Lt,pe=new se,me=new At;class fe{constructor(t=0,e=0,n=0,i=fe.DefaultOrder){this._x=t,this._y=e,this._z=n,this._order=i}get x(){return this._x}set x(t){this._x=t,this._onChangeCallback()}get y(){return this._y}set y(t){this._y=t,this._onChangeCallback()}get z(){return this._z}set z(t){this._z=t,this._onChangeCallback()}get order(){return this._order}set order(t){this._order=t,this._onChangeCallback()}set(t,e,n,i=this._order){return this._x=t,this._y=e,this._z=n,this._order=i,this._onChangeCallback(),this}clone(){return new this.constructor(this._x,this._y,this._z,this._order)}copy(t){return this._x=t._x,this._y=t._y,this._z=t._z,this._order=t._order,this._onChangeCallback(),this}setFromRotationMatrix(t,e=this._order,n=!0){const i=t.elements,r=i[0],s=i[4],a=i[8],o=i[1],l=i[5],c=i[9],h=i[2],u=i[6],d=i[10];switch(e){case"XYZ":this._y=Math.asin(st(a,-1,1)),Math.abs(a)<.9999999?(this._x=Math.atan2(-c,d),this._z=Math.atan2(-s,r)):(this._x=Math.atan2(u,l),this._z=0);break;case"YXZ":this._x=Math.asin(-st(c,-1,1)),Math.abs(c)<.9999999?(this._y=Math.atan2(a,d),this._z=Math.atan2(o,l)):(this._y=Math.atan2(-h,r),this._z=0);break;case"ZXY":this._x=Math.asin(st(u,-1,1)),Math.abs(u)<.9999999?(this._y=Math.atan2(-h,d),this._z=Math.atan2(-s,l)):(this._y=0,this._z=Math.atan2(o,r));break;case"ZYX":this._y=Math.asin(-st(h,-1,1)),Math.abs(h)<.9999999?(this._x=Math.atan2(u,d),this._z=Math.atan2(o,r)):(this._x=0,this._z=Math.atan2(-s,l));break;case"YZX":this._z=Math.asin(st(o,-1,1)),Math.abs(o)<.9999999?(this._x=Math.atan2(-c,l),this._y=Math.atan2(-h,r)):(this._x=0,this._y=Math.atan2(a,d));break;case"XZY":this._z=Math.asin(-st(s,-1,1)),Math.abs(s)<.9999999?(this._x=Math.atan2(u,l),this._y=Math.atan2(a,r)):(this._x=Math.atan2(-c,d),this._y=0);break;default:console.warn("THREE.Euler: .setFromRotationMatrix() encountered an unknown order: "+e)}return this._order=e,!0===n&&this._onChangeCallback(),this}setFromQuaternion(t,e,n){return pe.makeRotationFromQuaternion(t),this.setFromRotationMatrix(pe,e,n)}setFromVector3(t,e=this._order){return this.set(t.x,t.y,t.z,e)}reorder(t){return me.setFromEuler(this),this.setFromQuaternion(me,t)}equals(t){return t._x===this._x&&t._y===this._y&&t._z===this._z&&t._order===this._order}fromArray(t){return this._x=t[0],this._y=t[1],this._z=t[2],void 0!==t[3]&&(this._order=t[3]),this._onChangeCallback(),this}toArray(t=[],e=0){return t[e]=this._x,t[e+1]=this._y,t[e+2]=this._z,t[e+3]=this._order,t}toVector3(t){return t?t.set(this._x,this._y,this._z):new Lt(this._x,this._y,this._z)}_onChange(t){return this._onChangeCallback=t,this}_onChangeCallback(){}}fe.prototype.isEuler=!0,fe.DefaultOrder="XYZ",fe.RotationOrders=["XYZ","YZX","ZXY","XZY","YXZ","ZYX"];class ge{constructor(){this.mask=1}set(t){this.mask=(1<>>0}enable(t){this.mask|=1<1){for(let t=0;t1){for(let t=0;t0){i.children=[];for(let e=0;e0){i.animations=[];for(let e=0;e0&&(n.geometries=e),i.length>0&&(n.materials=i),r.length>0&&(n.textures=r),a.length>0&&(n.images=a),o.length>0&&(n.shapes=o),l.length>0&&(n.skeletons=l),c.length>0&&(n.animations=c)}return n.object=i,n;function s(t){const e=[];for(const n in t){const i=t[n];delete i.metadata,e.push(i)}return e}}clone(t){return(new this.constructor).copy(this,t)}copy(t,e=!0){if(this.name=t.name,this.up.copy(t.up),this.position.copy(t.position),this.rotation.order=t.rotation.order,this.quaternion.copy(t.quaternion),this.scale.copy(t.scale),this.matrix.copy(t.matrix),this.matrixWorld.copy(t.matrixWorld),this.matrixAutoUpdate=t.matrixAutoUpdate,this.matrixWorldNeedsUpdate=t.matrixWorldNeedsUpdate,this.layers.mask=t.layers.mask,this.visible=t.visible,this.castShadow=t.castShadow,this.receiveShadow=t.receiveShadow,this.frustumCulled=t.frustumCulled,this.renderOrder=t.renderOrder,this.userData=JSON.parse(JSON.stringify(t.userData)),!0===e)for(let e=0;e0?i.multiplyScalar(1/Math.sqrt(r)):i.set(0,0,0)}static getBarycoord(t,e,n,i,r){Pe.subVectors(i,e),De.subVectors(n,e),Ie.subVectors(t,e);const s=Pe.dot(Pe),a=Pe.dot(De),o=Pe.dot(Ie),l=De.dot(De),c=De.dot(Ie),h=s*l-a*a;if(0===h)return r.set(-2,-1,-1);const u=1/h,d=(l*o-a*c)*u,p=(s*c-a*o)*u;return r.set(1-d-p,p,d)}static containsPoint(t,e,n,i){return this.getBarycoord(t,e,n,i,Ne),Ne.x>=0&&Ne.y>=0&&Ne.x+Ne.y<=1}static getUV(t,e,n,i,r,s,a,o){return this.getBarycoord(t,e,n,i,Ne),o.set(0,0),o.addScaledVector(r,Ne.x),o.addScaledVector(s,Ne.y),o.addScaledVector(a,Ne.z),o}static isFrontFacing(t,e,n,i){return Pe.subVectors(n,e),De.subVectors(t,e),Pe.cross(De).dot(i)<0}set(t,e,n){return this.a.copy(t),this.b.copy(e),this.c.copy(n),this}setFromPointsAndIndices(t,e,n,i){return this.a.copy(t[e]),this.b.copy(t[n]),this.c.copy(t[i]),this}setFromAttributeAndIndices(t,e,n,i){return this.a.fromBufferAttribute(t,e),this.b.fromBufferAttribute(t,n),this.c.fromBufferAttribute(t,i),this}clone(){return(new this.constructor).copy(this)}copy(t){return this.a.copy(t.a),this.b.copy(t.b),this.c.copy(t.c),this}getArea(){return Pe.subVectors(this.c,this.b),De.subVectors(this.a,this.b),.5*Pe.cross(De).length()}getMidpoint(t){return t.addVectors(this.a,this.b).add(this.c).multiplyScalar(1/3)}getNormal(t){return Ge.getNormal(this.a,this.b,this.c,t)}getPlane(t){return t.setFromCoplanarPoints(this.a,this.b,this.c)}getBarycoord(t,e){return Ge.getBarycoord(t,this.a,this.b,this.c,e)}getUV(t,e,n,i,r){return Ge.getUV(t,this.a,this.b,this.c,e,n,i,r)}containsPoint(t){return Ge.containsPoint(t,this.a,this.b,this.c)}isFrontFacing(t){return Ge.isFrontFacing(this.a,this.b,this.c,t)}intersectsBox(t){return t.intersectsTriangle(this)}closestPointToPoint(t,e){const n=this.a,i=this.b,r=this.c;let s,a;ze.subVectors(i,n),Be.subVectors(r,n),Oe.subVectors(t,n);const o=ze.dot(Oe),l=Be.dot(Oe);if(o<=0&&l<=0)return e.copy(n);Ue.subVectors(t,i);const c=ze.dot(Ue),h=Be.dot(Ue);if(c>=0&&h<=c)return e.copy(i);const u=o*h-c*l;if(u<=0&&o>=0&&c<=0)return s=o/(o-c),e.copy(n).addScaledVector(ze,s);He.subVectors(t,r);const d=ze.dot(He),p=Be.dot(He);if(p>=0&&d<=p)return e.copy(r);const m=d*l-o*p;if(m<=0&&l>=0&&p<=0)return a=l/(l-p),e.copy(n).addScaledVector(Be,a);const f=c*p-d*h;if(f<=0&&h-c>=0&&d-p>=0)return Fe.subVectors(r,i),a=(h-c)/(h-c+(d-p)),e.copy(i).addScaledVector(Fe,a);const g=1/(f+m+u);return s=m*g,a=u*g,e.copy(n).addScaledVector(ze,s).addScaledVector(Be,a)}equals(t){return t.a.equals(this.a)&&t.b.equals(this.b)&&t.c.equals(this.c)}}let ke=0;class Ve extends ${constructor(){super(),Object.defineProperty(this,"id",{value:ke++}),this.uuid=rt(),this.name="",this.type="Material",this.fog=!0,this.blending=1,this.side=0,this.vertexColors=!1,this.opacity=1,this.format=E,this.transparent=!1,this.blendSrc=204,this.blendDst=205,this.blendEquation=n,this.blendSrcAlpha=null,this.blendDstAlpha=null,this.blendEquationAlpha=null,this.depthFunc=3,this.depthTest=!0,this.depthWrite=!0,this.stencilWriteMask=255,this.stencilFunc=519,this.stencilRef=0,this.stencilFuncMask=255,this.stencilFail=Y,this.stencilZFail=Y,this.stencilZPass=Y,this.stencilWrite=!1,this.clippingPlanes=null,this.clipIntersection=!1,this.clipShadows=!1,this.shadowSide=null,this.colorWrite=!0,this.precision=null,this.polygonOffset=!1,this.polygonOffsetFactor=0,this.polygonOffsetUnits=0,this.dithering=!1,this.alphaToCoverage=!1,this.premultipliedAlpha=!1,this.visible=!0,this.toneMapped=!0,this.userData={},this.version=0,this._alphaTest=0}get alphaTest(){return this._alphaTest}set alphaTest(t){this._alphaTest>0!=t>0&&this.version++,this._alphaTest=t}onBuild(){}onBeforeRender(){}onBeforeCompile(){}customProgramCacheKey(){return this.onBeforeCompile.toString()}setValues(t){if(void 0!==t)for(const e in t){const n=t[e];if(void 0===n){console.warn("THREE.Material: '"+e+"' parameter is undefined.");continue}if("shading"===e){console.warn("THREE."+this.type+": .shading has been removed. Use the boolean .flatShading instead."),this.flatShading=1===n;continue}const i=this[e];void 0!==i?i&&i.isColor?i.set(n):i&&i.isVector3&&n&&n.isVector3?i.copy(n):this[e]=n:console.warn("THREE."+this.type+": '"+e+"' is not a property of this material.")}}toJSON(t){const e=void 0===t||"string"==typeof t;e&&(t={textures:{},images:{}});const n={metadata:{version:4.5,type:"Material",generator:"Material.toJSON"}};function i(t){const e=[];for(const n in t){const i=t[n];delete i.metadata,e.push(i)}return e}if(n.uuid=this.uuid,n.type=this.type,""!==this.name&&(n.name=this.name),this.color&&this.color.isColor&&(n.color=this.color.getHex()),void 0!==this.roughness&&(n.roughness=this.roughness),void 0!==this.metalness&&(n.metalness=this.metalness),void 0!==this.sheen&&(n.sheen=this.sheen),this.sheenColor&&this.sheenColor.isColor&&(n.sheenColor=this.sheenColor.getHex()),void 0!==this.sheenRoughness&&(n.sheenRoughness=this.sheenRoughness),this.emissive&&this.emissive.isColor&&(n.emissive=this.emissive.getHex()),this.emissiveIntensity&&1!==this.emissiveIntensity&&(n.emissiveIntensity=this.emissiveIntensity),this.specular&&this.specular.isColor&&(n.specular=this.specular.getHex()),void 0!==this.specularIntensity&&(n.specularIntensity=this.specularIntensity),this.specularColor&&this.specularColor.isColor&&(n.specularColor=this.specularColor.getHex()),void 0!==this.shininess&&(n.shininess=this.shininess),void 0!==this.clearcoat&&(n.clearcoat=this.clearcoat),void 0!==this.clearcoatRoughness&&(n.clearcoatRoughness=this.clearcoatRoughness),this.clearcoatMap&&this.clearcoatMap.isTexture&&(n.clearcoatMap=this.clearcoatMap.toJSON(t).uuid),this.clearcoatRoughnessMap&&this.clearcoatRoughnessMap.isTexture&&(n.clearcoatRoughnessMap=this.clearcoatRoughnessMap.toJSON(t).uuid),this.clearcoatNormalMap&&this.clearcoatNormalMap.isTexture&&(n.clearcoatNormalMap=this.clearcoatNormalMap.toJSON(t).uuid,n.clearcoatNormalScale=this.clearcoatNormalScale.toArray()),this.map&&this.map.isTexture&&(n.map=this.map.toJSON(t).uuid),this.matcap&&this.matcap.isTexture&&(n.matcap=this.matcap.toJSON(t).uuid),this.alphaMap&&this.alphaMap.isTexture&&(n.alphaMap=this.alphaMap.toJSON(t).uuid),this.lightMap&&this.lightMap.isTexture&&(n.lightMap=this.lightMap.toJSON(t).uuid,n.lightMapIntensity=this.lightMapIntensity),this.aoMap&&this.aoMap.isTexture&&(n.aoMap=this.aoMap.toJSON(t).uuid,n.aoMapIntensity=this.aoMapIntensity),this.bumpMap&&this.bumpMap.isTexture&&(n.bumpMap=this.bumpMap.toJSON(t).uuid,n.bumpScale=this.bumpScale),this.normalMap&&this.normalMap.isTexture&&(n.normalMap=this.normalMap.toJSON(t).uuid,n.normalMapType=this.normalMapType,n.normalScale=this.normalScale.toArray()),this.displacementMap&&this.displacementMap.isTexture&&(n.displacementMap=this.displacementMap.toJSON(t).uuid,n.displacementScale=this.displacementScale,n.displacementBias=this.displacementBias),this.roughnessMap&&this.roughnessMap.isTexture&&(n.roughnessMap=this.roughnessMap.toJSON(t).uuid),this.metalnessMap&&this.metalnessMap.isTexture&&(n.metalnessMap=this.metalnessMap.toJSON(t).uuid),this.emissiveMap&&this.emissiveMap.isTexture&&(n.emissiveMap=this.emissiveMap.toJSON(t).uuid),this.specularMap&&this.specularMap.isTexture&&(n.specularMap=this.specularMap.toJSON(t).uuid),this.specularIntensityMap&&this.specularIntensityMap.isTexture&&(n.specularIntensityMap=this.specularIntensityMap.toJSON(t).uuid),this.specularColorMap&&this.specularColorMap.isTexture&&(n.specularColorMap=this.specularColorMap.toJSON(t).uuid),this.envMap&&this.envMap.isTexture&&(n.envMap=this.envMap.toJSON(t).uuid,void 0!==this.combine&&(n.combine=this.combine)),void 0!==this.envMapIntensity&&(n.envMapIntensity=this.envMapIntensity),void 0!==this.reflectivity&&(n.reflectivity=this.reflectivity),void 0!==this.refractionRatio&&(n.refractionRatio=this.refractionRatio),this.gradientMap&&this.gradientMap.isTexture&&(n.gradientMap=this.gradientMap.toJSON(t).uuid),void 0!==this.transmission&&(n.transmission=this.transmission),this.transmissionMap&&this.transmissionMap.isTexture&&(n.transmissionMap=this.transmissionMap.toJSON(t).uuid),void 0!==this.thickness&&(n.thickness=this.thickness),this.thicknessMap&&this.thicknessMap.isTexture&&(n.thicknessMap=this.thicknessMap.toJSON(t).uuid),void 0!==this.attenuationDistance&&(n.attenuationDistance=this.attenuationDistance),void 0!==this.attenuationColor&&(n.attenuationColor=this.attenuationColor.getHex()),void 0!==this.size&&(n.size=this.size),null!==this.shadowSide&&(n.shadowSide=this.shadowSide),void 0!==this.sizeAttenuation&&(n.sizeAttenuation=this.sizeAttenuation),1!==this.blending&&(n.blending=this.blending),0!==this.side&&(n.side=this.side),this.vertexColors&&(n.vertexColors=!0),this.opacity<1&&(n.opacity=this.opacity),this.format!==E&&(n.format=this.format),!0===this.transparent&&(n.transparent=this.transparent),n.depthFunc=this.depthFunc,n.depthTest=this.depthTest,n.depthWrite=this.depthWrite,n.colorWrite=this.colorWrite,n.stencilWrite=this.stencilWrite,n.stencilWriteMask=this.stencilWriteMask,n.stencilFunc=this.stencilFunc,n.stencilRef=this.stencilRef,n.stencilFuncMask=this.stencilFuncMask,n.stencilFail=this.stencilFail,n.stencilZFail=this.stencilZFail,n.stencilZPass=this.stencilZPass,this.rotation&&0!==this.rotation&&(n.rotation=this.rotation),!0===this.polygonOffset&&(n.polygonOffset=!0),0!==this.polygonOffsetFactor&&(n.polygonOffsetFactor=this.polygonOffsetFactor),0!==this.polygonOffsetUnits&&(n.polygonOffsetUnits=this.polygonOffsetUnits),this.linewidth&&1!==this.linewidth&&(n.linewidth=this.linewidth),void 0!==this.dashSize&&(n.dashSize=this.dashSize),void 0!==this.gapSize&&(n.gapSize=this.gapSize),void 0!==this.scale&&(n.scale=this.scale),!0===this.dithering&&(n.dithering=!0),this.alphaTest>0&&(n.alphaTest=this.alphaTest),!0===this.alphaToCoverage&&(n.alphaToCoverage=this.alphaToCoverage),!0===this.premultipliedAlpha&&(n.premultipliedAlpha=this.premultipliedAlpha),!0===this.wireframe&&(n.wireframe=this.wireframe),this.wireframeLinewidth>1&&(n.wireframeLinewidth=this.wireframeLinewidth),"round"!==this.wireframeLinecap&&(n.wireframeLinecap=this.wireframeLinecap),"round"!==this.wireframeLinejoin&&(n.wireframeLinejoin=this.wireframeLinejoin),!0===this.flatShading&&(n.flatShading=this.flatShading),!1===this.visible&&(n.visible=!1),!1===this.toneMapped&&(n.toneMapped=!1),"{}"!==JSON.stringify(this.userData)&&(n.userData=this.userData),e){const e=i(t.textures),r=i(t.images);e.length>0&&(n.textures=e),r.length>0&&(n.images=r)}return n}clone(){return(new this.constructor).copy(this)}copy(t){this.name=t.name,this.fog=t.fog,this.blending=t.blending,this.side=t.side,this.vertexColors=t.vertexColors,this.opacity=t.opacity,this.format=t.format,this.transparent=t.transparent,this.blendSrc=t.blendSrc,this.blendDst=t.blendDst,this.blendEquation=t.blendEquation,this.blendSrcAlpha=t.blendSrcAlpha,this.blendDstAlpha=t.blendDstAlpha,this.blendEquationAlpha=t.blendEquationAlpha,this.depthFunc=t.depthFunc,this.depthTest=t.depthTest,this.depthWrite=t.depthWrite,this.stencilWriteMask=t.stencilWriteMask,this.stencilFunc=t.stencilFunc,this.stencilRef=t.stencilRef,this.stencilFuncMask=t.stencilFuncMask,this.stencilFail=t.stencilFail,this.stencilZFail=t.stencilZFail,this.stencilZPass=t.stencilZPass,this.stencilWrite=t.stencilWrite;const e=t.clippingPlanes;let n=null;if(null!==e){const t=e.length;n=new Array(t);for(let i=0;i!==t;++i)n[i]=e[i].clone()}return this.clippingPlanes=n,this.clipIntersection=t.clipIntersection,this.clipShadows=t.clipShadows,this.shadowSide=t.shadowSide,this.colorWrite=t.colorWrite,this.precision=t.precision,this.polygonOffset=t.polygonOffset,this.polygonOffsetFactor=t.polygonOffsetFactor,this.polygonOffsetUnits=t.polygonOffsetUnits,this.dithering=t.dithering,this.alphaTest=t.alphaTest,this.alphaToCoverage=t.alphaToCoverage,this.premultipliedAlpha=t.premultipliedAlpha,this.visible=t.visible,this.toneMapped=t.toneMapped,this.userData=JSON.parse(JSON.stringify(t.userData)),this}dispose(){this.dispatchEvent({type:"dispose"})}set needsUpdate(t){!0===t&&this.version++}}Ve.prototype.isMaterial=!0;const We={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074},je={h:0,s:0,l:0},qe={h:0,s:0,l:0};function Xe(t,e,n){return n<0&&(n+=1),n>1&&(n-=1),n<1/6?t+6*(e-t)*n:n<.5?e:n<2/3?t+6*(e-t)*(2/3-n):t}function Je(t){return t<.04045?.0773993808*t:Math.pow(.9478672986*t+.0521327014,2.4)}function Ye(t){return t<.0031308?12.92*t:1.055*Math.pow(t,.41666)-.055}class Ze{constructor(t,e,n){return void 0===e&&void 0===n?this.set(t):this.setRGB(t,e,n)}set(t){return t&&t.isColor?this.copy(t):"number"==typeof t?this.setHex(t):"string"==typeof t&&this.setStyle(t),this}setScalar(t){return this.r=t,this.g=t,this.b=t,this}setHex(t){return t=Math.floor(t),this.r=(t>>16&255)/255,this.g=(t>>8&255)/255,this.b=(255&t)/255,this}setRGB(t,e,n){return this.r=t,this.g=e,this.b=n,this}setHSL(t,e,n){if(t=at(t,1),e=st(e,0,1),n=st(n,0,1),0===e)this.r=this.g=this.b=n;else{const i=n<=.5?n*(1+e):n+e-n*e,r=2*n-i;this.r=Xe(r,i,t+1/3),this.g=Xe(r,i,t),this.b=Xe(r,i,t-1/3)}return this}setStyle(t){function e(e){void 0!==e&&parseFloat(e)<1&&console.warn("THREE.Color: Alpha component of "+t+" will be ignored.")}let n;if(n=/^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(t)){let t;const i=n[1],r=n[2];switch(i){case"rgb":case"rgba":if(t=/^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(r))return this.r=Math.min(255,parseInt(t[1],10))/255,this.g=Math.min(255,parseInt(t[2],10))/255,this.b=Math.min(255,parseInt(t[3],10))/255,e(t[4]),this;if(t=/^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(r))return this.r=Math.min(100,parseInt(t[1],10))/100,this.g=Math.min(100,parseInt(t[2],10))/100,this.b=Math.min(100,parseInt(t[3],10))/100,e(t[4]),this;break;case"hsl":case"hsla":if(t=/^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(r)){const n=parseFloat(t[1])/360,i=parseInt(t[2],10)/100,r=parseInt(t[3],10)/100;return e(t[4]),this.setHSL(n,i,r)}}}else if(n=/^\#([A-Fa-f\d]+)$/.exec(t)){const t=n[1],e=t.length;if(3===e)return this.r=parseInt(t.charAt(0)+t.charAt(0),16)/255,this.g=parseInt(t.charAt(1)+t.charAt(1),16)/255,this.b=parseInt(t.charAt(2)+t.charAt(2),16)/255,this;if(6===e)return this.r=parseInt(t.charAt(0)+t.charAt(1),16)/255,this.g=parseInt(t.charAt(2)+t.charAt(3),16)/255,this.b=parseInt(t.charAt(4)+t.charAt(5),16)/255,this}return t&&t.length>0?this.setColorName(t):this}setColorName(t){const e=We[t.toLowerCase()];return void 0!==e?this.setHex(e):console.warn("THREE.Color: Unknown color "+t),this}clone(){return new this.constructor(this.r,this.g,this.b)}copy(t){return this.r=t.r,this.g=t.g,this.b=t.b,this}copySRGBToLinear(t){return this.r=Je(t.r),this.g=Je(t.g),this.b=Je(t.b),this}copyLinearToSRGB(t){return this.r=Ye(t.r),this.g=Ye(t.g),this.b=Ye(t.b),this}convertSRGBToLinear(){return this.copySRGBToLinear(this),this}convertLinearToSRGB(){return this.copyLinearToSRGB(this),this}getHex(){return 255*this.r<<16^255*this.g<<8^255*this.b<<0}getHexString(){return("000000"+this.getHex().toString(16)).slice(-6)}getHSL(t){const e=this.r,n=this.g,i=this.b,r=Math.max(e,n,i),s=Math.min(e,n,i);let a,o;const l=(s+r)/2;if(s===r)a=0,o=0;else{const t=r-s;switch(o=l<=.5?t/(r+s):t/(2-r-s),r){case e:a=(n-i)/t+(n65535?ln:an)(t,1):this.index=t,this}getAttribute(t){return this.attributes[t]}setAttribute(t,e){return this.attributes[t]=e,this}deleteAttribute(t){return delete this.attributes[t],this}hasAttribute(t){return void 0!==this.attributes[t]}addGroup(t,e,n=0){this.groups.push({start:t,count:e,materialIndex:n})}clearGroups(){this.groups=[]}setDrawRange(t,e){this.drawRange.start=t,this.drawRange.count=e}applyMatrix4(t){const e=this.attributes.position;void 0!==e&&(e.applyMatrix4(t),e.needsUpdate=!0);const n=this.attributes.normal;if(void 0!==n){const e=(new pt).getNormalMatrix(t);n.applyNormalMatrix(e),n.needsUpdate=!0}const i=this.attributes.tangent;return void 0!==i&&(i.transformDirection(t),i.needsUpdate=!0),null!==this.boundingBox&&this.computeBoundingBox(),null!==this.boundingSphere&&this.computeBoundingSphere(),this}applyQuaternion(t){return pn.makeRotationFromQuaternion(t),this.applyMatrix4(pn),this}rotateX(t){return pn.makeRotationX(t),this.applyMatrix4(pn),this}rotateY(t){return pn.makeRotationY(t),this.applyMatrix4(pn),this}rotateZ(t){return pn.makeRotationZ(t),this.applyMatrix4(pn),this}translate(t,e,n){return pn.makeTranslation(t,e,n),this.applyMatrix4(pn),this}scale(t,e,n){return pn.makeScale(t,e,n),this.applyMatrix4(pn),this}lookAt(t){return mn.lookAt(t),mn.updateMatrix(),this.applyMatrix4(mn.matrix),this}center(){return this.computeBoundingBox(),this.boundingBox.getCenter(fn).negate(),this.translate(fn.x,fn.y,fn.z),this}setFromPoints(t){const e=[];for(let n=0,i=t.length;n0&&(t.userData=this.userData),void 0!==this.parameters){const e=this.parameters;for(const n in e)void 0!==e[n]&&(t[n]=e[n]);return t}t.data={attributes:{}};const e=this.index;null!==e&&(t.data.index={type:e.array.constructor.name,array:Array.prototype.slice.call(e.array)});const n=this.attributes;for(const e in n){const i=n[e];t.data.attributes[e]=i.toJSON(t.data)}const i={};let r=!1;for(const e in this.morphAttributes){const n=this.morphAttributes[e],s=[];for(let e=0,i=n.length;e0&&(i[e]=s,r=!0)}r&&(t.data.morphAttributes=i,t.data.morphTargetsRelative=this.morphTargetsRelative);const s=this.groups;s.length>0&&(t.data.groups=JSON.parse(JSON.stringify(s)));const a=this.boundingSphere;return null!==a&&(t.data.boundingSphere={center:a.center.toArray(),radius:a.radius}),t}clone(){return(new this.constructor).copy(this)}copy(t){this.index=null,this.attributes={},this.morphAttributes={},this.groups=[],this.boundingBox=null,this.boundingSphere=null;const e={};this.name=t.name;const n=t.index;null!==n&&this.setIndex(n.clone(e));const i=t.attributes;for(const t in i){const n=i[t];this.setAttribute(t,n.clone(e))}const r=t.morphAttributes;for(const t in r){const n=[],i=r[t];for(let t=0,r=i.length;t0){const t=e[n[0]];if(void 0!==t){this.morphTargetInfluences=[],this.morphTargetDictionary={};for(let e=0,n=t.length;e0&&console.error("THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.")}}raycast(t,e){const n=this.geometry,i=this.material,r=this.matrixWorld;if(void 0===i)return;if(null===n.boundingSphere&&n.computeBoundingSphere(),Mn.copy(n.boundingSphere),Mn.applyMatrix4(r),!1===t.ray.intersectsSphere(Mn))return;if(_n.copy(r).invert(),bn.copy(t.ray).applyMatrix4(_n),null!==n.boundingBox&&!1===bn.intersectsBox(n.boundingBox))return;let s;if(n.isBufferGeometry){const r=n.index,a=n.attributes.position,o=n.morphAttributes.position,l=n.morphTargetsRelative,c=n.attributes.uv,h=n.attributes.uv2,u=n.groups,d=n.drawRange;if(null!==r)if(Array.isArray(i))for(let n=0,p=u.length;nn.far?null:{distance:c,point:Bn.clone(),object:t}}(t,e,n,i,wn,Sn,Tn,zn);if(p){o&&(Dn.fromBufferAttribute(o,c),In.fromBufferAttribute(o,h),Nn.fromBufferAttribute(o,u),p.uv=Ge.getUV(zn,wn,Sn,Tn,Dn,In,Nn,new dt)),l&&(Dn.fromBufferAttribute(l,c),In.fromBufferAttribute(l,h),Nn.fromBufferAttribute(l,u),p.uv2=Ge.getUV(zn,wn,Sn,Tn,Dn,In,Nn,new dt));const t={a:c,b:h,c:u,normal:new Lt,materialIndex:0};Ge.getNormal(wn,Sn,Tn,t.normal),p.face=t}return p}Fn.prototype.isMesh=!0;class Un extends xn{constructor(t=1,e=1,n=1,i=1,r=1,s=1){super(),this.type="BoxGeometry",this.parameters={width:t,height:e,depth:n,widthSegments:i,heightSegments:r,depthSegments:s};const a=this;i=Math.floor(i),r=Math.floor(r),s=Math.floor(s);const o=[],l=[],c=[],h=[];let u=0,d=0;function p(t,e,n,i,r,s,p,m,f,g,v){const y=s/f,x=p/g,_=s/2,b=p/2,M=m/2,w=f+1,S=g+1;let T=0,E=0;const A=new Lt;for(let s=0;s0?1:-1,c.push(A.x,A.y,A.z),h.push(o/f),h.push(1-s/g),T+=1}}for(let t=0;t0&&(e.defines=this.defines),e.vertexShader=this.vertexShader,e.fragmentShader=this.fragmentShader;const n={};for(const t in this.extensions)!0===this.extensions[t]&&(n[t]=!0);return Object.keys(n).length>0&&(e.extensions=n),e}}Vn.prototype.isShaderMaterial=!0;class Wn extends Ce{constructor(){super(),this.type="Camera",this.matrixWorldInverse=new se,this.projectionMatrix=new se,this.projectionMatrixInverse=new se}copy(t,e){return super.copy(t,e),this.matrixWorldInverse.copy(t.matrixWorldInverse),this.projectionMatrix.copy(t.projectionMatrix),this.projectionMatrixInverse.copy(t.projectionMatrixInverse),this}getWorldDirection(t){this.updateWorldMatrix(!0,!1);const e=this.matrixWorld.elements;return t.set(-e[8],-e[9],-e[10]).normalize()}updateMatrixWorld(t){super.updateMatrixWorld(t),this.matrixWorldInverse.copy(this.matrixWorld).invert()}updateWorldMatrix(t,e){super.updateWorldMatrix(t,e),this.matrixWorldInverse.copy(this.matrixWorld).invert()}clone(){return(new this.constructor).copy(this)}}Wn.prototype.isCamera=!0;class jn extends Wn{constructor(t=50,e=1,n=.1,i=2e3){super(),this.type="PerspectiveCamera",this.fov=t,this.zoom=1,this.near=n,this.far=i,this.focus=10,this.aspect=e,this.view=null,this.filmGauge=35,this.filmOffset=0,this.updateProjectionMatrix()}copy(t,e){return super.copy(t,e),this.fov=t.fov,this.zoom=t.zoom,this.near=t.near,this.far=t.far,this.focus=t.focus,this.aspect=t.aspect,this.view=null===t.view?null:Object.assign({},t.view),this.filmGauge=t.filmGauge,this.filmOffset=t.filmOffset,this}setFocalLength(t){const e=.5*this.getFilmHeight()/t;this.fov=2*it*Math.atan(e),this.updateProjectionMatrix()}getFocalLength(){const t=Math.tan(.5*nt*this.fov);return.5*this.getFilmHeight()/t}getEffectiveFOV(){return 2*it*Math.atan(Math.tan(.5*nt*this.fov)/this.zoom)}getFilmWidth(){return this.filmGauge*Math.min(this.aspect,1)}getFilmHeight(){return this.filmGauge/Math.max(this.aspect,1)}setViewOffset(t,e,n,i,r,s){this.aspect=t/e,null===this.view&&(this.view={enabled:!0,fullWidth:1,fullHeight:1,offsetX:0,offsetY:0,width:1,height:1}),this.view.enabled=!0,this.view.fullWidth=t,this.view.fullHeight=e,this.view.offsetX=n,this.view.offsetY=i,this.view.width=r,this.view.height=s,this.updateProjectionMatrix()}clearViewOffset(){null!==this.view&&(this.view.enabled=!1),this.updateProjectionMatrix()}updateProjectionMatrix(){const t=this.near;let e=t*Math.tan(.5*nt*this.fov)/this.zoom,n=2*e,i=this.aspect*n,r=-.5*i;const s=this.view;if(null!==this.view&&this.view.enabled){const t=s.fullWidth,a=s.fullHeight;r+=s.offsetX*i/t,e-=s.offsetY*n/a,i*=s.width/t,n*=s.height/a}const a=this.filmOffset;0!==a&&(r+=t*a/this.getFilmWidth()),this.projectionMatrix.makePerspective(r,r+i,e,e-n,t,this.far),this.projectionMatrixInverse.copy(this.projectionMatrix).invert()}toJSON(t){const e=super.toJSON(t);return e.object.fov=this.fov,e.object.zoom=this.zoom,e.object.near=this.near,e.object.far=this.far,e.object.focus=this.focus,e.object.aspect=this.aspect,null!==this.view&&(e.object.view=Object.assign({},this.view)),e.object.filmGauge=this.filmGauge,e.object.filmOffset=this.filmOffset,e}}jn.prototype.isPerspectiveCamera=!0;const qn=90;class Xn extends Ce{constructor(t,e,n){if(super(),this.type="CubeCamera",!0!==n.isWebGLCubeRenderTarget)return void console.error("THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.");this.renderTarget=n;const i=new jn(qn,1,t,e);i.layers=this.layers,i.up.set(0,-1,0),i.lookAt(new Lt(1,0,0)),this.add(i);const r=new jn(qn,1,t,e);r.layers=this.layers,r.up.set(0,-1,0),r.lookAt(new Lt(-1,0,0)),this.add(r);const s=new jn(qn,1,t,e);s.layers=this.layers,s.up.set(0,0,1),s.lookAt(new Lt(0,1,0)),this.add(s);const a=new jn(qn,1,t,e);a.layers=this.layers,a.up.set(0,0,-1),a.lookAt(new Lt(0,-1,0)),this.add(a);const o=new jn(qn,1,t,e);o.layers=this.layers,o.up.set(0,-1,0),o.lookAt(new Lt(0,0,1)),this.add(o);const l=new jn(qn,1,t,e);l.layers=this.layers,l.up.set(0,-1,0),l.lookAt(new Lt(0,0,-1)),this.add(l)}update(t,e){null===this.parent&&this.updateMatrixWorld();const n=this.renderTarget,[i,r,s,a,o,l]=this.children,c=t.xr.enabled,h=t.getRenderTarget();t.xr.enabled=!1;const u=n.texture.generateMipmaps;n.texture.generateMipmaps=!1,t.setRenderTarget(n,0),t.render(e,i),t.setRenderTarget(n,1),t.render(e,r),t.setRenderTarget(n,2),t.render(e,s),t.setRenderTarget(n,3),t.render(e,a),t.setRenderTarget(n,4),t.render(e,o),n.texture.generateMipmaps=u,t.setRenderTarget(n,5),t.render(e,l),t.setRenderTarget(h),t.xr.enabled=c}}class Jn extends bt{constructor(t,e,n,i,s,a,o,l,c,h){super(t=void 0!==t?t:[],e=void 0!==e?e:r,n,i,s,a,o,l,c,h),this.flipY=!1}get images(){return this.image}set images(t){this.image=t}}Jn.prototype.isCubeTexture=!0;class Yn extends St{constructor(t,e,n){Number.isInteger(e)&&(console.warn("THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )"),e=n),super(t,t,e),e=e||{},this.texture=new Jn(void 0,e.mapping,e.wrapS,e.wrapT,e.magFilter,e.minFilter,e.format,e.type,e.anisotropy,e.encoding),this.texture.isRenderTargetTexture=!0,this.texture.generateMipmaps=void 0!==e.generateMipmaps&&e.generateMipmaps,this.texture.minFilter=void 0!==e.minFilter?e.minFilter:g,this.texture._needsFlipEnvMap=!1}fromEquirectangularTexture(t,e){this.texture.type=e.type,this.texture.format=E,this.texture.encoding=e.encoding,this.texture.generateMipmaps=e.generateMipmaps,this.texture.minFilter=e.minFilter,this.texture.magFilter=e.magFilter;const n={uniforms:{tEquirect:{value:null}},vertexShader:"\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\tvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\n\t\t\t\t\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n\n\t\t\t\t}\n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvWorldDirection = transformDirection( position, modelMatrix );\n\n\t\t\t\t\t#include \n\t\t\t\t\t#include \n\n\t\t\t\t}\n\t\t\t",fragmentShader:"\n\n\t\t\t\tuniform sampler2D tEquirect;\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\t#include \n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvec3 direction = normalize( vWorldDirection );\n\n\t\t\t\t\tvec2 sampleUV = equirectUv( direction );\n\n\t\t\t\t\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\n\t\t\t\t}\n\t\t\t"},i=new Un(5,5,5),r=new Vn({name:"CubemapFromEquirect",uniforms:Hn(n.uniforms),vertexShader:n.vertexShader,fragmentShader:n.fragmentShader,side:1,blending:0});r.uniforms.tEquirect.value=e;const s=new Fn(i,r),a=e.minFilter;e.minFilter===y&&(e.minFilter=g);return new Xn(1,10,this).update(t,s),e.minFilter=a,s.geometry.dispose(),s.material.dispose(),this}clear(t,e,n,i){const r=t.getRenderTarget();for(let r=0;r<6;r++)t.setRenderTarget(this,r),t.clear(e,n,i);t.setRenderTarget(r)}}Yn.prototype.isWebGLCubeRenderTarget=!0;const Zn=new Lt,Qn=new Lt,Kn=new pt;class $n{constructor(t=new Lt(1,0,0),e=0){this.normal=t,this.constant=e}set(t,e){return this.normal.copy(t),this.constant=e,this}setComponents(t,e,n,i){return this.normal.set(t,e,n),this.constant=i,this}setFromNormalAndCoplanarPoint(t,e){return this.normal.copy(t),this.constant=-e.dot(this.normal),this}setFromCoplanarPoints(t,e,n){const i=Zn.subVectors(n,e).cross(Qn.subVectors(t,e)).normalize();return this.setFromNormalAndCoplanarPoint(i,t),this}copy(t){return this.normal.copy(t.normal),this.constant=t.constant,this}normalize(){const t=1/this.normal.length();return this.normal.multiplyScalar(t),this.constant*=t,this}negate(){return this.constant*=-1,this.normal.negate(),this}distanceToPoint(t){return this.normal.dot(t)+this.constant}distanceToSphere(t){return this.distanceToPoint(t.center)-t.radius}projectPoint(t,e){return e.copy(this.normal).multiplyScalar(-this.distanceToPoint(t)).add(t)}intersectLine(t,e){const n=t.delta(Zn),i=this.normal.dot(n);if(0===i)return 0===this.distanceToPoint(t.start)?e.copy(t.start):null;const r=-(t.start.dot(this.normal)+this.constant)/i;return r<0||r>1?null:e.copy(n).multiplyScalar(r).add(t.start)}intersectsLine(t){const e=this.distanceToPoint(t.start),n=this.distanceToPoint(t.end);return e<0&&n>0||n<0&&e>0}intersectsBox(t){return t.intersectsPlane(this)}intersectsSphere(t){return t.intersectsPlane(this)}coplanarPoint(t){return t.copy(this.normal).multiplyScalar(-this.constant)}applyMatrix4(t,e){const n=e||Kn.getNormalMatrix(t),i=this.coplanarPoint(Zn).applyMatrix4(t),r=this.normal.applyMatrix3(n).normalize();return this.constant=-i.dot(r),this}translate(t){return this.constant-=t.dot(this.normal),this}equals(t){return t.normal.equals(this.normal)&&t.constant===this.constant}clone(){return(new this.constructor).copy(this)}}$n.prototype.isPlane=!0;const ti=new Zt,ei=new Lt;class ni{constructor(t=new $n,e=new $n,n=new $n,i=new $n,r=new $n,s=new $n){this.planes=[t,e,n,i,r,s]}set(t,e,n,i,r,s){const a=this.planes;return a[0].copy(t),a[1].copy(e),a[2].copy(n),a[3].copy(i),a[4].copy(r),a[5].copy(s),this}copy(t){const e=this.planes;for(let n=0;n<6;n++)e[n].copy(t.planes[n]);return this}setFromProjectionMatrix(t){const e=this.planes,n=t.elements,i=n[0],r=n[1],s=n[2],a=n[3],o=n[4],l=n[5],c=n[6],h=n[7],u=n[8],d=n[9],p=n[10],m=n[11],f=n[12],g=n[13],v=n[14],y=n[15];return e[0].setComponents(a-i,h-o,m-u,y-f).normalize(),e[1].setComponents(a+i,h+o,m+u,y+f).normalize(),e[2].setComponents(a+r,h+l,m+d,y+g).normalize(),e[3].setComponents(a-r,h-l,m-d,y-g).normalize(),e[4].setComponents(a-s,h-c,m-p,y-v).normalize(),e[5].setComponents(a+s,h+c,m+p,y+v).normalize(),this}intersectsObject(t){const e=t.geometry;return null===e.boundingSphere&&e.computeBoundingSphere(),ti.copy(e.boundingSphere).applyMatrix4(t.matrixWorld),this.intersectsSphere(ti)}intersectsSprite(t){return ti.center.set(0,0,0),ti.radius=.7071067811865476,ti.applyMatrix4(t.matrixWorld),this.intersectsSphere(ti)}intersectsSphere(t){const e=this.planes,n=t.center,i=-t.radius;for(let t=0;t<6;t++){if(e[t].distanceToPoint(n)0?t.max.x:t.min.x,ei.y=i.normal.y>0?t.max.y:t.min.y,ei.z=i.normal.z>0?t.max.z:t.min.z,i.distanceToPoint(ei)<0)return!1}return!0}containsPoint(t){const e=this.planes;for(let n=0;n<6;n++)if(e[n].distanceToPoint(t)<0)return!1;return!0}clone(){return(new this.constructor).copy(this)}}function ii(){let t=null,e=!1,n=null,i=null;function r(e,s){n(e,s),i=t.requestAnimationFrame(r)}return{start:function(){!0!==e&&null!==n&&(i=t.requestAnimationFrame(r),e=!0)},stop:function(){t.cancelAnimationFrame(i),e=!1},setAnimationLoop:function(t){n=t},setContext:function(e){t=e}}}function ri(t,e){const n=e.isWebGL2,i=new WeakMap;return{get:function(t){return t.isInterleavedBufferAttribute&&(t=t.data),i.get(t)},remove:function(e){e.isInterleavedBufferAttribute&&(e=e.data);const n=i.get(e);n&&(t.deleteBuffer(n.buffer),i.delete(e))},update:function(e,r){if(e.isGLBufferAttribute){const t=i.get(e);return void((!t||t.version 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif",bumpmap_pars_fragment:"#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif",clipping_planes_fragment:"#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif",clipping_planes_pars_fragment:"#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif",clipping_planes_pars_vertex:"#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif",clipping_planes_vertex:"#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif",color_fragment:"#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif",color_pars_fragment:"#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif",color_pars_vertex:"#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif",color_vertex:"#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif",common:"#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}",cube_uv_reflection_fragment:"#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 ) + 0.5;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\treturn texture2D( envMap, uv ).rgb;\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif",defaultnormal_vertex:"vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif",displacementmap_pars_vertex:"#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif",displacementmap_vertex:"#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif",emissivemap_fragment:"#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif",emissivemap_pars_fragment:"#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif",encodings_fragment:"gl_FragColor = linearToOutputTexel( gl_FragColor );",encodings_pars_fragment:"vec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}",envmap_fragment:"#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif",envmap_common_pars_fragment:"#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif",envmap_pars_fragment:"#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif",envmap_pars_vertex:"#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif",envmap_physical_pars_fragment:"#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif",envmap_vertex:"#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif",fog_vertex:"#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif",fog_pars_vertex:"#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif",fog_fragment:"#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif",fog_pars_fragment:"#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif",gradientmap_pars_fragment:"#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}",lightmap_fragment:"#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif",lightmap_pars_fragment:"#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif",lights_lambert_vertex:"vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif",lights_pars_begin:"uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif",lights_toon_fragment:"ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;",lights_toon_pars_fragment:"varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)",lights_phong_fragment:"BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;",lights_phong_pars_fragment:"varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)",lights_physical_fragment:"PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARCOLORMAP\n\t\t\tspecularColorFactor *= specularColorMapTexelToLinear( texture2D( specularColorMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tmaterial.sheenColor *= sheenColorMapTexelToLinear( texture2D( sheenColorMap, vUv ) ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a;\n\t#endif\n#endif",lights_physical_pars_fragment:"struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec3 sheenSpecular = vec3( 0.0 );\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3(\t\t0, 1,\t\t0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}",lights_fragment_begin:"\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif",lights_fragment_maps:"#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif",lights_fragment_end:"#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif",logdepthbuf_fragment:"#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif",logdepthbuf_pars_fragment:"#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif",logdepthbuf_pars_vertex:"#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif",logdepthbuf_vertex:"#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif",map_fragment:"#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif",map_pars_fragment:"#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif",map_particle_fragment:"#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif",map_particle_pars_fragment:"#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif",metalnessmap_fragment:"float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif",metalnessmap_pars_fragment:"#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif",morphnormal_vertex:"#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif",morphtarget_pars_vertex:"#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif",morphtarget_vertex:"#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif",normal_fragment_begin:"float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;",normal_fragment_maps:"#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif",normal_pars_fragment:"#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif",normal_pars_vertex:"#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif",normal_vertex:"#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif",normalmap_pars_fragment:"#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif",clearcoat_normal_fragment_begin:"#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif",clearcoat_normal_fragment_maps:"#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif",clearcoat_pars_fragment:"#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif",output_fragment:"#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );",packing:"vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}",premultiplied_alpha_fragment:"#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif",project_vertex:"vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;",dithering_fragment:"#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif",dithering_pars_fragment:"#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif",roughnessmap_fragment:"float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif",roughnessmap_pars_fragment:"#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif",shadowmap_pars_fragment:"#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t\tf.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t\tf.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif",shadowmap_pars_vertex:"#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif",shadowmap_vertex:"#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif",shadowmask_pars_fragment:"float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}",skinbase_vertex:"#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif",skinning_pars_vertex:"#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif",skinning_vertex:"#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif",skinnormal_vertex:"#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif",specularmap_fragment:"float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif",specularmap_pars_fragment:"#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif",tonemapping_fragment:"#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif",tonemapping_pars_fragment:"#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3(\t1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108,\t1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605,\t1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }",transmission_fragment:"#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif",transmission_pars_fragment:"#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif",uv_pars_fragment:"#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif",uv_pars_vertex:"#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif",uv_vertex:"#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif",uv2_pars_fragment:"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif",uv2_pars_vertex:"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif",uv2_vertex:"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif",worldpos_vertex:"#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif",background_vert:"varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}",background_frag:"uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}",cube_vert:"varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}",cube_frag:"#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}",depth_vert:"#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}",depth_frag:"#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}",distanceRGBA_vert:"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}",distanceRGBA_frag:"#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}",equirect_vert:"varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}",equirect_frag:"uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}",linedashed_vert:"uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",linedashed_frag:"uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshbasic_vert:"#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshbasic_frag:"uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshlambert_vert:"#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshlambert_frag:"uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshmatcap_vert:"#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}",meshmatcap_frag:"#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshnormal_vert:"#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}",meshnormal_frag:"#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}",meshphong_vert:"#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}",meshphong_frag:"#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshphysical_vert:"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}",meshphysical_frag:"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshtoon_vert:"#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}",meshtoon_frag:"#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",points_vert:"uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}",points_frag:"uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",shadow_vert:"#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",shadow_frag:"uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}",sprite_vert:"uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}",sprite_frag:"uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"},oi={common:{diffuse:{value:new Ze(16777215)},opacity:{value:1},map:{value:null},uvTransform:{value:new pt},uv2Transform:{value:new pt},alphaMap:{value:null},alphaTest:{value:0}},specularmap:{specularMap:{value:null}},envmap:{envMap:{value:null},flipEnvMap:{value:-1},reflectivity:{value:1},ior:{value:1.5},refractionRatio:{value:.98}},aomap:{aoMap:{value:null},aoMapIntensity:{value:1}},lightmap:{lightMap:{value:null},lightMapIntensity:{value:1}},emissivemap:{emissiveMap:{value:null}},bumpmap:{bumpMap:{value:null},bumpScale:{value:1}},normalmap:{normalMap:{value:null},normalScale:{value:new dt(1,1)}},displacementmap:{displacementMap:{value:null},displacementScale:{value:1},displacementBias:{value:0}},roughnessmap:{roughnessMap:{value:null}},metalnessmap:{metalnessMap:{value:null}},gradientmap:{gradientMap:{value:null}},fog:{fogDensity:{value:25e-5},fogNear:{value:1},fogFar:{value:2e3},fogColor:{value:new Ze(16777215)}},lights:{ambientLightColor:{value:[]},lightProbe:{value:[]},directionalLights:{value:[],properties:{direction:{},color:{}}},directionalLightShadows:{value:[],properties:{shadowBias:{},shadowNormalBias:{},shadowRadius:{},shadowMapSize:{}}},directionalShadowMap:{value:[]},directionalShadowMatrix:{value:[]},spotLights:{value:[],properties:{color:{},position:{},direction:{},distance:{},coneCos:{},penumbraCos:{},decay:{}}},spotLightShadows:{value:[],properties:{shadowBias:{},shadowNormalBias:{},shadowRadius:{},shadowMapSize:{}}},spotShadowMap:{value:[]},spotShadowMatrix:{value:[]},pointLights:{value:[],properties:{color:{},position:{},decay:{},distance:{}}},pointLightShadows:{value:[],properties:{shadowBias:{},shadowNormalBias:{},shadowRadius:{},shadowMapSize:{},shadowCameraNear:{},shadowCameraFar:{}}},pointShadowMap:{value:[]},pointShadowMatrix:{value:[]},hemisphereLights:{value:[],properties:{direction:{},skyColor:{},groundColor:{}}},rectAreaLights:{value:[],properties:{color:{},position:{},width:{},height:{}}},ltc_1:{value:null},ltc_2:{value:null}},points:{diffuse:{value:new Ze(16777215)},opacity:{value:1},size:{value:1},scale:{value:1},map:{value:null},alphaMap:{value:null},alphaTest:{value:0},uvTransform:{value:new pt}},sprite:{diffuse:{value:new Ze(16777215)},opacity:{value:1},center:{value:new dt(.5,.5)},rotation:{value:0},map:{value:null},alphaMap:{value:null},alphaTest:{value:0},uvTransform:{value:new pt}}},li={basic:{uniforms:Gn([oi.common,oi.specularmap,oi.envmap,oi.aomap,oi.lightmap,oi.fog]),vertexShader:ai.meshbasic_vert,fragmentShader:ai.meshbasic_frag},lambert:{uniforms:Gn([oi.common,oi.specularmap,oi.envmap,oi.aomap,oi.lightmap,oi.emissivemap,oi.fog,oi.lights,{emissive:{value:new Ze(0)}}]),vertexShader:ai.meshlambert_vert,fragmentShader:ai.meshlambert_frag},phong:{uniforms:Gn([oi.common,oi.specularmap,oi.envmap,oi.aomap,oi.lightmap,oi.emissivemap,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.fog,oi.lights,{emissive:{value:new Ze(0)},specular:{value:new Ze(1118481)},shininess:{value:30}}]),vertexShader:ai.meshphong_vert,fragmentShader:ai.meshphong_frag},standard:{uniforms:Gn([oi.common,oi.envmap,oi.aomap,oi.lightmap,oi.emissivemap,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.roughnessmap,oi.metalnessmap,oi.fog,oi.lights,{emissive:{value:new Ze(0)},roughness:{value:1},metalness:{value:0},envMapIntensity:{value:1}}]),vertexShader:ai.meshphysical_vert,fragmentShader:ai.meshphysical_frag},toon:{uniforms:Gn([oi.common,oi.aomap,oi.lightmap,oi.emissivemap,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.gradientmap,oi.fog,oi.lights,{emissive:{value:new Ze(0)}}]),vertexShader:ai.meshtoon_vert,fragmentShader:ai.meshtoon_frag},matcap:{uniforms:Gn([oi.common,oi.bumpmap,oi.normalmap,oi.displacementmap,oi.fog,{matcap:{value:null}}]),vertexShader:ai.meshmatcap_vert,fragmentShader:ai.meshmatcap_frag},points:{uniforms:Gn([oi.points,oi.fog]),vertexShader:ai.points_vert,fragmentShader:ai.points_frag},dashed:{uniforms:Gn([oi.common,oi.fog,{scale:{value:1},dashSize:{value:1},totalSize:{value:2}}]),vertexShader:ai.linedashed_vert,fragmentShader:ai.linedashed_frag},depth:{uniforms:Gn([oi.common,oi.displacementmap]),vertexShader:ai.depth_vert,fragmentShader:ai.depth_frag},normal:{uniforms:Gn([oi.common,oi.bumpmap,oi.normalmap,oi.displacementmap,{opacity:{value:1}}]),vertexShader:ai.meshnormal_vert,fragmentShader:ai.meshnormal_frag},sprite:{uniforms:Gn([oi.sprite,oi.fog]),vertexShader:ai.sprite_vert,fragmentShader:ai.sprite_frag},background:{uniforms:{uvTransform:{value:new pt},t2D:{value:null}},vertexShader:ai.background_vert,fragmentShader:ai.background_frag},cube:{uniforms:Gn([oi.envmap,{opacity:{value:1}}]),vertexShader:ai.cube_vert,fragmentShader:ai.cube_frag},equirect:{uniforms:{tEquirect:{value:null}},vertexShader:ai.equirect_vert,fragmentShader:ai.equirect_frag},distanceRGBA:{uniforms:Gn([oi.common,oi.displacementmap,{referencePosition:{value:new Lt},nearDistance:{value:1},farDistance:{value:1e3}}]),vertexShader:ai.distanceRGBA_vert,fragmentShader:ai.distanceRGBA_frag},shadow:{uniforms:Gn([oi.lights,oi.fog,{color:{value:new Ze(0)},opacity:{value:1}}]),vertexShader:ai.shadow_vert,fragmentShader:ai.shadow_frag}};function ci(t,e,n,i,r){const s=new Ze(0);let a,o,c=0,h=null,u=0,d=null;function p(t,e){n.buffers.color.setClear(t.r,t.g,t.b,e,r)}return{getClearColor:function(){return s},setClearColor:function(t,e=1){s.set(t),c=e,p(s,c)},getClearAlpha:function(){return c},setClearAlpha:function(t){c=t,p(s,c)},render:function(n,r){let m=!1,f=!0===r.isScene?r.background:null;f&&f.isTexture&&(f=e.get(f));const g=t.xr,v=g.getSession&&g.getSession();v&&"additive"===v.environmentBlendMode&&(f=null),null===f?p(s,c):f&&f.isColor&&(p(f,1),m=!0),(t.autoClear||m)&&t.clear(t.autoClearColor,t.autoClearDepth,t.autoClearStencil),f&&(f.isCubeTexture||f.mapping===l)?(void 0===o&&(o=new Fn(new Un(1,1,1),new Vn({name:"BackgroundCubeMaterial",uniforms:Hn(li.cube.uniforms),vertexShader:li.cube.vertexShader,fragmentShader:li.cube.fragmentShader,side:1,depthTest:!1,depthWrite:!1,fog:!1})),o.geometry.deleteAttribute("normal"),o.geometry.deleteAttribute("uv"),o.onBeforeRender=function(t,e,n){this.matrixWorld.copyPosition(n.matrixWorld)},Object.defineProperty(o.material,"envMap",{get:function(){return this.uniforms.envMap.value}}),i.update(o)),o.material.uniforms.envMap.value=f,o.material.uniforms.flipEnvMap.value=f.isCubeTexture&&!1===f.isRenderTargetTexture?-1:1,h===f&&u===f.version&&d===t.toneMapping||(o.material.needsUpdate=!0,h=f,u=f.version,d=t.toneMapping),n.unshift(o,o.geometry,o.material,0,0,null)):f&&f.isTexture&&(void 0===a&&(a=new Fn(new si(2,2),new Vn({name:"BackgroundMaterial",uniforms:Hn(li.background.uniforms),vertexShader:li.background.vertexShader,fragmentShader:li.background.fragmentShader,side:0,depthTest:!1,depthWrite:!1,fog:!1})),a.geometry.deleteAttribute("normal"),Object.defineProperty(a.material,"map",{get:function(){return this.uniforms.t2D.value}}),i.update(a)),a.material.uniforms.t2D.value=f,!0===f.matrixAutoUpdate&&f.updateMatrix(),a.material.uniforms.uvTransform.value.copy(f.matrix),h===f&&u===f.version&&d===t.toneMapping||(a.material.needsUpdate=!0,h=f,u=f.version,d=t.toneMapping),n.unshift(a,a.geometry,a.material,0,0,null))}}}function hi(t,e,n,i){const r=t.getParameter(34921),s=i.isWebGL2?null:e.get("OES_vertex_array_object"),a=i.isWebGL2||null!==s,o={},l=d(null);let c=l;function h(e){return i.isWebGL2?t.bindVertexArray(e):s.bindVertexArrayOES(e)}function u(e){return i.isWebGL2?t.deleteVertexArray(e):s.deleteVertexArrayOES(e)}function d(t){const e=[],n=[],i=[];for(let t=0;t=0){let s=l[e];if(void 0===s&&("instanceMatrix"===e&&r.instanceMatrix&&(s=r.instanceMatrix),"instanceColor"===e&&r.instanceColor&&(s=r.instanceColor)),void 0!==s){const e=s.normalized,a=s.itemSize,l=n.get(s);if(void 0===l)continue;const c=l.buffer,h=l.type,u=l.bytesPerElement;if(s.isInterleavedBufferAttribute){const n=s.data,l=n.stride,d=s.offset;if(n&&n.isInstancedInterleavedBuffer){for(let t=0;t0&&t.getShaderPrecisionFormat(35632,36338).precision>0)return"highp";e="mediump"}return"mediump"===e&&t.getShaderPrecisionFormat(35633,36337).precision>0&&t.getShaderPrecisionFormat(35632,36337).precision>0?"mediump":"lowp"}const s="undefined"!=typeof WebGL2RenderingContext&&t instanceof WebGL2RenderingContext||"undefined"!=typeof WebGL2ComputeRenderingContext&&t instanceof WebGL2ComputeRenderingContext;let a=void 0!==n.precision?n.precision:"highp";const o=r(a);o!==a&&(console.warn("THREE.WebGLRenderer:",a,"not supported, using",o,"instead."),a=o);const l=s||e.has("WEBGL_draw_buffers"),c=!0===n.logarithmicDepthBuffer,h=t.getParameter(34930),u=t.getParameter(35660),d=t.getParameter(3379),p=t.getParameter(34076),m=t.getParameter(34921),f=t.getParameter(36347),g=t.getParameter(36348),v=t.getParameter(36349),y=u>0,x=s||e.has("OES_texture_float");return{isWebGL2:s,drawBuffers:l,getMaxAnisotropy:function(){if(void 0!==i)return i;if(!0===e.has("EXT_texture_filter_anisotropic")){const n=e.get("EXT_texture_filter_anisotropic");i=t.getParameter(n.MAX_TEXTURE_MAX_ANISOTROPY_EXT)}else i=0;return i},getMaxPrecision:r,precision:a,logarithmicDepthBuffer:c,maxTextures:h,maxVertexTextures:u,maxTextureSize:d,maxCubemapSize:p,maxAttributes:m,maxVertexUniforms:f,maxVaryings:g,maxFragmentUniforms:v,vertexTextures:y,floatFragmentTextures:x,floatVertexTextures:y&&x,maxSamples:s?t.getParameter(36183):0}}function pi(t){const e=this;let n=null,i=0,r=!1,s=!1;const a=new $n,o=new pt,l={value:null,needsUpdate:!1};function c(){l.value!==n&&(l.value=n,l.needsUpdate=i>0),e.numPlanes=i,e.numIntersection=0}function h(t,n,i,r){const s=null!==t?t.length:0;let c=null;if(0!==s){if(c=l.value,!0!==r||null===c){const e=i+4*s,r=n.matrixWorldInverse;o.getNormalMatrix(r),(null===c||c.length0){const a=t.getRenderTarget(),o=new Yn(s.height/2);return o.fromEquirectangularTexture(t,r),e.set(r,o),t.setRenderTarget(a),r.addEventListener("dispose",i),n(o.texture,r.mapping)}return null}}}return r},dispose:function(){e=new WeakMap}}}li.physical={uniforms:Gn([li.standard.uniforms,{clearcoat:{value:0},clearcoatMap:{value:null},clearcoatRoughness:{value:0},clearcoatRoughnessMap:{value:null},clearcoatNormalScale:{value:new dt(1,1)},clearcoatNormalMap:{value:null},sheen:{value:0},sheenColor:{value:new Ze(0)},sheenColorMap:{value:null},sheenRoughness:{value:0},sheenRoughnessMap:{value:null},transmission:{value:0},transmissionMap:{value:null},transmissionSamplerSize:{value:new dt},transmissionSamplerMap:{value:null},thickness:{value:0},thicknessMap:{value:null},attenuationDistance:{value:0},attenuationColor:{value:new Ze(0)},specularIntensity:{value:0},specularIntensityMap:{value:null},specularColor:{value:new Ze(1,1,1)},specularColorMap:{value:null}}]),vertexShader:ai.meshphysical_vert,fragmentShader:ai.meshphysical_frag};class fi extends Wn{constructor(t=-1,e=1,n=1,i=-1,r=.1,s=2e3){super(),this.type="OrthographicCamera",this.zoom=1,this.view=null,this.left=t,this.right=e,this.top=n,this.bottom=i,this.near=r,this.far=s,this.updateProjectionMatrix()}copy(t,e){return super.copy(t,e),this.left=t.left,this.right=t.right,this.top=t.top,this.bottom=t.bottom,this.near=t.near,this.far=t.far,this.zoom=t.zoom,this.view=null===t.view?null:Object.assign({},t.view),this}setViewOffset(t,e,n,i,r,s){null===this.view&&(this.view={enabled:!0,fullWidth:1,fullHeight:1,offsetX:0,offsetY:0,width:1,height:1}),this.view.enabled=!0,this.view.fullWidth=t,this.view.fullHeight=e,this.view.offsetX=n,this.view.offsetY=i,this.view.width=r,this.view.height=s,this.updateProjectionMatrix()}clearViewOffset(){null!==this.view&&(this.view.enabled=!1),this.updateProjectionMatrix()}updateProjectionMatrix(){const t=(this.right-this.left)/(2*this.zoom),e=(this.top-this.bottom)/(2*this.zoom),n=(this.right+this.left)/2,i=(this.top+this.bottom)/2;let r=n-t,s=n+t,a=i+e,o=i-e;if(null!==this.view&&this.view.enabled){const t=(this.right-this.left)/this.view.fullWidth/this.zoom,e=(this.top-this.bottom)/this.view.fullHeight/this.zoom;r+=t*this.view.offsetX,s=r+t*this.view.width,a-=e*this.view.offsetY,o=a-e*this.view.height}this.projectionMatrix.makeOrthographic(r,s,a,o,this.near,this.far),this.projectionMatrixInverse.copy(this.projectionMatrix).invert()}toJSON(t){const e=super.toJSON(t);return e.object.zoom=this.zoom,e.object.left=this.left,e.object.right=this.right,e.object.top=this.top,e.object.bottom=this.bottom,e.object.near=this.near,e.object.far=this.far,null!==this.view&&(e.object.view=Object.assign({},this.view)),e}}fi.prototype.isOrthographicCamera=!0;class gi extends Vn{constructor(t){super(t),this.type="RawShaderMaterial"}}gi.prototype.isRawShaderMaterial=!0;const vi=Math.pow(2,8),yi=[.125,.215,.35,.446,.526,.582],xi=5+yi.length,_i=20,bi={[X]:0,[J]:1},Mi=new fi,{_lodPlanes:wi,_sizeLods:Si,_sigmas:Ti}=Di(),Ei=new Ze;let Ai=null;const Li=(1+Math.sqrt(5))/2,Ri=1/Li,Ci=[new Lt(1,1,1),new Lt(-1,1,1),new Lt(1,1,-1),new Lt(-1,1,-1),new Lt(0,Li,Ri),new Lt(0,Li,-Ri),new Lt(Ri,0,Li),new Lt(-Ri,0,Li),new Lt(Li,Ri,0),new Lt(-Li,Ri,0)];class Pi{constructor(t){this._renderer=t,this._pingPongRenderTarget=null,this._blurMaterial=function(t){const e=new Float32Array(t),n=new Lt(0,1,0);return new gi({name:"SphericalGaussianBlur",defines:{n:t},uniforms:{envMap:{value:null},samples:{value:1},weights:{value:e},latitudinal:{value:!1},dTheta:{value:0},mipInt:{value:0},poleAxis:{value:n}},vertexShader:Fi(),fragmentShader:`\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform int samples;\n\t\t\tuniform float weights[ n ];\n\t\t\tuniform bool latitudinal;\n\t\t\tuniform float dTheta;\n\t\t\tuniform float mipInt;\n\t\t\tuniform vec3 poleAxis;\n\n\t\t\t${Oi()}\n\n\t\t\t#define ENVMAP_TYPE_CUBE_UV\n\t\t\t#include \n\n\t\t\tvec3 getSample( float theta, vec3 axis ) {\n\n\t\t\t\tfloat cosTheta = cos( theta );\n\t\t\t\t// Rodrigues' axis-angle rotation\n\t\t\t\tvec3 sampleDirection = vOutputDirection * cosTheta\n\t\t\t\t\t+ cross( axis, vOutputDirection ) * sin( theta )\n\t\t\t\t\t+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );\n\n\t\t\t\treturn bilinearCubeUV( envMap, sampleDirection, mipInt );\n\n\t\t\t}\n\n\t\t\tvoid main() {\n\n\t\t\t\tvec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );\n\n\t\t\t\tif ( all( equal( axis, vec3( 0.0 ) ) ) ) {\n\n\t\t\t\t\taxis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );\n\n\t\t\t\t}\n\n\t\t\t\taxis = normalize( axis );\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );\n\n\t\t\t\tfor ( int i = 1; i < n; i++ ) {\n\n\t\t\t\t\tif ( i >= samples ) {\n\n\t\t\t\t\t\tbreak;\n\n\t\t\t\t\t}\n\n\t\t\t\t\tfloat theta = dTheta * float( i );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( theta, axis );\n\n\t\t\t\t}\n\n\t\t\t}\n\t\t`,blending:0,depthTest:!1,depthWrite:!1})}(_i),this._equirectShader=null,this._cubemapShader=null,this._compileMaterial(this._blurMaterial)}fromScene(t,e=0,n=.1,i=100){Ai=this._renderer.getRenderTarget();const r=this._allocateTargets();return this._sceneToCubeUV(t,n,i,r),e>0&&this._blur(r,0,0,e),this._applyPMREM(r),this._cleanup(r),r}fromEquirectangular(t){return this._fromTexture(t)}fromCubemap(t){return this._fromTexture(t)}compileCubemapShader(){null===this._cubemapShader&&(this._cubemapShader=Bi(),this._compileMaterial(this._cubemapShader))}compileEquirectangularShader(){null===this._equirectShader&&(this._equirectShader=zi(),this._compileMaterial(this._equirectShader))}dispose(){this._blurMaterial.dispose(),null!==this._cubemapShader&&this._cubemapShader.dispose(),null!==this._equirectShader&&this._equirectShader.dispose();for(let t=0;t2?vi:0,vi,vi),o.setRenderTarget(i),d&&o.render(u,r),o.render(t,r)}u.geometry.dispose(),u.material.dispose(),o.toneMapping=c,o.autoClear=l,t.background=p}_setEncoding(t,e){!0===this._renderer.capabilities.isWebGL2&&e.format===E&&e.type===x&&e.encoding===J?t.value=bi[3e3]:t.value=bi[e.encoding]}_textureToCubeUV(t,e){const n=this._renderer,i=t.mapping===r||t.mapping===s;i?null==this._cubemapShader&&(this._cubemapShader=Bi()):null==this._equirectShader&&(this._equirectShader=zi());const a=i?this._cubemapShader:this._equirectShader,o=new Fn(wi[0],a),l=a.uniforms;l.envMap.value=t,i||l.texelSize.value.set(1/t.image.width,1/t.image.height),this._setEncoding(l.inputEncoding,t),Ni(e,0,0,3*vi,2*vi),n.setRenderTarget(e),n.render(o,Mi)}_applyPMREM(t){const e=this._renderer,n=e.autoClear;e.autoClear=!1;for(let e=1;e_i&&console.warn(`sigmaRadians, ${r}, is too large and will clip, as it requested ${m} samples when the maximum is set to 20`);const f=[];let g=0;for(let t=0;t<_i;++t){const e=t/p,n=Math.exp(-e*e/2);f.push(n),0==t?g+=n:t4?i-8+4:0),3*v,2*v),o.setRenderTarget(e),o.render(c,Mi)}}function Di(){const t=[],e=[],n=[];let i=8;for(let r=0;r4?a=yi[r-8+4-1]:0==r&&(a=0),n.push(a);const o=1/(s-1),l=-o/2,c=1+o/2,h=[l,l,c,l,c,c,l,l,c,c,l,c],u=6,d=6,p=3,m=2,f=1,g=new Float32Array(p*d*u),v=new Float32Array(m*d*u),y=new Float32Array(f*d*u);for(let t=0;t2?0:-1,i=[e,n,0,e+2/3,n,0,e+2/3,n+1,0,e,n,0,e+2/3,n+1,0,e,n+1,0];g.set(i,p*d*t),v.set(h,m*d*t);const r=[t,t,t,t,t,t];y.set(r,f*d*t)}const x=new xn;x.setAttribute("position",new tn(g,p)),x.setAttribute("uv",new tn(v,m)),x.setAttribute("faceIndex",new tn(y,f)),t.push(x),i>4&&i--}return{_lodPlanes:t,_sizeLods:e,_sigmas:n}}function Ii(t){const e=new St(3*vi,3*vi,t);return e.texture.mapping=l,e.texture.name="PMREM.cubeUv",e.scissorTest=!0,e}function Ni(t,e,n,i,r){t.viewport.set(e,n,i,r),t.scissor.set(e,n,i,r)}function zi(){const t=new dt(1,1);return new gi({name:"EquirectangularToCubeUV",uniforms:{envMap:{value:null},texelSize:{value:t},inputEncoding:{value:bi[3e3]}},vertexShader:Fi(),fragmentShader:`\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform vec2 texelSize;\n\n\t\t\t${Oi()}\n\n\t\t\t#include \n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\n\t\t\t\tvec3 outputDirection = normalize( vOutputDirection );\n\t\t\t\tvec2 uv = equirectUv( outputDirection );\n\n\t\t\t\tvec2 f = fract( uv / texelSize - 0.5 );\n\t\t\t\tuv -= f * texelSize;\n\t\t\t\tvec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x += texelSize.x;\n\t\t\t\tvec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.y += texelSize.y;\n\t\t\t\tvec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x -= texelSize.x;\n\t\t\t\tvec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\n\t\t\t\tvec3 tm = mix( tl, tr, f.x );\n\t\t\t\tvec3 bm = mix( bl, br, f.x );\n\t\t\t\tgl_FragColor.rgb = mix( tm, bm, f.y );\n\n\t\t\t}\n\t\t`,blending:0,depthTest:!1,depthWrite:!1})}function Bi(){return new gi({name:"CubemapToCubeUV",uniforms:{envMap:{value:null},inputEncoding:{value:bi[3e3]}},vertexShader:Fi(),fragmentShader:`\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform samplerCube envMap;\n\n\t\t\t${Oi()}\n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) );\n\n\t\t\t}\n\t\t`,blending:0,depthTest:!1,depthWrite:!1})}function Fi(){return"\n\n\t\tprecision mediump float;\n\t\tprecision mediump int;\n\n\t\tattribute vec3 position;\n\t\tattribute vec2 uv;\n\t\tattribute float faceIndex;\n\n\t\tvarying vec3 vOutputDirection;\n\n\t\t// RH coordinate system; PMREM face-indexing convention\n\t\tvec3 getDirection( vec2 uv, float face ) {\n\n\t\t\tuv = 2.0 * uv - 1.0;\n\n\t\t\tvec3 direction = vec3( uv, 1.0 );\n\n\t\t\tif ( face == 0.0 ) {\n\n\t\t\t\tdirection = direction.zyx; // ( 1, v, u ) pos x\n\n\t\t\t} else if ( face == 1.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xz *= -1.0; // ( -u, 1, -v ) pos y\n\n\t\t\t} else if ( face == 2.0 ) {\n\n\t\t\t\tdirection.x *= -1.0; // ( -u, v, 1 ) pos z\n\n\t\t\t} else if ( face == 3.0 ) {\n\n\t\t\t\tdirection = direction.zyx;\n\t\t\t\tdirection.xz *= -1.0; // ( -1, v, -u ) neg x\n\n\t\t\t} else if ( face == 4.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xy *= -1.0; // ( -u, -1, v ) neg y\n\n\t\t\t} else if ( face == 5.0 ) {\n\n\t\t\t\tdirection.z *= -1.0; // ( u, v, -1 ) neg z\n\n\t\t\t}\n\n\t\t\treturn direction;\n\n\t\t}\n\n\t\tvoid main() {\n\n\t\t\tvOutputDirection = getDirection( uv, faceIndex );\n\t\t\tgl_Position = vec4( position, 1.0 );\n\n\t\t}\n\t"}function Oi(){return"\n\n\t\tuniform int inputEncoding;\n\n\t\t#include \n\n\t\tvec4 inputTexelToLinear( vec4 value ) {\n\n\t\t\tif ( inputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else {\n\n\t\t\t\treturn sRGBToLinear( value );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 envMapTexelToLinear( vec4 color ) {\n\n\t\t\treturn inputTexelToLinear( color );\n\n\t\t}\n\t"}function Ui(t){let e=new WeakMap,n=null;function i(t){const n=t.target;n.removeEventListener("dispose",i);const r=e.get(n);void 0!==r&&(e.delete(n),r.dispose())}return{get:function(l){if(l&&l.isTexture&&!1===l.isRenderTargetTexture){const c=l.mapping,h=c===a||c===o,u=c===r||c===s;if(h||u){if(e.has(l))return e.get(l).texture;{const r=l.image;if(h&&r&&r.height>0||u&&r&&function(t){let e=0;const n=6;for(let i=0;i65535?ln:an)(n,1);o.version=a;const l=s.get(t);l&&e.remove(l),s.set(t,o)}return{get:function(t,e){return!0===r[e.id]||(e.addEventListener("dispose",a),r[e.id]=!0,n.memory.geometries++),e},update:function(t){const n=t.attributes;for(const t in n)e.update(n[t],34962);const i=t.morphAttributes;for(const t in i){const n=i[t];for(let t=0,i=n.length;te.maxTextureSize&&(u=Math.ceil(h/e.maxTextureSize),h=e.maxTextureSize);const d=new Float32Array(h*u*4*i),p=new Wi(d,h,u,i);p.format=E,p.type=M,p.needsUpdate=!0;const m=4*l;for(let e=0;e0)return t;const r=e*n;let s=er[r];if(void 0===s&&(s=new Float32Array(r),er[r]=s),0!==e){i.toArray(s,0);for(let i=1,r=0;i!==e;++i)r+=n,t[i].toArray(s,r)}return s}function or(t,e){if(t.length!==e.length)return!1;for(let n=0,i=t.length;n/gm;function ds(t){return t.replace(us,ps)}function ps(t,e){const n=ai[e];if(void 0===n)throw new Error("Can not resolve #include <"+e+">");return ds(n)}const ms=/#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g,fs=/#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;function gs(t){return t.replace(fs,ys).replace(ms,vs)}function vs(t,e,n,i){return console.warn("WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead."),ys(t,e,n,i)}function ys(t,e,n,i){let r="";for(let t=parseInt(e);t0&&(x+="\n"),_=[g,v].filter(ls).join("\n"),_.length>0&&(_+="\n")):(x=[xs(n),"#define SHADER_NAME "+n.shaderName,v,n.instancing?"#define USE_INSTANCING":"",n.instancingColor?"#define USE_INSTANCING_COLOR":"",n.supportsVertexTextures?"#define VERTEX_TEXTURES":"","#define MAX_BONES "+n.maxBones,n.useFog&&n.fog?"#define USE_FOG":"",n.useFog&&n.fogExp2?"#define FOG_EXP2":"",n.map?"#define USE_MAP":"",n.envMap?"#define USE_ENVMAP":"",n.envMap?"#define "+m:"",n.lightMap?"#define USE_LIGHTMAP":"",n.aoMap?"#define USE_AOMAP":"",n.emissiveMap?"#define USE_EMISSIVEMAP":"",n.bumpMap?"#define USE_BUMPMAP":"",n.normalMap?"#define USE_NORMALMAP":"",n.normalMap&&n.objectSpaceNormalMap?"#define OBJECTSPACE_NORMALMAP":"",n.normalMap&&n.tangentSpaceNormalMap?"#define TANGENTSPACE_NORMALMAP":"",n.clearcoatMap?"#define USE_CLEARCOATMAP":"",n.clearcoatRoughnessMap?"#define USE_CLEARCOAT_ROUGHNESSMAP":"",n.clearcoatNormalMap?"#define USE_CLEARCOAT_NORMALMAP":"",n.displacementMap&&n.supportsVertexTextures?"#define USE_DISPLACEMENTMAP":"",n.specularMap?"#define USE_SPECULARMAP":"",n.specularIntensityMap?"#define USE_SPECULARINTENSITYMAP":"",n.specularColorMap?"#define USE_SPECULARCOLORMAP":"",n.roughnessMap?"#define USE_ROUGHNESSMAP":"",n.metalnessMap?"#define USE_METALNESSMAP":"",n.alphaMap?"#define USE_ALPHAMAP":"",n.transmission?"#define USE_TRANSMISSION":"",n.transmissionMap?"#define USE_TRANSMISSIONMAP":"",n.thicknessMap?"#define USE_THICKNESSMAP":"",n.sheenColorMap?"#define USE_SHEENCOLORMAP":"",n.sheenRoughnessMap?"#define USE_SHEENROUGHNESSMAP":"",n.vertexTangents?"#define USE_TANGENT":"",n.vertexColors?"#define USE_COLOR":"",n.vertexAlphas?"#define USE_COLOR_ALPHA":"",n.vertexUvs?"#define USE_UV":"",n.uvsVertexOnly?"#define UVS_VERTEX_ONLY":"",n.flatShading?"#define FLAT_SHADED":"",n.skinning?"#define USE_SKINNING":"",n.useVertexTexture?"#define BONE_TEXTURE":"",n.morphTargets?"#define USE_MORPHTARGETS":"",n.morphNormals&&!1===n.flatShading?"#define USE_MORPHNORMALS":"",n.morphTargets&&n.isWebGL2?"#define MORPHTARGETS_TEXTURE":"",n.morphTargets&&n.isWebGL2?"#define MORPHTARGETS_COUNT "+n.morphTargetsCount:"",n.doubleSided?"#define DOUBLE_SIDED":"",n.flipSided?"#define FLIP_SIDED":"",n.shadowMapEnabled?"#define USE_SHADOWMAP":"",n.shadowMapEnabled?"#define "+d:"",n.sizeAttenuation?"#define USE_SIZEATTENUATION":"",n.logarithmicDepthBuffer?"#define USE_LOGDEPTHBUF":"",n.logarithmicDepthBuffer&&n.rendererExtensionFragDepth?"#define USE_LOGDEPTHBUF_EXT":"","uniform mat4 modelMatrix;","uniform mat4 modelViewMatrix;","uniform mat4 projectionMatrix;","uniform mat4 viewMatrix;","uniform mat3 normalMatrix;","uniform vec3 cameraPosition;","uniform bool isOrthographic;","#ifdef USE_INSTANCING","\tattribute mat4 instanceMatrix;","#endif","#ifdef USE_INSTANCING_COLOR","\tattribute vec3 instanceColor;","#endif","attribute vec3 position;","attribute vec3 normal;","attribute vec2 uv;","#ifdef USE_TANGENT","\tattribute vec4 tangent;","#endif","#if defined( USE_COLOR_ALPHA )","\tattribute vec4 color;","#elif defined( USE_COLOR )","\tattribute vec3 color;","#endif","#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )","\tattribute vec3 morphTarget0;","\tattribute vec3 morphTarget1;","\tattribute vec3 morphTarget2;","\tattribute vec3 morphTarget3;","\t#ifdef USE_MORPHNORMALS","\t\tattribute vec3 morphNormal0;","\t\tattribute vec3 morphNormal1;","\t\tattribute vec3 morphNormal2;","\t\tattribute vec3 morphNormal3;","\t#else","\t\tattribute vec3 morphTarget4;","\t\tattribute vec3 morphTarget5;","\t\tattribute vec3 morphTarget6;","\t\tattribute vec3 morphTarget7;","\t#endif","#endif","#ifdef USE_SKINNING","\tattribute vec4 skinIndex;","\tattribute vec4 skinWeight;","#endif","\n"].filter(ls).join("\n"),_=[g,xs(n),"#define SHADER_NAME "+n.shaderName,v,n.useFog&&n.fog?"#define USE_FOG":"",n.useFog&&n.fogExp2?"#define FOG_EXP2":"",n.map?"#define USE_MAP":"",n.matcap?"#define USE_MATCAP":"",n.envMap?"#define USE_ENVMAP":"",n.envMap?"#define "+p:"",n.envMap?"#define "+m:"",n.envMap?"#define "+f:"",n.lightMap?"#define USE_LIGHTMAP":"",n.aoMap?"#define USE_AOMAP":"",n.emissiveMap?"#define USE_EMISSIVEMAP":"",n.bumpMap?"#define USE_BUMPMAP":"",n.normalMap?"#define USE_NORMALMAP":"",n.normalMap&&n.objectSpaceNormalMap?"#define OBJECTSPACE_NORMALMAP":"",n.normalMap&&n.tangentSpaceNormalMap?"#define TANGENTSPACE_NORMALMAP":"",n.clearcoat?"#define USE_CLEARCOAT":"",n.clearcoatMap?"#define USE_CLEARCOATMAP":"",n.clearcoatRoughnessMap?"#define USE_CLEARCOAT_ROUGHNESSMAP":"",n.clearcoatNormalMap?"#define USE_CLEARCOAT_NORMALMAP":"",n.specularMap?"#define USE_SPECULARMAP":"",n.specularIntensityMap?"#define USE_SPECULARINTENSITYMAP":"",n.specularColorMap?"#define USE_SPECULARCOLORMAP":"",n.roughnessMap?"#define USE_ROUGHNESSMAP":"",n.metalnessMap?"#define USE_METALNESSMAP":"",n.alphaMap?"#define USE_ALPHAMAP":"",n.alphaTest?"#define USE_ALPHATEST":"",n.sheen?"#define USE_SHEEN":"",n.sheenColorMap?"#define USE_SHEENCOLORMAP":"",n.sheenRoughnessMap?"#define USE_SHEENROUGHNESSMAP":"",n.transmission?"#define USE_TRANSMISSION":"",n.transmissionMap?"#define USE_TRANSMISSIONMAP":"",n.thicknessMap?"#define USE_THICKNESSMAP":"",n.vertexTangents?"#define USE_TANGENT":"",n.vertexColors||n.instancingColor?"#define USE_COLOR":"",n.vertexAlphas?"#define USE_COLOR_ALPHA":"",n.vertexUvs?"#define USE_UV":"",n.uvsVertexOnly?"#define UVS_VERTEX_ONLY":"",n.gradientMap?"#define USE_GRADIENTMAP":"",n.flatShading?"#define FLAT_SHADED":"",n.doubleSided?"#define DOUBLE_SIDED":"",n.flipSided?"#define FLIP_SIDED":"",n.shadowMapEnabled?"#define USE_SHADOWMAP":"",n.shadowMapEnabled?"#define "+d:"",n.premultipliedAlpha?"#define PREMULTIPLIED_ALPHA":"",n.physicallyCorrectLights?"#define PHYSICALLY_CORRECT_LIGHTS":"",n.logarithmicDepthBuffer?"#define USE_LOGDEPTHBUF":"",n.logarithmicDepthBuffer&&n.rendererExtensionFragDepth?"#define USE_LOGDEPTHBUF_EXT":"",(n.extensionShaderTextureLOD||n.envMap)&&n.rendererExtensionShaderTextureLod?"#define TEXTURE_LOD_EXT":"","uniform mat4 viewMatrix;","uniform vec3 cameraPosition;","uniform bool isOrthographic;",0!==n.toneMapping?"#define TONE_MAPPING":"",0!==n.toneMapping?ai.tonemapping_pars_fragment:"",0!==n.toneMapping?os("toneMapping",n.toneMapping):"",n.dithering?"#define DITHERING":"",n.format===T?"#define OPAQUE":"",ai.encodings_pars_fragment,n.map?ss("mapTexelToLinear",n.mapEncoding):"",n.matcap?ss("matcapTexelToLinear",n.matcapEncoding):"",n.envMap?ss("envMapTexelToLinear",n.envMapEncoding):"",n.emissiveMap?ss("emissiveMapTexelToLinear",n.emissiveMapEncoding):"",n.specularColorMap?ss("specularColorMapTexelToLinear",n.specularColorMapEncoding):"",n.sheenColorMap?ss("sheenColorMapTexelToLinear",n.sheenColorMapEncoding):"",n.lightMap?ss("lightMapTexelToLinear",n.lightMapEncoding):"",as("linearToOutputTexel",n.outputEncoding),n.depthPacking?"#define DEPTH_PACKING "+n.depthPacking:"","\n"].filter(ls).join("\n")),h=ds(h),h=cs(h,n),h=hs(h,n),u=ds(u),u=cs(u,n),u=hs(u,n),h=gs(h),u=gs(u),n.isWebGL2&&!0!==n.isRawShaderMaterial&&(b="#version 300 es\n",x=["precision mediump sampler2DArray;","#define attribute in","#define varying out","#define texture2D texture"].join("\n")+"\n"+x,_=["#define varying in",n.glslVersion===K?"":"layout(location = 0) out highp vec4 pc_fragColor;",n.glslVersion===K?"":"#define gl_FragColor pc_fragColor","#define gl_FragDepthEXT gl_FragDepth","#define texture2D texture","#define textureCube texture","#define texture2DProj textureProj","#define texture2DLodEXT textureLod","#define texture2DProjLodEXT textureProjLod","#define textureCubeLodEXT textureLod","#define texture2DGradEXT textureGrad","#define texture2DProjGradEXT textureProjGrad","#define textureCubeGradEXT textureGrad"].join("\n")+"\n"+_);const M=b+_+u,w=es(a,35633,b+x+h),S=es(a,35632,M);function E(){if(t.debug.checkShaderErrors){const t=a.getProgramInfoLog(y).trim(),e=a.getShaderInfoLog(w).trim(),n=a.getShaderInfoLog(S).trim();let i=!0,r=!0;if(!1===a.getProgramParameter(y,35714)){i=!1;const e=rs(a,w,"vertex"),n=rs(a,S,"fragment");console.error("THREE.WebGLProgram: Shader Error "+a.getError()+" - VALIDATE_STATUS "+a.getProgramParameter(y,35715)+"\n\nProgram Info Log: "+t+"\n"+e+"\n"+n)}else""!==t?console.warn("THREE.WebGLProgram: Program Info Log:",t):""!==e&&""!==n||(r=!1);r&&(this.diagnostics={runnable:i,programLog:t,vertexShader:{log:e,prefix:x},fragmentShader:{log:n,prefix:_}})}a.deleteShader(w),a.deleteShader(S),A=new ts(a,y),L=function(t,e){const n={},i=t.getProgramParameter(e,35721);for(let r=0;r0,I=s.clearcoat>0;return{isWebGL2:d,shaderID:T,shaderName:s.type,vertexShader:A,fragmentShader:L,defines:s.defines,customVertexShaderID:R,customFragmentShaderID:C,isRawShaderMaterial:!0===s.isRawShaderMaterial,glslVersion:s.glslVersion,precision:v,instancing:!0===b.isInstancedMesh,instancingColor:!0===b.isInstancedMesh&&null!==b.instanceColor,supportsVertexTextures:g,outputEncoding:null!==P?_(P.texture):t.outputEncoding,map:!!s.map,mapEncoding:_(s.map),matcap:!!s.matcap,matcapEncoding:_(s.matcap),envMap:!!S,envMapMode:S&&S.mapping,envMapEncoding:_(S),envMapCubeUV:!!S&&(S.mapping===l||S.mapping===c),lightMap:!!s.lightMap,lightMapEncoding:_(s.lightMap),aoMap:!!s.aoMap,emissiveMap:!!s.emissiveMap,emissiveMapEncoding:_(s.emissiveMap),bumpMap:!!s.bumpMap,normalMap:!!s.normalMap,objectSpaceNormalMap:1===s.normalMapType,tangentSpaceNormalMap:0===s.normalMapType,clearcoat:I,clearcoatMap:I&&!!s.clearcoatMap,clearcoatRoughnessMap:I&&!!s.clearcoatRoughnessMap,clearcoatNormalMap:I&&!!s.clearcoatNormalMap,displacementMap:!!s.displacementMap,roughnessMap:!!s.roughnessMap,metalnessMap:!!s.metalnessMap,specularMap:!!s.specularMap,specularIntensityMap:!!s.specularIntensityMap,specularColorMap:!!s.specularColorMap,specularColorMapEncoding:_(s.specularColorMap),alphaMap:!!s.alphaMap,alphaTest:D,gradientMap:!!s.gradientMap,sheen:s.sheen>0,sheenColorMap:!!s.sheenColorMap,sheenColorMapEncoding:_(s.sheenColorMap),sheenRoughnessMap:!!s.sheenRoughnessMap,transmission:s.transmission>0,transmissionMap:!!s.transmissionMap,thicknessMap:!!s.thicknessMap,combine:s.combine,vertexTangents:!!s.normalMap&&!!b.geometry&&!!b.geometry.attributes.tangent,vertexColors:s.vertexColors,vertexAlphas:!0===s.vertexColors&&!!b.geometry&&!!b.geometry.attributes.color&&4===b.geometry.attributes.color.itemSize,vertexUvs:!!(s.map||s.bumpMap||s.normalMap||s.specularMap||s.alphaMap||s.emissiveMap||s.roughnessMap||s.metalnessMap||s.clearcoatMap||s.clearcoatRoughnessMap||s.clearcoatNormalMap||s.displacementMap||s.transmissionMap||s.thicknessMap||s.specularIntensityMap||s.specularColorMap||s.sheenColorMap||s.sheenRoughnessMap),uvsVertexOnly:!(s.map||s.bumpMap||s.normalMap||s.specularMap||s.alphaMap||s.emissiveMap||s.roughnessMap||s.metalnessMap||s.clearcoatNormalMap||s.transmission>0||s.transmissionMap||s.thicknessMap||s.specularIntensityMap||s.specularColorMap||s.sheen>0||s.sheenColorMap||s.sheenRoughnessMap||!s.displacementMap),fog:!!M,useFog:s.fog,fogExp2:M&&M.isFogExp2,flatShading:!!s.flatShading,sizeAttenuation:s.sizeAttenuation,logarithmicDepthBuffer:p,skinning:!0===b.isSkinnedMesh&&E>0,maxBones:E,useVertexTexture:m,morphTargets:!!b.geometry&&!!b.geometry.morphAttributes.position,morphNormals:!!b.geometry&&!!b.geometry.morphAttributes.normal,morphTargetsCount:b.geometry&&b.geometry.morphAttributes.position?b.geometry.morphAttributes.position.length:0,numDirLights:o.directional.length,numPointLights:o.point.length,numSpotLights:o.spot.length,numRectAreaLights:o.rectArea.length,numHemiLights:o.hemi.length,numDirLightShadows:o.directionalShadowMap.length,numPointLightShadows:o.pointShadowMap.length,numSpotLightShadows:o.spotShadowMap.length,numClippingPlanes:a.numPlanes,numClipIntersection:a.numIntersection,format:s.format,dithering:s.dithering,shadowMapEnabled:t.shadowMap.enabled&&u.length>0,shadowMapType:t.shadowMap.type,toneMapping:s.toneMapped?t.toneMapping:0,physicallyCorrectLights:t.physicallyCorrectLights,premultipliedAlpha:s.premultipliedAlpha,doubleSided:2===s.side,flipSided:1===s.side,depthPacking:void 0!==s.depthPacking&&s.depthPacking,index0AttributeName:s.index0AttributeName,extensionDerivatives:s.extensions&&s.extensions.derivatives,extensionFragDepth:s.extensions&&s.extensions.fragDepth,extensionDrawBuffers:s.extensions&&s.extensions.drawBuffers,extensionShaderTextureLOD:s.extensions&&s.extensions.shaderTextureLOD,rendererExtensionFragDepth:d||i.has("EXT_frag_depth"),rendererExtensionDrawBuffers:d||i.has("WEBGL_draw_buffers"),rendererExtensionShaderTextureLod:d||i.has("EXT_shader_texture_lod"),rendererExtensionParallelShaderCompile:i.has("KHR_parallel_shader_compile"),customProgramCacheKey:s.customProgramCacheKey()}},getProgramCacheKey:function(e){const n=[];if(e.shaderID?n.push(e.shaderID):(n.push(e.customVertexShaderID),n.push(e.customFragmentShaderID)),void 0!==e.defines)for(const t in e.defines)n.push(t),n.push(e.defines[t]);return!1===e.isRawShaderMaterial&&(!function(t,e){t.push(e.precision),t.push(e.outputEncoding),t.push(e.mapEncoding),t.push(e.matcapEncoding),t.push(e.envMapMode),t.push(e.envMapEncoding),t.push(e.lightMapEncoding),t.push(e.emissiveMapEncoding),t.push(e.combine),t.push(e.vertexUvs),t.push(e.fogExp2),t.push(e.sizeAttenuation),t.push(e.maxBones),t.push(e.morphTargetsCount),t.push(e.numDirLights),t.push(e.numPointLights),t.push(e.numSpotLights),t.push(e.numHemiLights),t.push(e.numRectAreaLights),t.push(e.numDirLightShadows),t.push(e.numPointLightShadows),t.push(e.numSpotLightShadows),t.push(e.shadowMapType),t.push(e.toneMapping),t.push(e.numClippingPlanes),t.push(e.numClipIntersection),t.push(e.format),t.push(e.specularColorMapEncoding),t.push(e.sheenColorMapEncoding)}(n,e),function(t,e){o.disableAll(),e.isWebGL2&&o.enable(0);e.supportsVertexTextures&&o.enable(1);e.instancing&&o.enable(2);e.instancingColor&&o.enable(3);e.map&&o.enable(4);e.matcap&&o.enable(5);e.envMap&&o.enable(6);e.envMapCubeUV&&o.enable(7);e.lightMap&&o.enable(8);e.aoMap&&o.enable(9);e.emissiveMap&&o.enable(10);e.bumpMap&&o.enable(11);e.normalMap&&o.enable(12);e.objectSpaceNormalMap&&o.enable(13);e.tangentSpaceNormalMap&&o.enable(14);e.clearcoat&&o.enable(15);e.clearcoatMap&&o.enable(16);e.clearcoatRoughnessMap&&o.enable(17);e.clearcoatNormalMap&&o.enable(18);e.displacementMap&&o.enable(19);e.specularMap&&o.enable(20);e.roughnessMap&&o.enable(21);e.metalnessMap&&o.enable(22);e.gradientMap&&o.enable(23);e.alphaMap&&o.enable(24);e.alphaTest&&o.enable(25);e.vertexColors&&o.enable(26);e.vertexAlphas&&o.enable(27);e.vertexUvs&&o.enable(28);e.vertexTangents&&o.enable(29);e.uvsVertexOnly&&o.enable(30);e.fog&&o.enable(31);t.push(o.mask),o.disableAll(),e.useFog&&o.enable(0);e.flatShading&&o.enable(1);e.logarithmicDepthBuffer&&o.enable(2);e.skinning&&o.enable(3);e.useVertexTexture&&o.enable(4);e.morphTargets&&o.enable(5);e.morphNormals&&o.enable(6);e.premultipliedAlpha&&o.enable(7);e.shadowMapEnabled&&o.enable(8);e.physicallyCorrectLights&&o.enable(9);e.doubleSided&&o.enable(10);e.flipSided&&o.enable(11);e.depthPacking&&o.enable(12);e.dithering&&o.enable(13);e.specularIntensityMap&&o.enable(14);e.specularColorMap&&o.enable(15);e.transmission&&o.enable(16);e.transmissionMap&&o.enable(17);e.thicknessMap&&o.enable(18);e.sheen&&o.enable(19);e.sheenColorMap&&o.enable(20);e.sheenRoughnessMap&&o.enable(21);t.push(o.mask)}(n,e),n.push(t.outputEncoding)),n.push(e.customProgramCacheKey),n.join()},getUniforms:function(t){const e=y[t.type];let n;if(e){const t=li[e];n=kn.clone(t.uniforms)}else n=t.uniforms;return n},acquireProgram:function(e,n){let i;for(let t=0,e=u.length;t0?i.push(h):!0===a.transparent?r.push(h):n.push(h)},unshift:function(t,e,a,o,l,c){const h=s(t,e,a,o,l,c);a.transmission>0?i.unshift(h):!0===a.transparent?r.unshift(h):n.unshift(h)},finish:function(){for(let n=e,i=t.length;n1&&n.sort(t||Es),i.length>1&&i.sort(e||As),r.length>1&&r.sort(e||As)}}}function Rs(){let t=new WeakMap;return{get:function(e,n){let i;return!1===t.has(e)?(i=new Ls,t.set(e,[i])):n>=t.get(e).length?(i=new Ls,t.get(e).push(i)):i=t.get(e)[n],i},dispose:function(){t=new WeakMap}}}function Cs(){const t={};return{get:function(e){if(void 0!==t[e.id])return t[e.id];let n;switch(e.type){case"DirectionalLight":n={direction:new Lt,color:new Ze};break;case"SpotLight":n={position:new Lt,direction:new Lt,color:new Ze,distance:0,coneCos:0,penumbraCos:0,decay:0};break;case"PointLight":n={position:new Lt,color:new Ze,distance:0,decay:0};break;case"HemisphereLight":n={direction:new Lt,skyColor:new Ze,groundColor:new Ze};break;case"RectAreaLight":n={color:new Ze,position:new Lt,halfWidth:new Lt,halfHeight:new Lt}}return t[e.id]=n,n}}}let Ps=0;function Ds(t,e){return(e.castShadow?1:0)-(t.castShadow?1:0)}function Is(t,e){const n=new Cs,i=function(){const t={};return{get:function(e){if(void 0!==t[e.id])return t[e.id];let n;switch(e.type){case"DirectionalLight":case"SpotLight":n={shadowBias:0,shadowNormalBias:0,shadowRadius:1,shadowMapSize:new dt};break;case"PointLight":n={shadowBias:0,shadowNormalBias:0,shadowRadius:1,shadowMapSize:new dt,shadowCameraNear:1,shadowCameraFar:1e3}}return t[e.id]=n,n}}}(),r={version:0,hash:{directionalLength:-1,pointLength:-1,spotLength:-1,rectAreaLength:-1,hemiLength:-1,numDirectionalShadows:-1,numPointShadows:-1,numSpotShadows:-1},ambient:[0,0,0],probe:[],directional:[],directionalShadow:[],directionalShadowMap:[],directionalShadowMatrix:[],spot:[],spotShadow:[],spotShadowMap:[],spotShadowMatrix:[],rectArea:[],rectAreaLTC1:null,rectAreaLTC2:null,point:[],pointShadow:[],pointShadowMap:[],pointShadowMatrix:[],hemi:[]};for(let t=0;t<9;t++)r.probe.push(new Lt);const s=new Lt,a=new se,o=new se;return{setup:function(s,a){let o=0,l=0,c=0;for(let t=0;t<9;t++)r.probe[t].set(0,0,0);let h=0,u=0,d=0,p=0,m=0,f=0,g=0,v=0;s.sort(Ds);const y=!0!==a?Math.PI:1;for(let t=0,e=s.length;t0&&(e.isWebGL2||!0===t.has("OES_texture_float_linear")?(r.rectAreaLTC1=oi.LTC_FLOAT_1,r.rectAreaLTC2=oi.LTC_FLOAT_2):!0===t.has("OES_texture_half_float_linear")?(r.rectAreaLTC1=oi.LTC_HALF_1,r.rectAreaLTC2=oi.LTC_HALF_2):console.error("THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.")),r.ambient[0]=o,r.ambient[1]=l,r.ambient[2]=c;const x=r.hash;x.directionalLength===h&&x.pointLength===u&&x.spotLength===d&&x.rectAreaLength===p&&x.hemiLength===m&&x.numDirectionalShadows===f&&x.numPointShadows===g&&x.numSpotShadows===v||(r.directional.length=h,r.spot.length=d,r.rectArea.length=p,r.point.length=u,r.hemi.length=m,r.directionalShadow.length=f,r.directionalShadowMap.length=f,r.pointShadow.length=g,r.pointShadowMap.length=g,r.spotShadow.length=v,r.spotShadowMap.length=v,r.directionalShadowMatrix.length=f,r.pointShadowMatrix.length=g,r.spotShadowMatrix.length=v,x.directionalLength=h,x.pointLength=u,x.spotLength=d,x.rectAreaLength=p,x.hemiLength=m,x.numDirectionalShadows=f,x.numPointShadows=g,x.numSpotShadows=v,r.version=Ps++)},setupView:function(t,e){let n=0,i=0,l=0,c=0,h=0;const u=e.matrixWorldInverse;for(let e=0,d=t.length;e=n.get(i).length?(s=new Ns(t,e),n.get(i).push(s)):s=n.get(i)[r],s},dispose:function(){n=new WeakMap}}}class Bs extends Ve{constructor(t){super(),this.type="MeshDepthMaterial",this.depthPacking=3200,this.map=null,this.alphaMap=null,this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.wireframe=!1,this.wireframeLinewidth=1,this.fog=!1,this.setValues(t)}copy(t){return super.copy(t),this.depthPacking=t.depthPacking,this.map=t.map,this.alphaMap=t.alphaMap,this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this}}Bs.prototype.isMeshDepthMaterial=!0;class Fs extends Ve{constructor(t){super(),this.type="MeshDistanceMaterial",this.referencePosition=new Lt,this.nearDistance=1,this.farDistance=1e3,this.map=null,this.alphaMap=null,this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.fog=!1,this.setValues(t)}copy(t){return super.copy(t),this.referencePosition.copy(t.referencePosition),this.nearDistance=t.nearDistance,this.farDistance=t.farDistance,this.map=t.map,this.alphaMap=t.alphaMap,this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this}}Fs.prototype.isMeshDistanceMaterial=!0;function Os(t,e,n){let i=new ni;const r=new dt,s=new dt,a=new wt,o=new Bs({depthPacking:3201}),l=new Fs,c={},h=n.maxTextureSize,u={0:1,1:0,2:2},d=new Vn({defines:{VSM_SAMPLES:8},uniforms:{shadow_pass:{value:null},resolution:{value:new dt},radius:{value:4}},vertexShader:"void main() {\n\tgl_Position = vec4( position, 1.0 );\n}",fragmentShader:"uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"}),m=d.clone();m.defines.HORIZONTAL_PASS=1;const f=new xn;f.setAttribute("position",new tn(new Float32Array([-1,-1,.5,3,-1,.5,-1,3,.5]),3));const v=new Fn(f,d),y=this;function x(n,i){const r=e.update(v);d.defines.VSM_SAMPLES!==n.blurSamples&&(d.defines.VSM_SAMPLES=n.blurSamples,m.defines.VSM_SAMPLES=n.blurSamples,d.needsUpdate=!0,m.needsUpdate=!0),d.uniforms.shadow_pass.value=n.map.texture,d.uniforms.resolution.value=n.mapSize,d.uniforms.radius.value=n.radius,t.setRenderTarget(n.mapPass),t.clear(),t.renderBufferDirect(i,null,r,d,v,null),m.uniforms.shadow_pass.value=n.mapPass.texture,m.uniforms.resolution.value=n.mapSize,m.uniforms.radius.value=n.radius,t.setRenderTarget(n.map),t.clear(),t.renderBufferDirect(i,null,r,m,v,null)}function _(e,n,i,r,s,a,h){let d=null;const p=!0===r.isPointLight?e.customDistanceMaterial:e.customDepthMaterial;if(d=void 0!==p?p:!0===r.isPointLight?l:o,t.localClippingEnabled&&!0===i.clipShadows&&0!==i.clippingPlanes.length||i.displacementMap&&0!==i.displacementScale||i.alphaMap&&i.alphaTest>0){const t=d.uuid,e=i.uuid;let n=c[t];void 0===n&&(n={},c[t]=n);let r=n[e];void 0===r&&(r=d.clone(),n[e]=r),d=r}return d.visible=i.visible,d.wireframe=i.wireframe,d.side=3===h?null!==i.shadowSide?i.shadowSide:i.side:null!==i.shadowSide?i.shadowSide:u[i.side],d.alphaMap=i.alphaMap,d.alphaTest=i.alphaTest,d.clipShadows=i.clipShadows,d.clippingPlanes=i.clippingPlanes,d.clipIntersection=i.clipIntersection,d.displacementMap=i.displacementMap,d.displacementScale=i.displacementScale,d.displacementBias=i.displacementBias,d.wireframeLinewidth=i.wireframeLinewidth,d.linewidth=i.linewidth,!0===r.isPointLight&&!0===d.isMeshDistanceMaterial&&(d.referencePosition.setFromMatrixPosition(r.matrixWorld),d.nearDistance=s,d.farDistance=a),d}function b(n,r,s,a,o){if(!1===n.visible)return;if(n.layers.test(r.layers)&&(n.isMesh||n.isLine||n.isPoints)&&(n.castShadow||n.receiveShadow&&3===o)&&(!n.frustumCulled||i.intersectsObject(n))){n.modelViewMatrix.multiplyMatrices(s.matrixWorldInverse,n.matrixWorld);const i=e.update(n),r=n.material;if(Array.isArray(r)){const e=i.groups;for(let l=0,c=e.length;lh||r.y>h)&&(r.x>h&&(s.x=Math.floor(h/m.x),r.x=s.x*m.x,u.mapSize.x=s.x),r.y>h&&(s.y=Math.floor(h/m.y),r.y=s.y*m.y,u.mapSize.y=s.y)),null===u.map&&!u.isPointLightShadow&&3===this.type){const t={minFilter:g,magFilter:g,format:E};u.map=new St(r.x,r.y,t),u.map.texture.name=c.name+".shadowMap",u.mapPass=new St(r.x,r.y,t),u.camera.updateProjectionMatrix()}if(null===u.map){const t={minFilter:p,magFilter:p,format:E};u.map=new St(r.x,r.y,t),u.map.texture.name=c.name+".shadowMap",u.camera.updateProjectionMatrix()}t.setRenderTarget(u.map),t.clear();const f=u.getViewportCount();for(let t=0;t=1):-1!==L.indexOf("OpenGL ES")&&(A=parseFloat(/^OpenGL ES (\d)/.exec(L)[1]),E=A>=2);let R=null,C={};const P=t.getParameter(3088),D=t.getParameter(2978),I=(new wt).fromArray(P),N=(new wt).fromArray(D);function z(e,n,i){const r=new Uint8Array(4),s=t.createTexture();t.bindTexture(e,s),t.texParameteri(e,10241,9728),t.texParameteri(e,10240,9728);for(let e=0;ei||t.height>i)&&(r=i/Math.max(t.width,t.height)),r<1||!0===e){if("undefined"!=typeof HTMLImageElement&&t instanceof HTMLImageElement||"undefined"!=typeof HTMLCanvasElement&&t instanceof HTMLCanvasElement||"undefined"!=typeof ImageBitmap&&t instanceof ImageBitmap){const i=e?ht:Math.floor,s=i(r*t.width),a=i(r*t.height);void 0===D&&(D=N(s,a));const o=n?N(s,a):D;o.width=s,o.height=a;return o.getContext("2d").drawImage(t,0,0,s,a),console.warn("THREE.WebGLRenderer: Texture has been resized from ("+t.width+"x"+t.height+") to ("+s+"x"+a+")."),o}return"data"in t&&console.warn("THREE.WebGLRenderer: Image in DataTexture is too big ("+t.width+"x"+t.height+")."),t}return t}function B(t){return lt(t.width)&<(t.height)}function F(t,e){return t.generateMipmaps&&e&&t.minFilter!==p&&t.minFilter!==g}function O(e){t.generateMipmap(e)}function U(n,i,r,s){if(!1===o)return i;if(null!==n){if(void 0!==t[n])return t[n];console.warn("THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format '"+n+"'")}let a=i;return 6403===i&&(5126===r&&(a=33326),5131===r&&(a=33325),5121===r&&(a=33321)),6407===i&&(5126===r&&(a=34837),5131===r&&(a=34843),5121===r&&(a=32849)),6408===i&&(5126===r&&(a=34836),5131===r&&(a=34842),5121===r&&(a=s===J?35907:32856)),33325!==a&&33326!==a&&34842!==a&&34836!==a||e.get("EXT_color_buffer_float"),a}function H(t,e,n){return!0===F(t,n)||t.isFramebufferTexture&&t.minFilter!==p&&t.minFilter!==g?Math.log2(Math.max(e.width,e.height))+1:void 0!==t.mipmaps&&t.mipmaps.length>0?t.mipmaps.length:t.isCompressedTexture&&Array.isArray(t.image)?e.mipmaps.length:1}function G(t){return t===p||t===m||t===f?9728:9729}function k(e){const n=e.target;n.removeEventListener("dispose",k),function(e){const n=i.get(e);if(void 0===n.__webglInit)return;t.deleteTexture(n.__webglTexture),i.remove(e)}(n),n.isVideoTexture&&P.delete(n),a.memory.textures--}function V(e){const n=e.target;n.removeEventListener("dispose",V),function(e){const n=e.texture,r=i.get(e),s=i.get(n);if(!e)return;void 0!==s.__webglTexture&&(t.deleteTexture(s.__webglTexture),a.memory.textures--);e.depthTexture&&e.depthTexture.dispose();if(e.isWebGLCubeRenderTarget)for(let e=0;e<6;e++)t.deleteFramebuffer(r.__webglFramebuffer[e]),r.__webglDepthbuffer&&t.deleteRenderbuffer(r.__webglDepthbuffer[e]);else t.deleteFramebuffer(r.__webglFramebuffer),r.__webglDepthbuffer&&t.deleteRenderbuffer(r.__webglDepthbuffer),r.__webglMultisampledFramebuffer&&t.deleteFramebuffer(r.__webglMultisampledFramebuffer),r.__webglColorRenderbuffer&&t.deleteRenderbuffer(r.__webglColorRenderbuffer),r.__webglDepthRenderbuffer&&t.deleteRenderbuffer(r.__webglDepthRenderbuffer);if(e.isWebGLMultipleRenderTargets)for(let e=0,r=n.length;e0&&r.__version!==t.version){const n=t.image;if(void 0===n)console.warn("THREE.WebGLRenderer: Texture marked for update but image is undefined");else{if(!1!==n.complete)return void K(r,t,e);console.warn("THREE.WebGLRenderer: Texture marked for update but image is incomplete")}}n.activeTexture(33984+e),n.bindTexture(3553,r.__webglTexture)}function q(e,r){const a=i.get(e);e.version>0&&a.__version!==e.version?function(e,i,r){if(6!==i.image.length)return;Q(e,i),n.activeTexture(33984+r),n.bindTexture(34067,e.__webglTexture),t.pixelStorei(37440,i.flipY),t.pixelStorei(37441,i.premultiplyAlpha),t.pixelStorei(3317,i.unpackAlignment),t.pixelStorei(37443,0);const a=i&&(i.isCompressedTexture||i.image[0].isCompressedTexture),l=i.image[0]&&i.image[0].isDataTexture,h=[];for(let t=0;t<6;t++)h[t]=a||l?l?i.image[t].image:i.image[t]:z(i.image[t],!1,!0,c);const u=h[0],d=B(u)||o,p=s.convert(i.format),m=s.convert(i.type),f=U(i.internalFormat,p,m,i.encoding),g=o&&!0!==i.isVideoTexture,v=void 0===e.__version;let y,x=H(i,u,d);if(Z(34067,i,d),a){g&&v&&n.texStorage2D(34067,x,f,u.width,u.height);for(let t=0;t<6;t++){y=h[t].mipmaps;for(let e=0;e0&&x++,n.texStorage2D(34067,x,f,h[0].width,h[0].height));for(let t=0;t<6;t++)if(l){g?n.texSubImage2D(34069+t,0,0,0,h[t].width,h[t].height,p,m,h[t].data):n.texImage2D(34069+t,0,f,h[t].width,h[t].height,0,p,m,h[t].data);for(let e=0;e1||i.get(s).__currentAnisotropy)&&(t.texParameterf(n,a.TEXTURE_MAX_ANISOTROPY_EXT,Math.min(s.anisotropy,r.getMaxAnisotropy())),i.get(s).__currentAnisotropy=s.anisotropy)}}function Q(e,n){void 0===e.__webglInit&&(e.__webglInit=!0,n.addEventListener("dispose",k),e.__webglTexture=t.createTexture(),a.memory.textures++)}function K(e,i,r){let a=3553;i.isDataTexture2DArray&&(a=35866),i.isDataTexture3D&&(a=32879),Q(e,i),n.activeTexture(33984+r),n.bindTexture(a,e.__webglTexture),t.pixelStorei(37440,i.flipY),t.pixelStorei(37441,i.premultiplyAlpha),t.pixelStorei(3317,i.unpackAlignment),t.pixelStorei(37443,0);const l=function(t){return!o&&(t.wrapS!==u||t.wrapT!==u||t.minFilter!==p&&t.minFilter!==g)}(i)&&!1===B(i.image),c=z(i.image,l,!1,x),h=B(c)||o,d=s.convert(i.format);let m,f=s.convert(i.type),v=U(i.internalFormat,d,f,i.encoding);Z(a,i,h);const y=i.mipmaps,w=o&&!0!==i.isVideoTexture,R=void 0===e.__version,C=H(i,c,h);if(i.isDepthTexture)v=6402,o?v=i.type===M?36012:i.type===b?33190:i.type===S?35056:33189:i.type===M&&console.error("WebGLRenderer: Floating point depth texture requires WebGL2."),i.format===A&&6402===v&&i.type!==_&&i.type!==b&&(console.warn("THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture."),i.type=_,f=s.convert(i.type)),i.format===L&&6402===v&&(v=34041,i.type!==S&&(console.warn("THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture."),i.type=S,f=s.convert(i.type))),w&&R?n.texStorage2D(3553,1,v,c.width,c.height):n.texImage2D(3553,0,v,c.width,c.height,0,d,f,null);else if(i.isDataTexture)if(y.length>0&&h){w&&R&&n.texStorage2D(3553,C,v,y[0].width,y[0].height);for(let t=0,e=y.length;t0&&h){w&&R&&n.texStorage2D(3553,C,v,y[0].width,y[0].height);for(let t=0,e=y.length;t=l&&console.warn("THREE.WebGLTextures: Trying to use "+t+" texture units while this GPU supports only "+l),W+=1,t},this.resetTextureUnits=function(){W=0},this.setTexture2D=j,this.setTexture2DArray=function(t,e){const r=i.get(t);t.version>0&&r.__version!==t.version?K(r,t,e):(n.activeTexture(33984+e),n.bindTexture(35866,r.__webglTexture))},this.setTexture3D=function(t,e){const r=i.get(t);t.version>0&&r.__version!==t.version?K(r,t,e):(n.activeTexture(33984+e),n.bindTexture(32879,r.__webglTexture))},this.setTextureCube=q,this.rebindTextures=function(t,e,n){const r=i.get(t);void 0!==e&&$(r.__webglFramebuffer,t,t.texture,36064,3553),void 0!==n&&et(t)},this.setupRenderTarget=function(e){const l=e.texture,c=i.get(e),h=i.get(l);e.addEventListener("dispose",V),!0!==e.isWebGLMultipleRenderTargets&&(void 0===h.__webglTexture&&(h.__webglTexture=t.createTexture()),h.__version=l.version,a.memory.textures++);const u=!0===e.isWebGLCubeRenderTarget,d=!0===e.isWebGLMultipleRenderTargets,p=l.isDataTexture3D||l.isDataTexture2DArray,m=B(e)||o;if(!o||l.format!==T||l.type!==M&&l.type!==w||(l.format=E,console.warn("THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.")),u){c.__webglFramebuffer=[];for(let e=0;e<6;e++)c.__webglFramebuffer[e]=t.createFramebuffer()}else if(c.__webglFramebuffer=t.createFramebuffer(),d)if(r.drawBuffers){const n=e.texture;for(let e=0,r=n.length;eo+c?(l.inputState.pinching=!1,this.dispatchEvent({type:"pinchend",handedness:t.handedness,target:this})):!l.inputState.pinching&&a<=o-c&&(l.inputState.pinching=!0,this.dispatchEvent({type:"pinchstart",handedness:t.handedness,target:this}))}else null!==o&&t.gripSpace&&(r=e.getPose(t.gripSpace,n),null!==r&&(o.matrix.fromArray(r.transform.matrix),o.matrix.decompose(o.position,o.rotation,o.scale),r.linearVelocity?(o.hasLinearVelocity=!0,o.linearVelocity.copy(r.linearVelocity)):o.hasLinearVelocity=!1,r.angularVelocity?(o.hasAngularVelocity=!0,o.angularVelocity.copy(r.angularVelocity)):o.hasAngularVelocity=!1));return null!==a&&(a.visible=null!==i),null!==o&&(o.visible=null!==r),null!==l&&(l.visible=null!==s),this}}class qs extends bt{constructor(t,e,n,i,r,s,a,o,l,c){if((c=void 0!==c?c:A)!==A&&c!==L)throw new Error("DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat");void 0===n&&c===A&&(n=_),void 0===n&&c===L&&(n=S),super(null,i,r,s,a,o,c,n,l),this.image={width:t,height:e},this.magFilter=void 0!==a?a:p,this.minFilter=void 0!==o?o:p,this.flipY=!1,this.generateMipmaps=!1}}qs.prototype.isDepthTexture=!0;class Xs extends ${constructor(t,e){super();const n=this;let i=null,r=1,s=null,a="local-floor";const o=t.extensions.has("WEBGL_multisampled_render_to_texture");let l=null,c=null,h=null,u=null,d=!1,p=null;const m=e.getContextAttributes();let f=null,g=null;const v=[],y=new Map,b=new jn;b.layers.enable(1),b.viewport=new wt;const M=new jn;M.layers.enable(2),M.viewport=new wt;const w=[b,M],R=new ks;R.layers.enable(1),R.layers.enable(2);let C=null,P=null;function D(t){const e=y.get(t.inputSource);e&&e.dispatchEvent({type:t.type,data:t.inputSource})}function I(){y.forEach((function(t,e){t.disconnect(e)})),y.clear(),C=null,P=null,t.setRenderTarget(f),u=null,h=null,c=null,i=null,g=null,U.stop(),n.isPresenting=!1,n.dispatchEvent({type:"sessionend"})}function N(t){const e=i.inputSources;for(let t=0;t0&&(e.alphaTest.value=n.alphaTest);const i=t.get(n).envMap;let r,s;i&&(e.envMap.value=i,e.flipEnvMap.value=i.isCubeTexture&&!1===i.isRenderTargetTexture?-1:1,e.reflectivity.value=n.reflectivity,e.ior.value=n.ior,e.refractionRatio.value=n.refractionRatio),n.lightMap&&(e.lightMap.value=n.lightMap,e.lightMapIntensity.value=n.lightMapIntensity),n.aoMap&&(e.aoMap.value=n.aoMap,e.aoMapIntensity.value=n.aoMapIntensity),n.map?r=n.map:n.specularMap?r=n.specularMap:n.displacementMap?r=n.displacementMap:n.normalMap?r=n.normalMap:n.bumpMap?r=n.bumpMap:n.roughnessMap?r=n.roughnessMap:n.metalnessMap?r=n.metalnessMap:n.alphaMap?r=n.alphaMap:n.emissiveMap?r=n.emissiveMap:n.clearcoatMap?r=n.clearcoatMap:n.clearcoatNormalMap?r=n.clearcoatNormalMap:n.clearcoatRoughnessMap?r=n.clearcoatRoughnessMap:n.specularIntensityMap?r=n.specularIntensityMap:n.specularColorMap?r=n.specularColorMap:n.transmissionMap?r=n.transmissionMap:n.thicknessMap?r=n.thicknessMap:n.sheenColorMap?r=n.sheenColorMap:n.sheenRoughnessMap&&(r=n.sheenRoughnessMap),void 0!==r&&(r.isWebGLRenderTarget&&(r=r.texture),!0===r.matrixAutoUpdate&&r.updateMatrix(),e.uvTransform.value.copy(r.matrix)),n.aoMap?s=n.aoMap:n.lightMap&&(s=n.lightMap),void 0!==s&&(s.isWebGLRenderTarget&&(s=s.texture),!0===s.matrixAutoUpdate&&s.updateMatrix(),e.uv2Transform.value.copy(s.matrix))}function n(e,n){e.roughness.value=n.roughness,e.metalness.value=n.metalness,n.roughnessMap&&(e.roughnessMap.value=n.roughnessMap),n.metalnessMap&&(e.metalnessMap.value=n.metalnessMap),n.emissiveMap&&(e.emissiveMap.value=n.emissiveMap),n.bumpMap&&(e.bumpMap.value=n.bumpMap,e.bumpScale.value=n.bumpScale,1===n.side&&(e.bumpScale.value*=-1)),n.normalMap&&(e.normalMap.value=n.normalMap,e.normalScale.value.copy(n.normalScale),1===n.side&&e.normalScale.value.negate()),n.displacementMap&&(e.displacementMap.value=n.displacementMap,e.displacementScale.value=n.displacementScale,e.displacementBias.value=n.displacementBias);t.get(n).envMap&&(e.envMapIntensity.value=n.envMapIntensity)}return{refreshFogUniforms:function(t,e){t.fogColor.value.copy(e.color),e.isFog?(t.fogNear.value=e.near,t.fogFar.value=e.far):e.isFogExp2&&(t.fogDensity.value=e.density)},refreshMaterialUniforms:function(t,i,r,s,a){i.isMeshBasicMaterial?e(t,i):i.isMeshLambertMaterial?(e(t,i),function(t,e){e.emissiveMap&&(t.emissiveMap.value=e.emissiveMap)}(t,i)):i.isMeshToonMaterial?(e(t,i),function(t,e){e.gradientMap&&(t.gradientMap.value=e.gradientMap);e.emissiveMap&&(t.emissiveMap.value=e.emissiveMap);e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshPhongMaterial?(e(t,i),function(t,e){t.specular.value.copy(e.specular),t.shininess.value=Math.max(e.shininess,1e-4),e.emissiveMap&&(t.emissiveMap.value=e.emissiveMap);e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshStandardMaterial?(e(t,i),i.isMeshPhysicalMaterial?function(t,e,i){n(t,e),t.ior.value=e.ior,e.sheen>0&&(t.sheenColor.value.copy(e.sheenColor).multiplyScalar(e.sheen),t.sheenRoughness.value=e.sheenRoughness,e.sheenColorMap&&(t.sheenColorMap.value=e.sheenColorMap),e.sheenRoughnessMap&&(t.sheenRoughnessMap.value=e.sheenRoughnessMap));e.clearcoat>0&&(t.clearcoat.value=e.clearcoat,t.clearcoatRoughness.value=e.clearcoatRoughness,e.clearcoatMap&&(t.clearcoatMap.value=e.clearcoatMap),e.clearcoatRoughnessMap&&(t.clearcoatRoughnessMap.value=e.clearcoatRoughnessMap),e.clearcoatNormalMap&&(t.clearcoatNormalScale.value.copy(e.clearcoatNormalScale),t.clearcoatNormalMap.value=e.clearcoatNormalMap,1===e.side&&t.clearcoatNormalScale.value.negate()));e.transmission>0&&(t.transmission.value=e.transmission,t.transmissionSamplerMap.value=i.texture,t.transmissionSamplerSize.value.set(i.width,i.height),e.transmissionMap&&(t.transmissionMap.value=e.transmissionMap),t.thickness.value=e.thickness,e.thicknessMap&&(t.thicknessMap.value=e.thicknessMap),t.attenuationDistance.value=e.attenuationDistance,t.attenuationColor.value.copy(e.attenuationColor));t.specularIntensity.value=e.specularIntensity,t.specularColor.value.copy(e.specularColor),e.specularIntensityMap&&(t.specularIntensityMap.value=e.specularIntensityMap);e.specularColorMap&&(t.specularColorMap.value=e.specularColorMap)}(t,i,a):n(t,i)):i.isMeshMatcapMaterial?(e(t,i),function(t,e){e.matcap&&(t.matcap.value=e.matcap);e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshDepthMaterial?(e(t,i),function(t,e){e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isMeshDistanceMaterial?(e(t,i),function(t,e){e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias);t.referencePosition.value.copy(e.referencePosition),t.nearDistance.value=e.nearDistance,t.farDistance.value=e.farDistance}(t,i)):i.isMeshNormalMaterial?(e(t,i),function(t,e){e.bumpMap&&(t.bumpMap.value=e.bumpMap,t.bumpScale.value=e.bumpScale,1===e.side&&(t.bumpScale.value*=-1));e.normalMap&&(t.normalMap.value=e.normalMap,t.normalScale.value.copy(e.normalScale),1===e.side&&t.normalScale.value.negate());e.displacementMap&&(t.displacementMap.value=e.displacementMap,t.displacementScale.value=e.displacementScale,t.displacementBias.value=e.displacementBias)}(t,i)):i.isLineBasicMaterial?(function(t,e){t.diffuse.value.copy(e.color),t.opacity.value=e.opacity}(t,i),i.isLineDashedMaterial&&function(t,e){t.dashSize.value=e.dashSize,t.totalSize.value=e.dashSize+e.gapSize,t.scale.value=e.scale}(t,i)):i.isPointsMaterial?function(t,e,n,i){t.diffuse.value.copy(e.color),t.opacity.value=e.opacity,t.size.value=e.size*n,t.scale.value=.5*i,e.map&&(t.map.value=e.map);e.alphaMap&&(t.alphaMap.value=e.alphaMap);e.alphaTest>0&&(t.alphaTest.value=e.alphaTest);let r;e.map?r=e.map:e.alphaMap&&(r=e.alphaMap);void 0!==r&&(!0===r.matrixAutoUpdate&&r.updateMatrix(),t.uvTransform.value.copy(r.matrix))}(t,i,r,s):i.isSpriteMaterial?function(t,e){t.diffuse.value.copy(e.color),t.opacity.value=e.opacity,t.rotation.value=e.rotation,e.map&&(t.map.value=e.map);e.alphaMap&&(t.alphaMap.value=e.alphaMap);e.alphaTest>0&&(t.alphaTest.value=e.alphaTest);let n;e.map?n=e.map:e.alphaMap&&(n=e.alphaMap);void 0!==n&&(!0===n.matrixAutoUpdate&&n.updateMatrix(),t.uvTransform.value.copy(n.matrix))}(t,i):i.isShadowMaterial?(t.color.value.copy(i.color),t.opacity.value=i.opacity):i.isShaderMaterial&&(i.uniformsNeedUpdate=!1)}}}function Ys(t={}){const e=void 0!==t.canvas?t.canvas:function(){const t=vt("canvas");return t.style.display="block",t}(),n=void 0!==t.context?t.context:null,i=void 0!==t.alpha&&t.alpha,r=void 0===t.depth||t.depth,s=void 0===t.stencil||t.stencil,a=void 0!==t.antialias&&t.antialias,o=void 0===t.premultipliedAlpha||t.premultipliedAlpha,l=void 0!==t.preserveDrawingBuffer&&t.preserveDrawingBuffer,c=void 0!==t.powerPreference?t.powerPreference:"default",h=void 0!==t.failIfMajorPerformanceCaveat&&t.failIfMajorPerformanceCaveat;let d=null,m=null;const f=[],g=[];this.domElement=e,this.debug={checkShaderErrors:!0},this.autoClear=!0,this.autoClearColor=!0,this.autoClearDepth=!0,this.autoClearStencil=!0,this.sortObjects=!0,this.clippingPlanes=[],this.localClippingEnabled=!1,this.outputEncoding=X,this.physicallyCorrectLights=!1,this.toneMapping=0,this.toneMappingExposure=1;const v=this;let _=!1,b=0,S=0,T=null,A=-1,L=null;const R=new wt,C=new wt;let P=null,D=e.width,I=e.height,N=1,z=null,B=null;const F=new wt(0,0,D,I),O=new wt(0,0,D,I);let U=!1;const H=[],G=new ni;let k=!1,V=!1,W=null;const j=new se,q=new Lt,J={background:null,fog:null,environment:null,overrideMaterial:null,isScene:!0};function Y(){return null===T?N:1}let Z,Q,K,$,tt,et,nt,it,rt,st,at,ot,lt,ct,ht,ut,dt,pt,mt,ft,gt,yt,xt,_t=n;function bt(t,n){for(let i=0;i{function n(){i.forEach((function(t){tt.get(t).currentProgram.isReady()&&i.delete(t)})),0!==i.size?setTimeout(n,10):e(t)}null!==Z.get("KHR_parallel_shader_compile")?n():setTimeout(n,10)}))};let Pt=null;function Dt(){Nt.stop()}function It(){Nt.start()}const Nt=new ii;function zt(t,e,n,i){if(!1===t.visible)return;if(t.layers.test(e.layers))if(t.isGroup)n=t.renderOrder;else if(t.isLOD)!0===t.autoUpdate&&t.update(e);else if(t.isLight)m.pushLight(t),t.castShadow&&m.pushShadow(t);else if(t.isSprite){if(!t.frustumCulled||G.intersectsSprite(t)){i&&q.setFromMatrixPosition(t.matrixWorld).applyMatrix4(j);const e=at.update(t),r=t.material;r.visible&&d.push(t,e,r,n,q.z,null)}}else if((t.isMesh||t.isLine||t.isPoints)&&(t.isSkinnedMesh&&t.skeleton.frame!==$.render.frame&&(t.skeleton.update(),t.skeleton.frame=$.render.frame),!t.frustumCulled||G.intersectsObject(t))){i&&q.setFromMatrixPosition(t.matrixWorld).applyMatrix4(j);const e=at.update(t),r=t.material;if(Array.isArray(r)){const i=e.groups;for(let s=0,a=i.length;s0&&function(t,e,n){if(null===W){const t=!0===a&&!0===Q.isWebGL2;W=new(t?Et:St)(1024,1024,{generateMipmaps:!0,type:null!==yt.convert(w)?w:x,minFilter:y,magFilter:p,wrapS:u,wrapT:u,useRenderToTexture:Z.has("WEBGL_multisampled_render_to_texture")})}const i=v.getRenderTarget();v.setRenderTarget(W),v.clear();const r=v.toneMapping;v.toneMapping=0,Ft(t,e,n),v.toneMapping=r,et.updateMultisampleRenderTarget(W),et.updateRenderTargetMipmap(W),v.setRenderTarget(i)}(r,e,n),i&&K.viewport(R.copy(i)),r.length>0&&Ft(r,e,n),s.length>0&&Ft(s,e,n),o.length>0&&Ft(o,e,n)}function Ft(t,e,n){const i=!0===e.isScene?e.overrideMaterial:null;for(let r=0,s=t.length;r0?g[g.length-1]:null,f.pop(),d=f.length>0?f[f.length-1]:null},this.getActiveCubeFace=function(){return b},this.getActiveMipmapLevel=function(){return S},this.getRenderTarget=function(){return T},this.setRenderTargetTextures=function(t,e,n){tt.get(t.texture).__webglTexture=e,tt.get(t.depthTexture).__webglTexture=n;const i=tt.get(t);i.__hasExternalTextures=!0,i.__hasExternalTextures&&(i.__autoAllocateDepthBuffer=void 0===n,i.__autoAllocateDepthBuffer||t.useRenderToTexture&&(console.warn("render-to-texture extension was disabled because an external texture was provided"),t.useRenderToTexture=!1,t.useRenderbuffer=!0))},this.setRenderTargetFramebuffer=function(t,e){const n=tt.get(t);n.__webglFramebuffer=e,n.__useDefaultFramebuffer=void 0===e},this.setRenderTarget=function(t,e=0,n=0){T=t,b=e,S=n;let i=!0;if(t){const e=tt.get(t);void 0!==e.__useDefaultFramebuffer?(K.bindFramebuffer(36160,null),i=!1):void 0===e.__webglFramebuffer?et.setupRenderTarget(t):e.__hasExternalTextures&&et.rebindTextures(t,tt.get(t.texture).__webglTexture,tt.get(t.depthTexture).__webglTexture)}let r=null,s=!1,a=!1;if(t){const n=t.texture;(n.isDataTexture3D||n.isDataTexture2DArray)&&(a=!0);const i=tt.get(t).__webglFramebuffer;t.isWebGLCubeRenderTarget?(r=i[e],s=!0):r=t.useRenderbuffer?tt.get(t).__webglMultisampledFramebuffer:i,R.copy(t.viewport),C.copy(t.scissor),P=t.scissorTest}else R.copy(F).multiplyScalar(N).floor(),C.copy(O).multiplyScalar(N).floor(),P=U;if(K.bindFramebuffer(36160,r)&&Q.drawBuffers&&i){let e=!1;if(t)if(t.isWebGLMultipleRenderTargets){const n=t.texture;if(H.length!==n.length||36064!==H[0]){for(let t=0,e=n.length;t=0&&e<=t.width-i&&n>=0&&n<=t.height-r&&_t.readPixels(e,n,i,r,yt.convert(o),yt.convert(l),s):console.error("THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.")}finally{const t=null!==T?tt.get(T).__webglFramebuffer:null;K.bindFramebuffer(36160,t)}}},this.copyFramebufferToTexture=function(t,e,n=0){if(!0!==e.isFramebufferTexture)return void console.error("THREE.WebGLRenderer: copyFramebufferToTexture() can only be used with FramebufferTexture.");const i=Math.pow(2,-n),r=Math.floor(e.image.width*i),s=Math.floor(e.image.height*i);et.setTexture2D(e,0),_t.copyTexSubImage2D(3553,n,0,0,t.x,t.y,r,s),K.unbindTexture()},this.copyTextureToTexture=function(t,e,n,i=0){const r=e.image.width,s=e.image.height,a=yt.convert(n.format),o=yt.convert(n.type);et.setTexture2D(n,0),_t.pixelStorei(37440,n.flipY),_t.pixelStorei(37441,n.premultiplyAlpha),_t.pixelStorei(3317,n.unpackAlignment),e.isDataTexture?_t.texSubImage2D(3553,i,t.x,t.y,r,s,a,o,e.image.data):e.isCompressedTexture?_t.compressedTexSubImage2D(3553,i,t.x,t.y,e.mipmaps[0].width,e.mipmaps[0].height,a,e.mipmaps[0].data):_t.texSubImage2D(3553,i,t.x,t.y,a,o,e.image),0===i&&n.generateMipmaps&&_t.generateMipmap(3553),K.unbindTexture()},this.copyTextureToTexture3D=function(t,e,n,i,r=0){if(v.isWebGL1Renderer)return void console.warn("THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.");const s=t.max.x-t.min.x+1,a=t.max.y-t.min.y+1,o=t.max.z-t.min.z+1,l=yt.convert(i.format),c=yt.convert(i.type);let h;if(i.isDataTexture3D)et.setTexture3D(i,0),h=32879;else{if(!i.isDataTexture2DArray)return void console.warn("THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.");et.setTexture2DArray(i,0),h=35866}_t.pixelStorei(37440,i.flipY),_t.pixelStorei(37441,i.premultiplyAlpha),_t.pixelStorei(3317,i.unpackAlignment);const u=_t.getParameter(3314),d=_t.getParameter(32878),p=_t.getParameter(3316),m=_t.getParameter(3315),f=_t.getParameter(32877),g=n.isCompressedTexture?n.mipmaps[0]:n.image;_t.pixelStorei(3314,g.width),_t.pixelStorei(32878,g.height),_t.pixelStorei(3316,t.min.x),_t.pixelStorei(3315,t.min.y),_t.pixelStorei(32877,t.min.z),n.isDataTexture||n.isDataTexture3D?_t.texSubImage3D(h,r,e.x,e.y,e.z,s,a,o,l,c,g.data):n.isCompressedTexture?(console.warn("THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture."),_t.compressedTexSubImage3D(h,r,e.x,e.y,e.z,s,a,o,l,g.data)):_t.texSubImage3D(h,r,e.x,e.y,e.z,s,a,o,l,c,g),_t.pixelStorei(3314,u),_t.pixelStorei(32878,d),_t.pixelStorei(3316,p),_t.pixelStorei(3315,m),_t.pixelStorei(32877,f),0===r&&i.generateMipmaps&&_t.generateMipmap(h),K.unbindTexture()},this.initTexture=function(t){et.setTexture2D(t,0),K.unbindTexture()},this.resetState=function(){b=0,S=0,T=null,K.reset(),xt.reset()},this.getWebGLAttributes=function(){return rt},"undefined"!=typeof __THREE_DEVTOOLS__&&__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent("observe",{detail:this}))}Ys.prototype.isWebGLRenderer=!0;class Zs extends Ys{}Zs.prototype.isWebGL1Renderer=!0;class Qs{constructor(t,e=25e-5){this.name="",this.color=new Ze(t),this.density=e}clone(){return new Qs(this.color,this.density)}toJSON(){return{type:"FogExp2",color:this.color.getHex(),density:this.density}}}Qs.prototype.isFogExp2=!0;class Ks{constructor(t,e=1,n=1e3){this.name="",this.color=new Ze(t),this.near=e,this.far=n}clone(){return new Ks(this.color,this.near,this.far)}toJSON(){return{type:"Fog",color:this.color.getHex(),near:this.near,far:this.far}}}Ks.prototype.isFog=!0;class $s extends Ce{constructor(){super(),this.type="Scene",this.background=null,this.environment=null,this.fog=null,this.overrideMaterial=null,this.autoUpdate=!0,"undefined"!=typeof __THREE_DEVTOOLS__&&__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent("observe",{detail:this}))}copy(t,e){return super.copy(t,e),null!==t.background&&(this.background=t.background.clone()),null!==t.environment&&(this.environment=t.environment.clone()),null!==t.fog&&(this.fog=t.fog.clone()),null!==t.overrideMaterial&&(this.overrideMaterial=t.overrideMaterial.clone()),this.autoUpdate=t.autoUpdate,this.matrixAutoUpdate=t.matrixAutoUpdate,this}toJSON(t){const e=super.toJSON(t);return null!==this.fog&&(e.object.fog=this.fog.toJSON()),e}}$s.prototype.isScene=!0;class ta{constructor(t,e){this.array=t,this.stride=e,this.count=void 0!==t?t.length/e:0,this.usage=Z,this.updateRange={offset:0,count:-1},this.version=0,this.uuid=rt()}onUploadCallback(){}set needsUpdate(t){!0===t&&this.version++}setUsage(t){return this.usage=t,this}copy(t){return this.array=new t.array.constructor(t.array),this.count=t.count,this.stride=t.stride,this.usage=t.usage,this}copyAt(t,e,n){t*=this.stride,n*=e.stride;for(let i=0,r=this.stride;it.far||e.push({distance:o,point:sa.clone(),uv:Ge.getUV(sa,ua,da,pa,ma,fa,ga,new dt),face:null,object:this})}copy(t){return super.copy(t),void 0!==t.center&&this.center.copy(t.center),this.material=t.material,this}}function ya(t,e,n,i,r,s){la.subVectors(t,n).addScalar(.5).multiply(i),void 0!==r?(ca.x=s*la.x-r*la.y,ca.y=r*la.x+s*la.y):ca.copy(la),t.copy(e),t.x+=ca.x,t.y+=ca.y,t.applyMatrix4(ha)}va.prototype.isSprite=!0;const xa=new Lt,_a=new Lt;class ba extends Ce{constructor(){super(),this._currentLevel=0,this.type="LOD",Object.defineProperties(this,{levels:{enumerable:!0,value:[]},isLOD:{value:!0}}),this.autoUpdate=!0}copy(t){super.copy(t,!1);const e=t.levels;for(let t=0,n=e.length;t0){let n,i;for(n=1,i=e.length;n0){xa.setFromMatrixPosition(this.matrixWorld);const n=t.ray.origin.distanceTo(xa);this.getObjectForDistance(n).raycast(t,e)}}update(t){const e=this.levels;if(e.length>1){xa.setFromMatrixPosition(t.matrixWorld),_a.setFromMatrixPosition(this.matrixWorld);const n=xa.distanceTo(_a)/t.zoom;let i,r;for(e[0].object.visible=!0,i=1,r=e.length;i=e[i].distance;i++)e[i-1].object.visible=!1,e[i].object.visible=!0;for(this._currentLevel=i-1;io)continue;u.applyMatrix4(this.matrixWorld);const d=t.ray.origin.distanceTo(u);dt.far||e.push({distance:d,point:h.clone().applyMatrix4(this.matrixWorld),index:n,face:null,faceIndex:null,object:this})}}else{for(let n=Math.max(0,s.start),i=Math.min(r.count,s.start+s.count)-1;no)continue;u.applyMatrix4(this.matrixWorld);const i=t.ray.origin.distanceTo(u);it.far||e.push({distance:i,point:h.clone().applyMatrix4(this.matrixWorld),index:n,face:null,faceIndex:null,object:this})}}}else n.isGeometry&&console.error("THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.")}updateMorphTargets(){const t=this.geometry;if(t.isBufferGeometry){const e=t.morphAttributes,n=Object.keys(e);if(n.length>0){const t=e[n[0]];if(void 0!==t){this.morphTargetInfluences=[],this.morphTargetDictionary={};for(let e=0,n=t.length;e0&&console.error("THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.")}}}ja.prototype.isLine=!0;const qa=new Lt,Xa=new Lt;class Ja extends ja{constructor(t,e){super(t,e),this.type="LineSegments"}computeLineDistances(){const t=this.geometry;if(t.isBufferGeometry)if(null===t.index){const e=t.attributes.position,n=[];for(let t=0,i=e.count;t0){const t=e[n[0]];if(void 0!==t){this.morphTargetInfluences=[],this.morphTargetDictionary={};for(let e=0,n=t.length;e0&&console.error("THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.")}}}function no(t,e,n,i,r,s,a){const o=Ka.distanceSqToPoint(t);if(or.far)return;s.push({distance:l,distanceToRay:Math.sqrt(o),point:n,index:e,face:null,object:a})}}eo.prototype.isPoints=!0;class io extends bt{constructor(t,e,n,i,r,s,a,o,l){super(t,e,n,i,r,s,a,o,l),this.format=void 0!==a?a:T,this.minFilter=void 0!==s?s:g,this.magFilter=void 0!==r?r:g,this.generateMipmaps=!1;const c=this;"requestVideoFrameCallback"in t&&t.requestVideoFrameCallback((function e(){c.needsUpdate=!0,t.requestVideoFrameCallback(e)}))}clone(){return new this.constructor(this.image).copy(this)}update(){const t=this.image;!1==="requestVideoFrameCallback"in t&&t.readyState>=t.HAVE_CURRENT_DATA&&(this.needsUpdate=!0)}}io.prototype.isVideoTexture=!0;class ro extends bt{constructor(t,e,n){super({width:t,height:e}),this.format=n,this.magFilter=p,this.minFilter=p,this.generateMipmaps=!1,this.needsUpdate=!0}}ro.prototype.isFramebufferTexture=!0;class so extends bt{constructor(t,e,n,i,r,s,a,o,l,c,h,u){super(null,s,a,o,l,c,i,r,h,u),this.image={width:e,height:n},this.mipmaps=t,this.flipY=!1,this.generateMipmaps=!1}}so.prototype.isCompressedTexture=!0;class ao extends bt{constructor(t,e,n,i,r,s,a,o,l){super(t,e,n,i,r,s,a,o,l),this.needsUpdate=!0}}ao.prototype.isCanvasTexture=!0;class oo extends xn{constructor(t=1,e=8,n=0,i=2*Math.PI){super(),this.type="CircleGeometry",this.parameters={radius:t,segments:e,thetaStart:n,thetaLength:i},e=Math.max(3,e);const r=[],s=[],a=[],o=[],l=new Lt,c=new dt;s.push(0,0,0),a.push(0,0,1),o.push(.5,.5);for(let r=0,h=3;r<=e;r++,h+=3){const u=n+r/e*i;l.x=t*Math.cos(u),l.y=t*Math.sin(u),s.push(l.x,l.y,l.z),a.push(0,0,1),c.x=(s[h]/t+1)/2,c.y=(s[h+1]/t+1)/2,o.push(c.x,c.y)}for(let t=1;t<=e;t++)r.push(t,t+1,0);this.setIndex(r),this.setAttribute("position",new hn(s,3)),this.setAttribute("normal",new hn(a,3)),this.setAttribute("uv",new hn(o,2))}static fromJSON(t){return new oo(t.radius,t.segments,t.thetaStart,t.thetaLength)}}class lo extends xn{constructor(t=1,e=1,n=1,i=8,r=1,s=!1,a=0,o=2*Math.PI){super(),this.type="CylinderGeometry",this.parameters={radiusTop:t,radiusBottom:e,height:n,radialSegments:i,heightSegments:r,openEnded:s,thetaStart:a,thetaLength:o};const l=this;i=Math.floor(i),r=Math.floor(r);const c=[],h=[],u=[],d=[];let p=0;const m=[],f=n/2;let g=0;function v(n){const r=p,s=new dt,m=new Lt;let v=0;const y=!0===n?t:e,x=!0===n?1:-1;for(let t=1;t<=i;t++)h.push(0,f*x,0),u.push(0,x,0),d.push(.5,.5),p++;const _=p;for(let t=0;t<=i;t++){const e=t/i*o+a,n=Math.cos(e),r=Math.sin(e);m.x=y*r,m.y=f*x,m.z=y*n,h.push(m.x,m.y,m.z),u.push(0,x,0),s.x=.5*n+.5,s.y=.5*r*x+.5,d.push(s.x,s.y),p++}for(let t=0;t0&&v(!0),e>0&&v(!1)),this.setIndex(c),this.setAttribute("position",new hn(h,3)),this.setAttribute("normal",new hn(u,3)),this.setAttribute("uv",new hn(d,2))}static fromJSON(t){return new lo(t.radiusTop,t.radiusBottom,t.height,t.radialSegments,t.heightSegments,t.openEnded,t.thetaStart,t.thetaLength)}}class co extends lo{constructor(t=1,e=1,n=8,i=1,r=!1,s=0,a=2*Math.PI){super(0,t,e,n,i,r,s,a),this.type="ConeGeometry",this.parameters={radius:t,height:e,radialSegments:n,heightSegments:i,openEnded:r,thetaStart:s,thetaLength:a}}static fromJSON(t){return new co(t.radius,t.height,t.radialSegments,t.heightSegments,t.openEnded,t.thetaStart,t.thetaLength)}}class ho extends xn{constructor(t=[],e=[],n=1,i=0){super(),this.type="PolyhedronGeometry",this.parameters={vertices:t,indices:e,radius:n,detail:i};const r=[],s=[];function a(t,e,n,i){const r=i+1,s=[];for(let i=0;i<=r;i++){s[i]=[];const a=t.clone().lerp(n,i/r),o=e.clone().lerp(n,i/r),l=r-i;for(let t=0;t<=l;t++)s[i][t]=0===t&&i===r?a:a.clone().lerp(o,t/l)}for(let t=0;t.9&&a<.1&&(e<.2&&(s[t+0]+=1),n<.2&&(s[t+2]+=1),i<.2&&(s[t+4]+=1))}}()}(),this.setAttribute("position",new hn(r,3)),this.setAttribute("normal",new hn(r.slice(),3)),this.setAttribute("uv",new hn(s,2)),0===i?this.computeVertexNormals():this.normalizeNormals()}static fromJSON(t){return new ho(t.vertices,t.indices,t.radius,t.details)}}class uo extends ho{constructor(t=1,e=0){const n=(1+Math.sqrt(5))/2,i=1/n;super([-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,0,-i,-n,0,-i,n,0,i,-n,0,i,n,-i,-n,0,-i,n,0,i,-n,0,i,n,0,-n,0,-i,n,0,-i,-n,0,i,n,0,i],[3,11,7,3,7,15,3,15,13,7,19,17,7,17,6,7,6,15,17,4,8,17,8,10,17,10,6,8,0,16,8,16,2,8,2,10,0,12,1,0,1,18,0,18,16,6,10,2,6,2,13,6,13,15,2,16,18,2,18,3,2,3,13,18,1,9,18,9,11,18,11,3,4,14,12,4,12,0,4,0,8,11,9,5,11,5,19,11,19,7,19,5,14,19,14,4,19,4,17,1,12,14,1,14,5,1,5,9],t,e),this.type="DodecahedronGeometry",this.parameters={radius:t,detail:e}}static fromJSON(t){return new uo(t.radius,t.detail)}}const po=new Lt,mo=new Lt,fo=new Lt,go=new Ge;class vo extends xn{constructor(t=null,e=1){if(super(),this.type="EdgesGeometry",this.parameters={geometry:t,thresholdAngle:e},null!==t){const n=4,i=Math.pow(10,n),r=Math.cos(nt*e),s=t.getIndex(),a=t.getAttribute("position"),o=s?s.count:a.count,l=[0,0,0],c=["a","b","c"],h=new Array(3),u={},d=[];for(let t=0;t0)){l=i;break}l=i-1}if(i=l,n[i]===s)return i/(r-1);const c=n[i];return(i+(s-c)/(n[i+1]-c))/(r-1)}getTangent(t,e){const n=1e-4;let i=t-n,r=t+n;i<0&&(i=0),r>1&&(r=1);const s=this.getPoint(i),a=this.getPoint(r),o=e||(s.isVector2?new dt:new Lt);return o.copy(a).sub(s).normalize(),o}getTangentAt(t,e){const n=this.getUtoTmapping(t);return this.getTangent(n,e)}computeFrenetFrames(t,e){const n=new Lt,i=[],r=[],s=[],a=new Lt,o=new se;for(let e=0;e<=t;e++){const n=e/t;i[e]=this.getTangentAt(n,new Lt)}r[0]=new Lt,s[0]=new Lt;let l=Number.MAX_VALUE;const c=Math.abs(i[0].x),h=Math.abs(i[0].y),u=Math.abs(i[0].z);c<=l&&(l=c,n.set(1,0,0)),h<=l&&(l=h,n.set(0,1,0)),u<=l&&n.set(0,0,1),a.crossVectors(i[0],n).normalize(),r[0].crossVectors(i[0],a),s[0].crossVectors(i[0],r[0]);for(let e=1;e<=t;e++){if(r[e]=r[e-1].clone(),s[e]=s[e-1].clone(),a.crossVectors(i[e-1],i[e]),a.length()>Number.EPSILON){a.normalize();const t=Math.acos(st(i[e-1].dot(i[e]),-1,1));r[e].applyMatrix4(o.makeRotationAxis(a,t))}s[e].crossVectors(i[e],r[e])}if(!0===e){let e=Math.acos(st(r[0].dot(r[t]),-1,1));e/=t,i[0].dot(a.crossVectors(r[0],r[t]))>0&&(e=-e);for(let n=1;n<=t;n++)r[n].applyMatrix4(o.makeRotationAxis(i[n],e*n)),s[n].crossVectors(i[n],r[n])}return{tangents:i,normals:r,binormals:s}}clone(){return(new this.constructor).copy(this)}copy(t){return this.arcLengthDivisions=t.arcLengthDivisions,this}toJSON(){const t={metadata:{version:4.5,type:"Curve",generator:"Curve.toJSON"}};return t.arcLengthDivisions=this.arcLengthDivisions,t.type=this.type,t}fromJSON(t){return this.arcLengthDivisions=t.arcLengthDivisions,this}}class xo extends yo{constructor(t=0,e=0,n=1,i=1,r=0,s=2*Math.PI,a=!1,o=0){super(),this.type="EllipseCurve",this.aX=t,this.aY=e,this.xRadius=n,this.yRadius=i,this.aStartAngle=r,this.aEndAngle=s,this.aClockwise=a,this.aRotation=o}getPoint(t,e){const n=e||new dt,i=2*Math.PI;let r=this.aEndAngle-this.aStartAngle;const s=Math.abs(r)i;)r-=i;r0?0:(Math.floor(Math.abs(l)/r)+1)*r:0===c&&l===r-1&&(l=r-2,c=1),this.closed||l>0?a=i[(l-1)%r]:(Mo.subVectors(i[0],i[1]).add(i[0]),a=Mo);const h=i[l%r],u=i[(l+1)%r];if(this.closed||l+2i.length-2?i.length-1:s+1],h=i[s>i.length-3?i.length-1:s+2];return n.set(Ao(a,o.x,l.x,c.x,h.x),Ao(a,o.y,l.y,c.y,h.y)),n}copy(t){super.copy(t),this.points=[];for(let e=0,n=t.points.length;e=n){const t=i[r]-n,s=this.curves[r],a=s.getLength(),o=0===a?0:1-t/a;return s.getPointAt(o,e)}r++}return null}getLength(){const t=this.getCurveLengths();return t[t.length-1]}updateArcLengths(){this.needsUpdate=!0,this.cacheLengths=null,this.getCurveLengths()}getCurveLengths(){if(this.cacheLengths&&this.cacheLengths.length===this.curves.length)return this.cacheLengths;const t=[];let e=0;for(let n=0,i=this.curves.length;n1&&!e[e.length-1].equals(e[0])&&e.push(e[0]),e}copy(t){super.copy(t),this.curves=[];for(let e=0,n=t.curves.length;e0){const t=l.getPoint(0);t.equals(this.currentPoint)||this.lineTo(t.x,t.y)}this.curves.push(l);const c=l.getPoint(1);return this.currentPoint.copy(c),this}copy(t){return super.copy(t),this.currentPoint.copy(t.currentPoint),this}toJSON(){const t=super.toJSON();return t.currentPoint=this.currentPoint.toArray(),t}fromJSON(t){return super.fromJSON(t),this.currentPoint.fromArray(t.currentPoint),this}}class Ho extends Uo{constructor(t){super(t),this.uuid=rt(),this.type="Shape",this.holes=[]}getPointsHoles(t){const e=[];for(let n=0,i=this.holes.length;n80*n){o=c=t[0],l=h=t[1];for(let e=n;ec&&(c=u),d>h&&(h=d);p=Math.max(c-o,h-l),p=0!==p?1/p:0}return Wo(s,a,n,o,l,p),a};function ko(t,e,n,i,r){let s,a;if(r===function(t,e,n,i){let r=0;for(let s=e,a=n-i;s0)for(s=e;s=e;s-=i)a=cl(s,t[s],t[s+1],a);return a&&il(a,a.next)&&(hl(a),a=a.next),a}function Vo(t,e){if(!t)return t;e||(e=t);let n,i=t;do{if(n=!1,i.steiner||!il(i,i.next)&&0!==nl(i.prev,i,i.next))i=i.next;else{if(hl(i),i=e=i.prev,i===i.next)break;n=!0}}while(n||i!==e);return e}function Wo(t,e,n,i,r,s,a){if(!t)return;!a&&s&&function(t,e,n,i){let r=t;do{null===r.z&&(r.z=Ko(r.x,r.y,e,n,i)),r.prevZ=r.prev,r.nextZ=r.next,r=r.next}while(r!==t);r.prevZ.nextZ=null,r.prevZ=null,function(t){let e,n,i,r,s,a,o,l,c=1;do{for(n=t,t=null,s=null,a=0;n;){for(a++,i=n,o=0,e=0;e0||l>0&&i;)0!==o&&(0===l||!i||n.z<=i.z)?(r=n,n=n.nextZ,o--):(r=i,i=i.nextZ,l--),s?s.nextZ=r:t=r,r.prevZ=s,s=r;n=i}s.nextZ=null,c*=2}while(a>1)}(r)}(t,i,r,s);let o,l,c=t;for(;t.prev!==t.next;)if(o=t.prev,l=t.next,s?qo(t,i,r,s):jo(t))e.push(o.i/n),e.push(t.i/n),e.push(l.i/n),hl(t),t=l.next,c=l.next;else if((t=l)===c){a?1===a?Wo(t=Xo(Vo(t),e,n),e,n,i,r,s,2):2===a&&Jo(t,e,n,i,r,s):Wo(Vo(t),e,n,i,r,s,1);break}}function jo(t){const e=t.prev,n=t,i=t.next;if(nl(e,n,i)>=0)return!1;let r=t.next.next;for(;r!==t.prev;){if(tl(e.x,e.y,n.x,n.y,i.x,i.y,r.x,r.y)&&nl(r.prev,r,r.next)>=0)return!1;r=r.next}return!0}function qo(t,e,n,i){const r=t.prev,s=t,a=t.next;if(nl(r,s,a)>=0)return!1;const o=r.xs.x?r.x>a.x?r.x:a.x:s.x>a.x?s.x:a.x,h=r.y>s.y?r.y>a.y?r.y:a.y:s.y>a.y?s.y:a.y,u=Ko(o,l,e,n,i),d=Ko(c,h,e,n,i);let p=t.prevZ,m=t.nextZ;for(;p&&p.z>=u&&m&&m.z<=d;){if(p!==t.prev&&p!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,p.x,p.y)&&nl(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,m!==t.prev&&m!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,m.x,m.y)&&nl(m.prev,m,m.next)>=0)return!1;m=m.nextZ}for(;p&&p.z>=u;){if(p!==t.prev&&p!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,p.x,p.y)&&nl(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;m&&m.z<=d;){if(m!==t.prev&&m!==t.next&&tl(r.x,r.y,s.x,s.y,a.x,a.y,m.x,m.y)&&nl(m.prev,m,m.next)>=0)return!1;m=m.nextZ}return!0}function Xo(t,e,n){let i=t;do{const r=i.prev,s=i.next.next;!il(r,s)&&rl(r,i,i.next,s)&&ol(r,s)&&ol(s,r)&&(e.push(r.i/n),e.push(i.i/n),e.push(s.i/n),hl(i),hl(i.next),i=t=s),i=i.next}while(i!==t);return Vo(i)}function Jo(t,e,n,i,r,s){let a=t;do{let t=a.next.next;for(;t!==a.prev;){if(a.i!==t.i&&el(a,t)){let o=ll(a,t);return a=Vo(a,a.next),o=Vo(o,o.next),Wo(a,e,n,i,r,s),void Wo(o,e,n,i,r,s)}t=t.next}a=a.next}while(a!==t)}function Yo(t,e){return t.x-e.x}function Zo(t,e){if(e=function(t,e){let n=e;const i=t.x,r=t.y;let s,a=-1/0;do{if(r<=n.y&&r>=n.next.y&&n.next.y!==n.y){const t=n.x+(r-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(t<=i&&t>a){if(a=t,t===i){if(r===n.y)return n;if(r===n.next.y)return n.next}s=n.x=n.x&&n.x>=l&&i!==n.x&&tl(rs.x||n.x===s.x&&Qo(s,n)))&&(s=n,u=h)),n=n.next}while(n!==o);return s}(t,e),e){const n=ll(e,t);Vo(e,e.next),Vo(n,n.next)}}function Qo(t,e){return nl(t.prev,t,e.prev)<0&&nl(e.next,t,t.next)<0}function Ko(t,e,n,i,r){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-n)*r)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-i)*r)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function $o(t){let e=t,n=t;do{(e.x=0&&(t-a)*(i-o)-(n-a)*(e-o)>=0&&(n-a)*(s-o)-(r-a)*(i-o)>=0}function el(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){let n=t;do{if(n.i!==t.i&&n.next.i!==t.i&&n.i!==e.i&&n.next.i!==e.i&&rl(n,n.next,t,e))return!0;n=n.next}while(n!==t);return!1}(t,e)&&(ol(t,e)&&ol(e,t)&&function(t,e){let n=t,i=!1;const r=(t.x+e.x)/2,s=(t.y+e.y)/2;do{n.y>s!=n.next.y>s&&n.next.y!==n.y&&r<(n.next.x-n.x)*(s-n.y)/(n.next.y-n.y)+n.x&&(i=!i),n=n.next}while(n!==t);return i}(t,e)&&(nl(t.prev,t,e.prev)||nl(t,e.prev,e))||il(t,e)&&nl(t.prev,t,t.next)>0&&nl(e.prev,e,e.next)>0)}function nl(t,e,n){return(e.y-t.y)*(n.x-e.x)-(e.x-t.x)*(n.y-e.y)}function il(t,e){return t.x===e.x&&t.y===e.y}function rl(t,e,n,i){const r=al(nl(t,e,n)),s=al(nl(t,e,i)),a=al(nl(n,i,t)),o=al(nl(n,i,e));return r!==s&&a!==o||(!(0!==r||!sl(t,n,e))||(!(0!==s||!sl(t,i,e))||(!(0!==a||!sl(n,t,i))||!(0!==o||!sl(n,e,i)))))}function sl(t,e,n){return e.x<=Math.max(t.x,n.x)&&e.x>=Math.min(t.x,n.x)&&e.y<=Math.max(t.y,n.y)&&e.y>=Math.min(t.y,n.y)}function al(t){return t>0?1:t<0?-1:0}function ol(t,e){return nl(t.prev,t,t.next)<0?nl(t,e,t.next)>=0&&nl(t,t.prev,e)>=0:nl(t,e,t.prev)<0||nl(t,t.next,e)<0}function ll(t,e){const n=new ul(t.i,t.x,t.y),i=new ul(e.i,e.x,e.y),r=t.next,s=e.prev;return t.next=e,e.prev=t,n.next=r,r.prev=n,i.next=n,n.prev=i,s.next=i,i.prev=s,i}function cl(t,e,n,i){const r=new ul(t,e,n);return i?(r.next=i.next,r.prev=i,i.next.prev=r,i.next=r):(r.prev=r,r.next=r),r}function hl(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function ul(t,e,n){this.i=t,this.x=e,this.y=n,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}class dl{static area(t){const e=t.length;let n=0;for(let i=e-1,r=0;r2&&t[e-1].equals(t[0])&&t.pop()}function ml(t,e){for(let n=0;nNumber.EPSILON){const u=Math.sqrt(h),d=Math.sqrt(l*l+c*c),p=e.x-o/u,m=e.y+a/u,f=((n.x-c/d-p)*c-(n.y+l/d-m)*l)/(a*c-o*l);i=p+a*f-t.x,r=m+o*f-t.y;const g=i*i+r*r;if(g<=2)return new dt(i,r);s=Math.sqrt(g/2)}else{let t=!1;a>Number.EPSILON?l>Number.EPSILON&&(t=!0):a<-Number.EPSILON?l<-Number.EPSILON&&(t=!0):Math.sign(o)===Math.sign(c)&&(t=!0),t?(i=-o,r=a,s=Math.sqrt(h)):(i=a,r=o,s=Math.sqrt(h/2))}return new dt(i/s,r/s)}const P=[];for(let t=0,e=E.length,n=e-1,i=t+1;t=0;t--){const e=t/p,n=h*Math.cos(e*Math.PI/2),i=u*Math.sin(e*Math.PI/2)+d;for(let t=0,e=E.length;t=0;){const i=n;let r=n-1;r<0&&(r=t.length-1);for(let t=0,n=o+2*p;t0)&&d.push(e,r,l),(t!==n-1||o0!=t>0&&this.version++,this._sheen=t}get clearcoat(){return this._clearcoat}set clearcoat(t){this._clearcoat>0!=t>0&&this.version++,this._clearcoat=t}get transmission(){return this._transmission}set transmission(t){this._transmission>0!=t>0&&this.version++,this._transmission=t}copy(t){return super.copy(t),this.defines={STANDARD:"",PHYSICAL:""},this.clearcoat=t.clearcoat,this.clearcoatMap=t.clearcoatMap,this.clearcoatRoughness=t.clearcoatRoughness,this.clearcoatRoughnessMap=t.clearcoatRoughnessMap,this.clearcoatNormalMap=t.clearcoatNormalMap,this.clearcoatNormalScale.copy(t.clearcoatNormalScale),this.ior=t.ior,this.sheen=t.sheen,this.sheenColor.copy(t.sheenColor),this.sheenColorMap=t.sheenColorMap,this.sheenRoughness=t.sheenRoughness,this.sheenRoughnessMap=t.sheenRoughnessMap,this.transmission=t.transmission,this.transmissionMap=t.transmissionMap,this.thickness=t.thickness,this.thicknessMap=t.thicknessMap,this.attenuationDistance=t.attenuationDistance,this.attenuationColor.copy(t.attenuationColor),this.specularIntensity=t.specularIntensity,this.specularIntensityMap=t.specularIntensityMap,this.specularColor.copy(t.specularColor),this.specularColorMap=t.specularColorMap,this}}Dl.prototype.isMeshPhysicalMaterial=!0;class Il extends Ve{constructor(t){super(),this.type="MeshPhongMaterial",this.color=new Ze(16777215),this.specular=new Ze(1118481),this.shininess=30,this.map=null,this.lightMap=null,this.lightMapIntensity=1,this.aoMap=null,this.aoMapIntensity=1,this.emissive=new Ze(0),this.emissiveIntensity=1,this.emissiveMap=null,this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.specularMap=null,this.alphaMap=null,this.envMap=null,this.combine=0,this.reflectivity=1,this.refractionRatio=.98,this.wireframe=!1,this.wireframeLinewidth=1,this.wireframeLinecap="round",this.wireframeLinejoin="round",this.flatShading=!1,this.setValues(t)}copy(t){return super.copy(t),this.color.copy(t.color),this.specular.copy(t.specular),this.shininess=t.shininess,this.map=t.map,this.lightMap=t.lightMap,this.lightMapIntensity=t.lightMapIntensity,this.aoMap=t.aoMap,this.aoMapIntensity=t.aoMapIntensity,this.emissive.copy(t.emissive),this.emissiveMap=t.emissiveMap,this.emissiveIntensity=t.emissiveIntensity,this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.specularMap=t.specularMap,this.alphaMap=t.alphaMap,this.envMap=t.envMap,this.combine=t.combine,this.reflectivity=t.reflectivity,this.refractionRatio=t.refractionRatio,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.wireframeLinecap=t.wireframeLinecap,this.wireframeLinejoin=t.wireframeLinejoin,this.flatShading=t.flatShading,this}}Il.prototype.isMeshPhongMaterial=!0;class Nl extends Ve{constructor(t){super(),this.defines={TOON:""},this.type="MeshToonMaterial",this.color=new Ze(16777215),this.map=null,this.gradientMap=null,this.lightMap=null,this.lightMapIntensity=1,this.aoMap=null,this.aoMapIntensity=1,this.emissive=new Ze(0),this.emissiveIntensity=1,this.emissiveMap=null,this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.alphaMap=null,this.wireframe=!1,this.wireframeLinewidth=1,this.wireframeLinecap="round",this.wireframeLinejoin="round",this.setValues(t)}copy(t){return super.copy(t),this.color.copy(t.color),this.map=t.map,this.gradientMap=t.gradientMap,this.lightMap=t.lightMap,this.lightMapIntensity=t.lightMapIntensity,this.aoMap=t.aoMap,this.aoMapIntensity=t.aoMapIntensity,this.emissive.copy(t.emissive),this.emissiveMap=t.emissiveMap,this.emissiveIntensity=t.emissiveIntensity,this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.alphaMap=t.alphaMap,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.wireframeLinecap=t.wireframeLinecap,this.wireframeLinejoin=t.wireframeLinejoin,this}}Nl.prototype.isMeshToonMaterial=!0;class zl extends Ve{constructor(t){super(),this.type="MeshNormalMaterial",this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.wireframe=!1,this.wireframeLinewidth=1,this.fog=!1,this.flatShading=!1,this.setValues(t)}copy(t){return super.copy(t),this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.flatShading=t.flatShading,this}}zl.prototype.isMeshNormalMaterial=!0;class Bl extends Ve{constructor(t){super(),this.type="MeshLambertMaterial",this.color=new Ze(16777215),this.map=null,this.lightMap=null,this.lightMapIntensity=1,this.aoMap=null,this.aoMapIntensity=1,this.emissive=new Ze(0),this.emissiveIntensity=1,this.emissiveMap=null,this.specularMap=null,this.alphaMap=null,this.envMap=null,this.combine=0,this.reflectivity=1,this.refractionRatio=.98,this.wireframe=!1,this.wireframeLinewidth=1,this.wireframeLinecap="round",this.wireframeLinejoin="round",this.setValues(t)}copy(t){return super.copy(t),this.color.copy(t.color),this.map=t.map,this.lightMap=t.lightMap,this.lightMapIntensity=t.lightMapIntensity,this.aoMap=t.aoMap,this.aoMapIntensity=t.aoMapIntensity,this.emissive.copy(t.emissive),this.emissiveMap=t.emissiveMap,this.emissiveIntensity=t.emissiveIntensity,this.specularMap=t.specularMap,this.alphaMap=t.alphaMap,this.envMap=t.envMap,this.combine=t.combine,this.reflectivity=t.reflectivity,this.refractionRatio=t.refractionRatio,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.wireframeLinecap=t.wireframeLinecap,this.wireframeLinejoin=t.wireframeLinejoin,this}}Bl.prototype.isMeshLambertMaterial=!0;class Fl extends Ve{constructor(t){super(),this.defines={MATCAP:""},this.type="MeshMatcapMaterial",this.color=new Ze(16777215),this.matcap=null,this.map=null,this.bumpMap=null,this.bumpScale=1,this.normalMap=null,this.normalMapType=0,this.normalScale=new dt(1,1),this.displacementMap=null,this.displacementScale=1,this.displacementBias=0,this.alphaMap=null,this.flatShading=!1,this.setValues(t)}copy(t){return super.copy(t),this.defines={MATCAP:""},this.color.copy(t.color),this.matcap=t.matcap,this.map=t.map,this.bumpMap=t.bumpMap,this.bumpScale=t.bumpScale,this.normalMap=t.normalMap,this.normalMapType=t.normalMapType,this.normalScale.copy(t.normalScale),this.displacementMap=t.displacementMap,this.displacementScale=t.displacementScale,this.displacementBias=t.displacementBias,this.alphaMap=t.alphaMap,this.flatShading=t.flatShading,this}}Fl.prototype.isMeshMatcapMaterial=!0;class Ol extends Ua{constructor(t){super(),this.type="LineDashedMaterial",this.scale=1,this.dashSize=3,this.gapSize=1,this.setValues(t)}copy(t){return super.copy(t),this.scale=t.scale,this.dashSize=t.dashSize,this.gapSize=t.gapSize,this}}Ol.prototype.isLineDashedMaterial=!0;var Ul=Object.freeze({__proto__:null,ShadowMaterial:Cl,SpriteMaterial:ia,RawShaderMaterial:gi,ShaderMaterial:Vn,PointsMaterial:Za,MeshPhysicalMaterial:Dl,MeshStandardMaterial:Pl,MeshPhongMaterial:Il,MeshToonMaterial:Nl,MeshNormalMaterial:zl,MeshLambertMaterial:Bl,MeshDepthMaterial:Bs,MeshDistanceMaterial:Fs,MeshBasicMaterial:Qe,MeshMatcapMaterial:Fl,LineDashedMaterial:Ol,LineBasicMaterial:Ua,Material:Ve});const Hl={arraySlice:function(t,e,n){return Hl.isTypedArray(t)?new t.constructor(t.subarray(e,void 0!==n?n:t.length)):t.slice(e,n)},convertArray:function(t,e,n){return!t||!n&&t.constructor===e?t:"number"==typeof e.BYTES_PER_ELEMENT?new e(t):Array.prototype.slice.call(t)},isTypedArray:function(t){return ArrayBuffer.isView(t)&&!(t instanceof DataView)},getKeyframeOrder:function(t){const e=t.length,n=new Array(e);for(let t=0;t!==e;++t)n[t]=t;return n.sort((function(e,n){return t[e]-t[n]})),n},sortedArray:function(t,e,n){const i=t.length,r=new t.constructor(i);for(let s=0,a=0;a!==i;++s){const i=n[s]*e;for(let n=0;n!==e;++n)r[a++]=t[i+n]}return r},flattenJSON:function(t,e,n,i){let r=1,s=t[0];for(;void 0!==s&&void 0===s[i];)s=t[r++];if(void 0===s)return;let a=s[i];if(void 0!==a)if(Array.isArray(a))do{a=s[i],void 0!==a&&(e.push(s.time),n.push.apply(n,a)),s=t[r++]}while(void 0!==s);else if(void 0!==a.toArray)do{a=s[i],void 0!==a&&(e.push(s.time),a.toArray(n,n.length)),s=t[r++]}while(void 0!==s);else do{a=s[i],void 0!==a&&(e.push(s.time),n.push(a)),s=t[r++]}while(void 0!==s)},subclip:function(t,e,n,i,r=30){const s=t.clone();s.name=e;const a=[];for(let t=0;t=i)){l.push(e.times[t]);for(let n=0;ns.tracks[t].times[0]&&(o=s.tracks[t].times[0]);for(let t=0;t=i.times[u]){const t=u*l+o,e=t+l-o;d=Hl.arraySlice(i.values,t,e)}else{const t=i.createInterpolant(),e=o,n=l-o;t.evaluate(s),d=Hl.arraySlice(t.resultBuffer,e,n)}if("quaternion"===r){(new At).fromArray(d).normalize().conjugate().toArray(d)}const p=a.times.length;for(let t=0;t=r)break t;{const a=e[1];t=r)break e}s=n,n=0}}for(;n>>1;te;)--s;if(++s,0!==r||s!==i){r>=s&&(s=Math.max(s,1),r=s-1);const t=this.getValueSize();this.times=Hl.arraySlice(n,r,s),this.values=Hl.arraySlice(this.values,r*t,s*t)}return this}validate(){let t=!0;const e=this.getValueSize();e-Math.floor(e)!=0&&(console.error("THREE.KeyframeTrack: Invalid value size in track.",this),t=!1);const n=this.times,i=this.values,r=n.length;0===r&&(console.error("THREE.KeyframeTrack: Track is empty.",this),t=!1);let s=null;for(let e=0;e!==r;e++){const i=n[e];if("number"==typeof i&&isNaN(i)){console.error("THREE.KeyframeTrack: Time is not a valid number.",this,e,i),t=!1;break}if(null!==s&&s>i){console.error("THREE.KeyframeTrack: Out of order keys.",this,e,i,s),t=!1;break}s=i}if(void 0!==i&&Hl.isTypedArray(i))for(let e=0,n=i.length;e!==n;++e){const n=i[e];if(isNaN(n)){console.error("THREE.KeyframeTrack: Value is not a valid number.",this,e,n),t=!1;break}}return t}optimize(){const t=Hl.arraySlice(this.times),e=Hl.arraySlice(this.values),n=this.getValueSize(),i=this.getInterpolation()===G,r=t.length-1;let s=1;for(let a=1;a0){t[s]=t[r];for(let t=r*n,i=s*n,a=0;a!==n;++a)e[i+a]=e[t+a];++s}return s!==t.length?(this.times=Hl.arraySlice(t,0,s),this.values=Hl.arraySlice(e,0,s*n)):(this.times=t,this.values=e),this}clone(){const t=Hl.arraySlice(this.times,0),e=Hl.arraySlice(this.values,0),n=new(0,this.constructor)(this.name,t,e);return n.createInterpolant=this.createInterpolant,n}}jl.prototype.TimeBufferType=Float32Array,jl.prototype.ValueBufferType=Float32Array,jl.prototype.DefaultInterpolation=H;class ql extends jl{}ql.prototype.ValueTypeName="bool",ql.prototype.ValueBufferType=Array,ql.prototype.DefaultInterpolation=U,ql.prototype.InterpolantFactoryMethodLinear=void 0,ql.prototype.InterpolantFactoryMethodSmooth=void 0;class Xl extends jl{}Xl.prototype.ValueTypeName="color";class Jl extends jl{}Jl.prototype.ValueTypeName="number";class Yl extends Gl{constructor(t,e,n,i){super(t,e,n,i)}interpolate_(t,e,n,i){const r=this.resultBuffer,s=this.sampleValues,a=this.valueSize,o=(n-e)/(i-e);let l=t*a;for(let t=l+a;l!==t;l+=4)At.slerpFlat(r,0,s,l-a,s,l,o);return r}}class Zl extends jl{InterpolantFactoryMethodLinear(t){return new Yl(this.times,this.values,this.getValueSize(),t)}}Zl.prototype.ValueTypeName="quaternion",Zl.prototype.DefaultInterpolation=H,Zl.prototype.InterpolantFactoryMethodSmooth=void 0;class Ql extends jl{}Ql.prototype.ValueTypeName="string",Ql.prototype.ValueBufferType=Array,Ql.prototype.DefaultInterpolation=U,Ql.prototype.InterpolantFactoryMethodLinear=void 0,Ql.prototype.InterpolantFactoryMethodSmooth=void 0;class Kl extends jl{}Kl.prototype.ValueTypeName="vector";class $l{constructor(t,e=-1,n,i=2500){this.name=t,this.tracks=n,this.duration=e,this.blendMode=i,this.uuid=rt(),this.duration<0&&this.resetDuration()}static parse(t){const e=[],n=t.tracks,i=1/(t.fps||1);for(let t=0,r=n.length;t!==r;++t)e.push(tc(n[t]).scale(i));const r=new this(t.name,t.duration,e,t.blendMode);return r.uuid=t.uuid,r}static toJSON(t){const e=[],n=t.tracks,i={name:t.name,duration:t.duration,tracks:e,uuid:t.uuid,blendMode:t.blendMode};for(let t=0,i=n.length;t!==i;++t)e.push(jl.toJSON(n[t]));return i}static CreateFromMorphTargetSequence(t,e,n,i){const r=e.length,s=[];for(let t=0;t1){const t=s[1];let e=i[t];e||(i[t]=e=[]),e.push(n)}}const s=[];for(const t in i)s.push(this.CreateFromMorphTargetSequence(t,i[t],e,n));return s}static parseAnimation(t,e){if(!t)return console.error("THREE.AnimationClip: No animation in JSONLoader data."),null;const n=function(t,e,n,i,r){if(0!==n.length){const s=[],a=[];Hl.flattenJSON(n,s,a,i),0!==s.length&&r.push(new t(e,s,a))}},i=[],r=t.name||"default",s=t.fps||30,a=t.blendMode;let o=t.length||-1;const l=t.hierarchy||[];for(let t=0;t{e&&e(r),this.manager.itemEnd(t)}),0),r;if(void 0!==sc[t])return void sc[t].push({onLoad:e,onProgress:n,onError:i});sc[t]=[],sc[t].push({onLoad:e,onProgress:n,onError:i});const s=new Request(t,{headers:new Headers(this.requestHeader),credentials:this.withCredentials?"include":"same-origin"});fetch(s).then((e=>{if(200===e.status||0===e.status){if(0===e.status&&console.warn("THREE.FileLoader: HTTP Status 0 received."),"undefined"==typeof ReadableStream||void 0===e.body.getReader)return e;const n=sc[t],i=e.body.getReader(),r=e.headers.get("Content-Length"),s=r?parseInt(r):0,a=0!==s;let o=0;const l=new ReadableStream({start(t){!function e(){i.read().then((({done:i,value:r})=>{if(i)t.close();else{o+=r.byteLength;const i=new ProgressEvent("progress",{lengthComputable:a,loaded:o,total:s});for(let t=0,e=n.length;t{switch(this.responseType){case"arraybuffer":return t.arrayBuffer();case"blob":return t.blob();case"document":return t.text().then((t=>(new DOMParser).parseFromString(t,this.mimeType)));case"json":return t.json();default:return t.text()}})).then((e=>{ec.add(t,e);const n=sc[t];delete sc[t];for(let t=0,i=n.length;t{const n=sc[t];if(void 0===n)throw this.manager.itemError(t),e;delete sc[t];for(let t=0,i=n.length;t{this.manager.itemEnd(t)})),this.manager.itemStart(t)}setResponseType(t){return this.responseType=t,this}setMimeType(t){return this.mimeType=t,this}}class oc extends rc{constructor(t){super(t)}load(t,e,n,i){void 0!==this.path&&(t=this.path+t),t=this.manager.resolveURL(t);const r=this,s=ec.get(t);if(void 0!==s)return r.manager.itemStart(t),setTimeout((function(){e&&e(s),r.manager.itemEnd(t)}),0),s;const a=vt("img");function o(){c(),ec.add(t,this),e&&e(this),r.manager.itemEnd(t)}function l(e){c(),i&&i(e),r.manager.itemError(t),r.manager.itemEnd(t)}function c(){a.removeEventListener("load",o,!1),a.removeEventListener("error",l,!1)}return a.addEventListener("load",o,!1),a.addEventListener("error",l,!1),"data:"!==t.substr(0,5)&&void 0!==this.crossOrigin&&(a.crossOrigin=this.crossOrigin),r.manager.itemStart(t),a.src=t,a}}class lc extends rc{constructor(t){super(t)}load(t,e,n,i){const r=new Jn,s=new oc(this.manager);s.setCrossOrigin(this.crossOrigin),s.setPath(this.path);let a=0;function o(n){s.load(t[n],(function(t){r.images[n]=t,a++,6===a&&(r.needsUpdate=!0,e&&e(r))}),void 0,i)}for(let e=0;e0:i.vertexColors=t.vertexColors),void 0!==t.uniforms)for(const e in t.uniforms){const r=t.uniforms[e];switch(i.uniforms[e]={},r.type){case"t":i.uniforms[e].value=n(r.value);break;case"c":i.uniforms[e].value=(new Ze).setHex(r.value);break;case"v2":i.uniforms[e].value=(new dt).fromArray(r.value);break;case"v3":i.uniforms[e].value=(new Lt).fromArray(r.value);break;case"v4":i.uniforms[e].value=(new wt).fromArray(r.value);break;case"m3":i.uniforms[e].value=(new pt).fromArray(r.value);break;case"m4":i.uniforms[e].value=(new se).fromArray(r.value);break;default:i.uniforms[e].value=r.value}}if(void 0!==t.defines&&(i.defines=t.defines),void 0!==t.vertexShader&&(i.vertexShader=t.vertexShader),void 0!==t.fragmentShader&&(i.fragmentShader=t.fragmentShader),void 0!==t.extensions)for(const e in t.extensions)i.extensions[e]=t.extensions[e];if(void 0!==t.shading&&(i.flatShading=1===t.shading),void 0!==t.size&&(i.size=t.size),void 0!==t.sizeAttenuation&&(i.sizeAttenuation=t.sizeAttenuation),void 0!==t.map&&(i.map=n(t.map)),void 0!==t.matcap&&(i.matcap=n(t.matcap)),void 0!==t.alphaMap&&(i.alphaMap=n(t.alphaMap)),void 0!==t.bumpMap&&(i.bumpMap=n(t.bumpMap)),void 0!==t.bumpScale&&(i.bumpScale=t.bumpScale),void 0!==t.normalMap&&(i.normalMap=n(t.normalMap)),void 0!==t.normalMapType&&(i.normalMapType=t.normalMapType),void 0!==t.normalScale){let e=t.normalScale;!1===Array.isArray(e)&&(e=[e,e]),i.normalScale=(new dt).fromArray(e)}return void 0!==t.displacementMap&&(i.displacementMap=n(t.displacementMap)),void 0!==t.displacementScale&&(i.displacementScale=t.displacementScale),void 0!==t.displacementBias&&(i.displacementBias=t.displacementBias),void 0!==t.roughnessMap&&(i.roughnessMap=n(t.roughnessMap)),void 0!==t.metalnessMap&&(i.metalnessMap=n(t.metalnessMap)),void 0!==t.emissiveMap&&(i.emissiveMap=n(t.emissiveMap)),void 0!==t.emissiveIntensity&&(i.emissiveIntensity=t.emissiveIntensity),void 0!==t.specularMap&&(i.specularMap=n(t.specularMap)),void 0!==t.specularIntensityMap&&(i.specularIntensityMap=n(t.specularIntensityMap)),void 0!==t.specularColorMap&&(i.specularColorMap=n(t.specularColorMap)),void 0!==t.envMap&&(i.envMap=n(t.envMap)),void 0!==t.envMapIntensity&&(i.envMapIntensity=t.envMapIntensity),void 0!==t.reflectivity&&(i.reflectivity=t.reflectivity),void 0!==t.refractionRatio&&(i.refractionRatio=t.refractionRatio),void 0!==t.lightMap&&(i.lightMap=n(t.lightMap)),void 0!==t.lightMapIntensity&&(i.lightMapIntensity=t.lightMapIntensity),void 0!==t.aoMap&&(i.aoMap=n(t.aoMap)),void 0!==t.aoMapIntensity&&(i.aoMapIntensity=t.aoMapIntensity),void 0!==t.gradientMap&&(i.gradientMap=n(t.gradientMap)),void 0!==t.clearcoatMap&&(i.clearcoatMap=n(t.clearcoatMap)),void 0!==t.clearcoatRoughnessMap&&(i.clearcoatRoughnessMap=n(t.clearcoatRoughnessMap)),void 0!==t.clearcoatNormalMap&&(i.clearcoatNormalMap=n(t.clearcoatNormalMap)),void 0!==t.clearcoatNormalScale&&(i.clearcoatNormalScale=(new dt).fromArray(t.clearcoatNormalScale)),void 0!==t.transmissionMap&&(i.transmissionMap=n(t.transmissionMap)),void 0!==t.thicknessMap&&(i.thicknessMap=n(t.thicknessMap)),void 0!==t.sheenColorMap&&(i.sheenColorMap=n(t.sheenColorMap)),void 0!==t.sheenRoughnessMap&&(i.sheenRoughnessMap=n(t.sheenRoughnessMap)),i}setTextures(t){return this.textures=t,this}}class Pc{static decodeText(t){if("undefined"!=typeof TextDecoder)return(new TextDecoder).decode(t);let e="";for(let n=0,i=t.length;n0){this.source.connect(this.filters[0]);for(let t=1,e=this.filters.length;t0){this.source.disconnect(this.filters[0]);for(let t=1,e=this.filters.length;t0&&this._mixBufferRegionAdditive(n,i,this._addIndex*e,1,e);for(let t=e,r=e+e;t!==r;++t)if(n[t]!==n[t+e]){a.setValue(n,i);break}}saveOriginalState(){const t=this.binding,e=this.buffer,n=this.valueSize,i=n*this._origIndex;t.getValue(e,i);for(let t=n,r=i;t!==r;++t)e[t]=e[i+t%n];this._setIdentity(),this.cumulativeWeight=0,this.cumulativeWeightAdditive=0}restoreOriginalState(){const t=3*this.valueSize;this.binding.setValue(this.buffer,t)}_setAdditiveIdentityNumeric(){const t=this._addIndex*this.valueSize,e=t+this.valueSize;for(let n=t;n=.5)for(let i=0;i!==r;++i)t[e+i]=t[n+i]}_slerp(t,e,n,i){At.slerpFlat(t,e,t,e,t,n,i)}_slerpAdditive(t,e,n,i,r){const s=this._workIndex*r;At.multiplyQuaternionsFlat(t,s,t,e,t,n),At.slerpFlat(t,e,t,e,t,s,i)}_lerp(t,e,n,i,r){const s=1-i;for(let a=0;a!==r;++a){const r=e+a;t[r]=t[r]*s+t[n+a]*i}}_lerpAdditive(t,e,n,i,r){for(let s=0;s!==r;++s){const r=e+s;t[r]=t[r]+t[n+s]*i}}}const sh="\\[\\]\\.:\\/",ah=new RegExp("[\\[\\]\\.:\\/]","g"),oh="[^\\[\\]\\.:\\/]",lh="[^"+sh.replace("\\.","")+"]",ch=/((?:WC+[\/:])*)/.source.replace("WC",oh),hh=/(WCOD+)?/.source.replace("WCOD",lh),uh=/(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace("WC",oh),dh=/\.(WC+)(?:\[(.+)\])?/.source.replace("WC",oh),ph=new RegExp("^"+ch+hh+uh+dh+"$"),mh=["material","materials","bones"];class fh{constructor(t,e,n){this.path=e,this.parsedPath=n||fh.parseTrackName(e),this.node=fh.findNode(t,this.parsedPath.nodeName)||t,this.rootNode=t,this.getValue=this._getValue_unbound,this.setValue=this._setValue_unbound}static create(t,e,n){return t&&t.isAnimationObjectGroup?new fh.Composite(t,e,n):new fh(t,e,n)}static sanitizeNodeName(t){return t.replace(/\s/g,"_").replace(ah,"")}static parseTrackName(t){const e=ph.exec(t);if(!e)throw new Error("PropertyBinding: Cannot parse trackName: "+t);const n={nodeName:e[2],objectName:e[3],objectIndex:e[4],propertyName:e[5],propertyIndex:e[6]},i=n.nodeName&&n.nodeName.lastIndexOf(".");if(void 0!==i&&-1!==i){const t=n.nodeName.substring(i+1);-1!==mh.indexOf(t)&&(n.nodeName=n.nodeName.substring(0,i),n.objectName=t)}if(null===n.propertyName||0===n.propertyName.length)throw new Error("PropertyBinding: can not parse propertyName from trackName: "+t);return n}static findNode(t,e){if(!e||""===e||"."===e||-1===e||e===t.name||e===t.uuid)return t;if(t.skeleton){const n=t.skeleton.getBoneByName(e);if(void 0!==n)return n}if(t.children){const n=function(t){for(let i=0;i=r){const s=r++,c=t[s];e[c.uuid]=l,t[l]=c,e[o]=s,t[s]=a;for(let t=0,e=i;t!==e;++t){const e=n[t],i=e[s],r=e[l];e[l]=i,e[s]=r}}}this.nCachedObjects_=r}uncache(){const t=this._objects,e=this._indicesByUUID,n=this._bindings,i=n.length;let r=this.nCachedObjects_,s=t.length;for(let a=0,o=arguments.length;a!==o;++a){const o=arguments[a].uuid,l=e[o];if(void 0!==l)if(delete e[o],l0&&(e[a.uuid]=l),t[l]=a,t.pop();for(let t=0,e=i;t!==e;++t){const e=n[t];e[l]=e[r],e.pop()}}}this.nCachedObjects_=r}subscribe_(t,e){const n=this._bindingsIndicesByPath;let i=n[t];const r=this._bindings;if(void 0!==i)return r[i];const s=this._paths,a=this._parsedPaths,o=this._objects,l=o.length,c=this.nCachedObjects_,h=new Array(l);i=r.length,n[t]=i,s.push(t),a.push(e),r.push(h);for(let n=c,i=o.length;n!==i;++n){const i=o[n];h[n]=new fh(i,t,e)}return h}unsubscribe_(t){const e=this._bindingsIndicesByPath,n=e[t];if(void 0!==n){const i=this._paths,r=this._parsedPaths,s=this._bindings,a=s.length-1,o=s[a];e[t[a]]=n,s[n]=o,s.pop(),r[n]=r[a],r.pop(),i[n]=i[a],i.pop()}}}gh.prototype.isAnimationObjectGroup=!0;class vh{constructor(t,e,n=null,i=e.blendMode){this._mixer=t,this._clip=e,this._localRoot=n,this.blendMode=i;const r=e.tracks,s=r.length,a=new Array(s),o={endingStart:k,endingEnd:k};for(let t=0;t!==s;++t){const e=r[t].createInterpolant(null);a[t]=e,e.settings=o}this._interpolantSettings=o,this._interpolants=a,this._propertyBindings=new Array(s),this._cacheIndex=null,this._byClipCacheIndex=null,this._timeScaleInterpolant=null,this._weightInterpolant=null,this.loop=2201,this._loopCount=-1,this._startTime=null,this.time=0,this.timeScale=1,this._effectiveTimeScale=1,this.weight=1,this._effectiveWeight=1,this.repetitions=1/0,this.paused=!1,this.enabled=!0,this.clampWhenFinished=!1,this.zeroSlopeAtStart=!0,this.zeroSlopeAtEnd=!0}play(){return this._mixer._activateAction(this),this}stop(){return this._mixer._deactivateAction(this),this.reset()}reset(){return this.paused=!1,this.enabled=!0,this.time=0,this._loopCount=-1,this._startTime=null,this.stopFading().stopWarping()}isRunning(){return this.enabled&&!this.paused&&0!==this.timeScale&&null===this._startTime&&this._mixer._isActiveAction(this)}isScheduled(){return this._mixer._isActiveAction(this)}startAt(t){return this._startTime=t,this}setLoop(t,e){return this.loop=t,this.repetitions=e,this}setEffectiveWeight(t){return this.weight=t,this._effectiveWeight=this.enabled?t:0,this.stopFading()}getEffectiveWeight(){return this._effectiveWeight}fadeIn(t){return this._scheduleFading(t,0,1)}fadeOut(t){return this._scheduleFading(t,1,0)}crossFadeFrom(t,e,n){if(t.fadeOut(e),this.fadeIn(e),n){const n=this._clip.duration,i=t._clip.duration,r=i/n,s=n/i;t.warp(1,r,e),this.warp(s,1,e)}return this}crossFadeTo(t,e,n){return t.crossFadeFrom(this,e,n)}stopFading(){const t=this._weightInterpolant;return null!==t&&(this._weightInterpolant=null,this._mixer._takeBackControlInterpolant(t)),this}setEffectiveTimeScale(t){return this.timeScale=t,this._effectiveTimeScale=this.paused?0:t,this.stopWarping()}getEffectiveTimeScale(){return this._effectiveTimeScale}setDuration(t){return this.timeScale=this._clip.duration/t,this.stopWarping()}syncWith(t){return this.time=t.time,this.timeScale=t.timeScale,this.stopWarping()}halt(t){return this.warp(this._effectiveTimeScale,0,t)}warp(t,e,n){const i=this._mixer,r=i.time,s=this.timeScale;let a=this._timeScaleInterpolant;null===a&&(a=i._lendControlInterpolant(),this._timeScaleInterpolant=a);const o=a.parameterPositions,l=a.sampleValues;return o[0]=r,o[1]=r+n,l[0]=t/s,l[1]=e/s,this}stopWarping(){const t=this._timeScaleInterpolant;return null!==t&&(this._timeScaleInterpolant=null,this._mixer._takeBackControlInterpolant(t)),this}getMixer(){return this._mixer}getClip(){return this._clip}getRoot(){return this._localRoot||this._mixer._root}_update(t,e,n,i){if(!this.enabled)return void this._updateWeight(t);const r=this._startTime;if(null!==r){const i=(t-r)*n;if(i<0||0===n)return;this._startTime=null,e=n*i}e*=this._updateTimeScale(t);const s=this._updateTime(e),a=this._updateWeight(t);if(a>0){const t=this._interpolants,e=this._propertyBindings;if(this.blendMode===q)for(let n=0,i=t.length;n!==i;++n)t[n].evaluate(s),e[n].accumulateAdditive(a);else for(let n=0,r=t.length;n!==r;++n)t[n].evaluate(s),e[n].accumulate(i,a)}}_updateWeight(t){let e=0;if(this.enabled){e=this.weight;const n=this._weightInterpolant;if(null!==n){const i=n.evaluate(t)[0];e*=i,t>n.parameterPositions[1]&&(this.stopFading(),0===i&&(this.enabled=!1))}}return this._effectiveWeight=e,e}_updateTimeScale(t){let e=0;if(!this.paused){e=this.timeScale;const n=this._timeScaleInterpolant;if(null!==n){e*=n.evaluate(t)[0],t>n.parameterPositions[1]&&(this.stopWarping(),0===e?this.paused=!0:this.timeScale=e)}}return this._effectiveTimeScale=e,e}_updateTime(t){const e=this._clip.duration,n=this.loop;let i=this.time+t,r=this._loopCount;const s=2202===n;if(0===t)return-1===r?i:s&&1==(1&r)?e-i:i;if(2200===n){-1===r&&(this._loopCount=0,this._setEndings(!0,!0,!1));t:{if(i>=e)i=e;else{if(!(i<0)){this.time=i;break t}i=0}this.clampWhenFinished?this.paused=!0:this.enabled=!1,this.time=i,this._mixer.dispatchEvent({type:"finished",action:this,direction:t<0?-1:1})}}else{if(-1===r&&(t>=0?(r=0,this._setEndings(!0,0===this.repetitions,s)):this._setEndings(0===this.repetitions,!0,s)),i>=e||i<0){const n=Math.floor(i/e);i-=e*n,r+=Math.abs(n);const a=this.repetitions-r;if(a<=0)this.clampWhenFinished?this.paused=!0:this.enabled=!1,i=t>0?e:0,this.time=i,this._mixer.dispatchEvent({type:"finished",action:this,direction:t>0?1:-1});else{if(1===a){const e=t<0;this._setEndings(e,!e,s)}else this._setEndings(!1,!1,s);this._loopCount=r,this.time=i,this._mixer.dispatchEvent({type:"loop",action:this,loopDelta:n})}}else this.time=i;if(s&&1==(1&r))return e-i}return i}_setEndings(t,e,n){const i=this._interpolantSettings;n?(i.endingStart=V,i.endingEnd=V):(i.endingStart=t?this.zeroSlopeAtStart?V:k:W,i.endingEnd=e?this.zeroSlopeAtEnd?V:k:W)}_scheduleFading(t,e,n){const i=this._mixer,r=i.time;let s=this._weightInterpolant;null===s&&(s=i._lendControlInterpolant(),this._weightInterpolant=s);const a=s.parameterPositions,o=s.sampleValues;return a[0]=r,o[0]=e,a[1]=r+t,o[1]=n,this}}class yh extends ${constructor(t){super(),this._root=t,this._initMemoryManager(),this._accuIndex=0,this.time=0,this.timeScale=1}_bindAction(t,e){const n=t._localRoot||this._root,i=t._clip.tracks,r=i.length,s=t._propertyBindings,a=t._interpolants,o=n.uuid,l=this._bindingsByRootAndName;let c=l[o];void 0===c&&(c={},l[o]=c);for(let t=0;t!==r;++t){const r=i[t],l=r.name;let h=c[l];if(void 0!==h)s[t]=h;else{if(h=s[t],void 0!==h){null===h._cacheIndex&&(++h.referenceCount,this._addInactiveBinding(h,o,l));continue}const i=e&&e._propertyBindings[t].binding.parsedPath;h=new rh(fh.create(n,l,i),r.ValueTypeName,r.getValueSize()),++h.referenceCount,this._addInactiveBinding(h,o,l),s[t]=h}a[t].resultBuffer=h.buffer}}_activateAction(t){if(!this._isActiveAction(t)){if(null===t._cacheIndex){const e=(t._localRoot||this._root).uuid,n=t._clip.uuid,i=this._actionsByClip[n];this._bindAction(t,i&&i.knownActions[0]),this._addInactiveAction(t,n,e)}const e=t._propertyBindings;for(let t=0,n=e.length;t!==n;++t){const n=e[t];0==n.useCount++&&(this._lendBinding(n),n.saveOriginalState())}this._lendAction(t)}}_deactivateAction(t){if(this._isActiveAction(t)){const e=t._propertyBindings;for(let t=0,n=e.length;t!==n;++t){const n=e[t];0==--n.useCount&&(n.restoreOriginalState(),this._takeBackBinding(n))}this._takeBackAction(t)}}_initMemoryManager(){this._actions=[],this._nActiveActions=0,this._actionsByClip={},this._bindings=[],this._nActiveBindings=0,this._bindingsByRootAndName={},this._controlInterpolants=[],this._nActiveControlInterpolants=0;const t=this;this.stats={actions:{get total(){return t._actions.length},get inUse(){return t._nActiveActions}},bindings:{get total(){return t._bindings.length},get inUse(){return t._nActiveBindings}},controlInterpolants:{get total(){return t._controlInterpolants.length},get inUse(){return t._nActiveControlInterpolants}}}}_isActiveAction(t){const e=t._cacheIndex;return null!==e&&e=0;--e)t[e].stop();return this}update(t){t*=this.timeScale;const e=this._actions,n=this._nActiveActions,i=this.time+=t,r=Math.sign(t),s=this._accuIndex^=1;for(let a=0;a!==n;++a){e[a]._update(i,t,r,s)}const a=this._bindings,o=this._nActiveBindings;for(let t=0;t!==o;++t)a[t].apply(s);return this}setTime(t){this.time=0;for(let t=0;tthis.max.x||t.ythis.max.y)}containsBox(t){return this.min.x<=t.min.x&&t.max.x<=this.max.x&&this.min.y<=t.min.y&&t.max.y<=this.max.y}getParameter(t,e){return e.set((t.x-this.min.x)/(this.max.x-this.min.x),(t.y-this.min.y)/(this.max.y-this.min.y))}intersectsBox(t){return!(t.max.xthis.max.x||t.max.ythis.max.y)}clampPoint(t,e){return e.copy(t).clamp(this.min,this.max)}distanceToPoint(t){return Sh.copy(t).clamp(this.min,this.max).sub(t).length()}intersect(t){return this.min.max(t.min),this.max.min(t.max),this}union(t){return this.min.min(t.min),this.max.max(t.max),this}translate(t){return this.min.add(t),this.max.add(t),this}equals(t){return t.min.equals(this.min)&&t.max.equals(this.max)}}Th.prototype.isBox2=!0;const Eh=new Lt,Ah=new Lt;class Lh{constructor(t=new Lt,e=new Lt){this.start=t,this.end=e}set(t,e){return this.start.copy(t),this.end.copy(e),this}copy(t){return this.start.copy(t.start),this.end.copy(t.end),this}getCenter(t){return t.addVectors(this.start,this.end).multiplyScalar(.5)}delta(t){return t.subVectors(this.end,this.start)}distanceSq(){return this.start.distanceToSquared(this.end)}distance(){return this.start.distanceTo(this.end)}at(t,e){return this.delta(e).multiplyScalar(t).add(this.start)}closestPointToPointParameter(t,e){Eh.subVectors(t,this.start),Ah.subVectors(this.end,this.start);const n=Ah.dot(Ah);let i=Ah.dot(Eh)/n;return e&&(i=st(i,0,1)),i}closestPointToPoint(t,e,n){const i=this.closestPointToPointParameter(t,e);return this.delta(n).multiplyScalar(i).add(this.start)}applyMatrix4(t){return this.start.applyMatrix4(t),this.end.applyMatrix4(t),this}equals(t){return t.start.equals(this.start)&&t.end.equals(this.end)}clone(){return(new this.constructor).copy(this)}}const Rh=new Lt;const Ch=new Lt,Ph=new se,Dh=new se;class Ih extends Ja{constructor(t){const e=Nh(t),n=new xn,i=[],r=[],s=new Ze(0,0,1),a=new Ze(0,1,0);for(let t=0;t.99999)this.quaternion.set(0,0,0,1);else if(t.y<-.99999)this.quaternion.set(1,0,0,0);else{Xh.set(t.z,0,-t.x).normalize();const e=Math.acos(t.y);this.quaternion.setFromAxisAngle(Xh,e)}}setLength(t,e=.2*t,n=.2*e){this.line.scale.set(1,Math.max(1e-4,t-e),1),this.line.updateMatrix(),this.cone.scale.set(n,e,n),this.cone.position.y=t,this.cone.updateMatrix()}setColor(t){this.line.material.color.set(t),this.cone.material.color.set(t)}copy(t){return super.copy(t,!1),this.line.copy(t.line),this.cone.copy(t.cone),this}},t.Audio=Kc,t.AudioAnalyser=ih,t.AudioContext=Uc,t.AudioListener=class extends Ce{constructor(){super(),this.type="AudioListener",this.context=Uc.getContext(),this.gain=this.context.createGain(),this.gain.connect(this.context.destination),this.filter=null,this.timeDelta=0,this._clock=new qc}getInput(){return this.gain}removeFilter(){return null!==this.filter&&(this.gain.disconnect(this.filter),this.filter.disconnect(this.context.destination),this.gain.connect(this.context.destination),this.filter=null),this}getFilter(){return this.filter}setFilter(t){return null!==this.filter?(this.gain.disconnect(this.filter),this.filter.disconnect(this.context.destination)):this.gain.disconnect(this.context.destination),this.filter=t,this.gain.connect(this.filter),this.filter.connect(this.context.destination),this}getMasterVolume(){return this.gain.gain.value}setMasterVolume(t){return this.gain.gain.setTargetAtTime(t,this.context.currentTime,.01),this}updateMatrixWorld(t){super.updateMatrixWorld(t);const e=this.context.listener,n=this.up;if(this.timeDelta=this._clock.getDelta(),this.matrixWorld.decompose(Jc,Yc,Zc),Qc.set(0,0,-1).applyQuaternion(Yc),e.positionX){const t=this.context.currentTime+this.timeDelta;e.positionX.linearRampToValueAtTime(Jc.x,t),e.positionY.linearRampToValueAtTime(Jc.y,t),e.positionZ.linearRampToValueAtTime(Jc.z,t),e.forwardX.linearRampToValueAtTime(Qc.x,t),e.forwardY.linearRampToValueAtTime(Qc.y,t),e.forwardZ.linearRampToValueAtTime(Qc.z,t),e.upX.linearRampToValueAtTime(n.x,t),e.upY.linearRampToValueAtTime(n.y,t),e.upZ.linearRampToValueAtTime(n.z,t)}else e.setPosition(Jc.x,Jc.y,Jc.z),e.setOrientation(Qc.x,Qc.y,Qc.z,n.x,n.y,n.z)}},t.AudioLoader=Hc,t.AxesHelper=Zh,t.AxisHelper=function(t){return console.warn("THREE.AxisHelper has been renamed to THREE.AxesHelper."),new Zh(t)},t.BackSide=1,t.BasicDepthPacking=3200,t.BasicShadowMap=0,t.BinaryTextureLoader=function(t){return console.warn("THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader."),new cc(t)},t.Bone=La,t.BooleanKeyframeTrack=ql,t.BoundingBoxHelper=function(t,e){return console.warn("THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead."),new qh(t,e)},t.Box2=Th,t.Box3=Pt,t.Box3Helper=class extends Ja{constructor(t,e=16776960){const n=new Uint16Array([0,1,1,2,2,3,3,0,4,5,5,6,6,7,7,4,0,4,1,5,2,6,3,7]),i=new xn;i.setIndex(new tn(n,1)),i.setAttribute("position",new hn([1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1],3)),super(i,new Ua({color:e,toneMapped:!1})),this.box=t,this.type="Box3Helper",this.geometry.computeBoundingSphere()}updateMatrixWorld(t){const e=this.box;e.isEmpty()||(e.getCenter(this.position),e.getSize(this.scale),this.scale.multiplyScalar(.5),super.updateMatrixWorld(t))}},t.BoxBufferGeometry=Un,t.BoxGeometry=Un,t.BoxHelper=qh,t.BufferAttribute=tn,t.BufferGeometry=xn,t.BufferGeometryLoader=Ic,t.ByteType=1010,t.Cache=ec,t.Camera=Wn,t.CameraHelper=class extends Ja{constructor(t){const e=new xn,n=new Ua({color:16777215,vertexColors:!0,toneMapped:!1}),i=[],r=[],s={},a=new Ze(16755200),o=new Ze(16711680),l=new Ze(43775),c=new Ze(16777215),h=new Ze(3355443);function u(t,e,n){d(t,n),d(e,n)}function d(t,e){i.push(0,0,0),r.push(e.r,e.g,e.b),void 0===s[t]&&(s[t]=[]),s[t].push(i.length/3-1)}u("n1","n2",a),u("n2","n4",a),u("n4","n3",a),u("n3","n1",a),u("f1","f2",a),u("f2","f4",a),u("f4","f3",a),u("f3","f1",a),u("n1","f1",a),u("n2","f2",a),u("n3","f3",a),u("n4","f4",a),u("p","n1",o),u("p","n2",o),u("p","n3",o),u("p","n4",o),u("u1","u2",l),u("u2","u3",l),u("u3","u1",l),u("c","t",c),u("p","c",h),u("cn1","cn2",h),u("cn3","cn4",h),u("cf1","cf2",h),u("cf3","cf4",h),e.setAttribute("position",new hn(i,3)),e.setAttribute("color",new hn(r,3)),super(e,n),this.type="CameraHelper",this.camera=t,this.camera.updateProjectionMatrix&&this.camera.updateProjectionMatrix(),this.matrix=t.matrixWorld,this.matrixAutoUpdate=!1,this.pointMap=s,this.update()}update(){const t=this.geometry,e=this.pointMap;Vh.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse),Wh("c",e,t,Vh,0,0,-1),Wh("t",e,t,Vh,0,0,1),Wh("n1",e,t,Vh,-1,-1,-1),Wh("n2",e,t,Vh,1,-1,-1),Wh("n3",e,t,Vh,-1,1,-1),Wh("n4",e,t,Vh,1,1,-1),Wh("f1",e,t,Vh,-1,-1,1),Wh("f2",e,t,Vh,1,-1,1),Wh("f3",e,t,Vh,-1,1,1),Wh("f4",e,t,Vh,1,1,1),Wh("u1",e,t,Vh,.7,1.1,-1),Wh("u2",e,t,Vh,-.7,1.1,-1),Wh("u3",e,t,Vh,0,2,-1),Wh("cf1",e,t,Vh,-1,0,1),Wh("cf2",e,t,Vh,1,0,1),Wh("cf3",e,t,Vh,0,-1,1),Wh("cf4",e,t,Vh,0,1,1),Wh("cn1",e,t,Vh,-1,0,-1),Wh("cn2",e,t,Vh,1,0,-1),Wh("cn3",e,t,Vh,0,-1,-1),Wh("cn4",e,t,Vh,0,1,-1),t.getAttribute("position").needsUpdate=!0}dispose(){this.geometry.dispose(),this.material.dispose()}},t.CanvasRenderer=function(){console.error("THREE.CanvasRenderer has been removed")},t.CanvasTexture=ao,t.CatmullRomCurve3=Eo,t.CineonToneMapping=3,t.CircleBufferGeometry=oo,t.CircleGeometry=oo,t.ClampToEdgeWrapping=u,t.Clock=qc,t.Color=Ze,t.ColorKeyframeTrack=Xl,t.CompressedTexture=so,t.CompressedTextureLoader=class extends rc{constructor(t){super(t)}load(t,e,n,i){const r=this,s=[],a=new so,o=new ac(this.manager);o.setPath(this.path),o.setResponseType("arraybuffer"),o.setRequestHeader(this.requestHeader),o.setWithCredentials(r.withCredentials);let l=0;function c(c){o.load(t[c],(function(t){const n=r.parse(t,!0);s[c]={width:n.width,height:n.height,format:n.format,mipmaps:n.mipmaps},l+=1,6===l&&(1===n.mipmapCount&&(a.minFilter=g),a.image=s,a.format=n.format,a.needsUpdate=!0,e&&e(a))}),n,i)}if(Array.isArray(t))for(let e=0,n=t.length;e65504&&(console.warn("THREE.DataUtils.toHalfFloat(): value exceeds 65504."),t=65504),Qh[0]=t;const e=Kh[0];let n=e>>16&32768,i=e>>12&2047;const r=e>>23&255;return r<103?n:r>142?(n|=31744,n|=(255==r?0:1)&&8388607&e,n):r<113?(i|=2048,n|=(i>>114-r)+(i>>113-r&1),n):(n|=r-112<<10|i>>1,n+=1&i,n)}},t.DecrementStencilOp=7683,t.DecrementWrapStencilOp=34056,t.DefaultLoadingManager=ic,t.DepthFormat=A,t.DepthStencilFormat=L,t.DepthTexture=qs,t.DirectionalLight=Tc,t.DirectionalLightHelper=class extends Ce{constructor(t,e,n){super(),this.light=t,this.light.updateMatrixWorld(),this.matrix=t.matrixWorld,this.matrixAutoUpdate=!1,this.color=n,void 0===e&&(e=1);let i=new xn;i.setAttribute("position",new hn([-e,e,0,e,e,0,e,-e,0,-e,-e,0,-e,e,0],3));const r=new Ua({fog:!1,toneMapped:!1});this.lightPlane=new ja(i,r),this.add(this.lightPlane),i=new xn,i.setAttribute("position",new hn([0,0,0,0,0,1],3)),this.targetLine=new ja(i,r),this.add(this.targetLine),this.update()}dispose(){this.lightPlane.geometry.dispose(),this.lightPlane.material.dispose(),this.targetLine.geometry.dispose(),this.targetLine.material.dispose()}update(){Uh.setFromMatrixPosition(this.light.matrixWorld),Hh.setFromMatrixPosition(this.light.target.matrixWorld),Gh.subVectors(Hh,Uh),this.lightPlane.lookAt(Hh),void 0!==this.color?(this.lightPlane.material.color.set(this.color),this.targetLine.material.color.set(this.color)):(this.lightPlane.material.color.copy(this.light.color),this.targetLine.material.color.copy(this.light.color)),this.targetLine.lookAt(Hh),this.targetLine.scale.z=Gh.length()}},t.DiscreteInterpolant=Wl,t.DodecahedronBufferGeometry=uo,t.DodecahedronGeometry=uo,t.DoubleSide=2,t.DstAlphaFactor=206,t.DstColorFactor=208,t.DynamicBufferAttribute=function(t,e){return console.warn("THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead."),new tn(t,e).setUsage(Q)},t.DynamicCopyUsage=35050,t.DynamicDrawUsage=Q,t.DynamicReadUsage=35049,t.EdgesGeometry=vo,t.EdgesHelper=function(t,e){return console.warn("THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead."),new Ja(new vo(t.geometry),new Ua({color:void 0!==e?e:16777215}))},t.EllipseCurve=xo,t.EqualDepth=4,t.EqualStencilFunc=514,t.EquirectangularReflectionMapping=a,t.EquirectangularRefractionMapping=o,t.Euler=fe,t.EventDispatcher=$,t.ExtrudeBufferGeometry=fl,t.ExtrudeGeometry=fl,t.FaceColors=1,t.FileLoader=ac,t.FlatShading=1,t.Float16BufferAttribute=cn,t.Float32Attribute=function(t,e){return console.warn("THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead."),new hn(t,e)},t.Float32BufferAttribute=hn,t.Float64Attribute=function(t,e){return console.warn("THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead."),new un(t,e)},t.Float64BufferAttribute=un,t.FloatType=M,t.Fog=Ks,t.FogExp2=Qs,t.Font=function(){console.error("THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js")},t.FontLoader=function(){console.error("THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js")},t.FramebufferTexture=ro,t.FrontSide=0,t.Frustum=ni,t.GLBufferAttribute=bh,t.GLSL1="100",t.GLSL3=K,t.GreaterDepth=6,t.GreaterEqualDepth=5,t.GreaterEqualStencilFunc=518,t.GreaterStencilFunc=516,t.GridHelper=Oh,t.Group=Vs,t.HalfFloatType=w,t.HemisphereLight=dc,t.HemisphereLightHelper=class extends Ce{constructor(t,e,n){super(),this.light=t,this.light.updateMatrixWorld(),this.matrix=t.matrixWorld,this.matrixAutoUpdate=!1,this.color=n;const i=new xl(e);i.rotateY(.5*Math.PI),this.material=new Qe({wireframe:!0,fog:!1,toneMapped:!1}),void 0===this.color&&(this.material.vertexColors=!0);const r=i.getAttribute("position"),s=new Float32Array(3*r.count);i.setAttribute("color",new tn(s,3)),this.add(new Fn(i,this.material)),this.update()}dispose(){this.children[0].geometry.dispose(),this.children[0].material.dispose()}update(){const t=this.children[0];if(void 0!==this.color)this.material.color.set(this.color);else{const e=t.geometry.getAttribute("color");Bh.copy(this.light.color),Fh.copy(this.light.groundColor);for(let t=0,n=e.count;t0){const n=new nc(e);r=new oc(n),r.setCrossOrigin(this.crossOrigin);for(let e=0,n=t.length;e0){i=new oc(this.manager),i.setCrossOrigin(this.crossOrigin);for(let e=0,i=t.length;eNumber.EPSILON){if(l<0&&(n=e[s],o=-o,a=e[r],l=-l),t.ya.y)continue;if(t.y===n.y){if(t.x===n.x)return!0}else{const e=l*(t.x-n.x)-o*(t.y-n.y);if(0===e)return!0;if(e<0)continue;i=!i}}else{if(t.y!==n.y)continue;if(a.x<=t.x&&t.x<=n.x||n.x<=t.x&&t.x<=a.x)return!0}}return i}const r=dl.isClockWise,s=this.subPaths;if(0===s.length)return[];if(!0===e)return n(s);let a,o,l;const c=[];if(1===s.length)return o=s[0],l=new Ho,l.curves=o.curves,c.push(l),c;let h=!r(s[0].getPoints());h=t?!h:h;const u=[],d=[];let p,m,f=[],g=0;d[g]=void 0,f[g]=[];for(let e=0,n=s.length;e1){let t=!1;const e=[];for(let t=0,e=d.length;t0&&(t||(f=u))}for(let t=0,e=d.length;t { - // this implementation ensures that the typical vertex shader parameters are keyed in the cache - return [ - 'freeze', - this.uuid, - parameters.maxBones, - parameters.morphTargetsCount, - ].join(','); - }) { - this.programCacheKey = freezeFn; - } - setValues( values ) { if ( values === undefined ) return; @@ -14486,37 +14470,11 @@ function WebGLBufferRenderer( gl, extensions, info, capabilities ) { } - // @TODO: Rename - function renderMultiDraw( starts, counts, drawCount ) { - - const extension = extensions.get( 'WEBGL_multi_draw' ); - - // @TODO: if error handling for extension === null - - extension.multiDrawElementsWEBGL( mode, counts, 0, type, starts, 0, drawCount ); - - // @TODO: info.update() - - } - function renderMultiDrawInstances( starts, counts, instances, drawCount ) { - - const extension = extensions.get( 'WEBGL_multi_draw' ); - - // @TODO: if error handling for extension === null - - extension.multiDrawElementsInstancedWEBGL( mode, counts, 0, type, starts, 0, instances, 0, drawCount ); - - // @TODO: info.update() - - } - // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; - this.renderMultiDraw = renderMultiDraw; - this.renderMultiDrawInstances = renderMultiDrawInstances; } @@ -16397,38 +16355,12 @@ function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) { } - // @TODO: Rename - function renderMultiDraw( starts, counts, drawCount ) { - - const extension = extensions.get( 'WEBGL_multi_draw' ); - - // @TODO: if error handling for extension === null - - extension.multiDrawElementsWEBGL( mode, counts, 0, type, starts, 0, drawCount ); - - // @TODO: info.update() - - } - function renderMultiDrawInstances( starts, counts, instances, drawCount ) { - - const extension = extensions.get( 'WEBGL_multi_draw' ); - - // @TODO: if error handling for extension === null - - extension.multiDrawElementsInstancedWEBGL( mode, counts, 0, type, starts, 0, instances, 0, drawCount ); - - // @TODO: info.update() - - } - // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; - this.renderMultiDraw = renderMultiDraw; - this.renderMultiDrawInstances = renderMultiDrawInstances; } @@ -18624,7 +18556,6 @@ function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { versionString = '#version 300 es\n'; prefixVertex = [ - parameters.rendererExtensionMultiDraw ? '#extension GL_ANGLE_multi_draw : require' : '', 'precision mediump sampler2DArray;', '#define attribute in', '#define varying out', @@ -19200,9 +19131,9 @@ function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, - numDirLightShadows: object.receiveShadow ? lights.directionalShadowMap.length : 0, - numPointLightShadows: object.receiveShadow ? lights.pointShadowMap.length : 0, - numSpotLightShadows: object.receiveShadow ? lights.spotShadowMap.length : 0, + numDirLightShadows: lights.directionalShadowMap.length, + numPointLightShadows: lights.pointShadowMap.length, + numSpotLightShadows: lights.spotShadowMap.length, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, @@ -19210,7 +19141,7 @@ function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities format: material.format, dithering: material.dithering, - shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0 && object.receiveShadow, + shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, @@ -19233,26 +19164,18 @@ function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities rendererExtensionFragDepth: isWebGL2 || extensions.has( 'EXT_frag_depth' ), rendererExtensionDrawBuffers: isWebGL2 || extensions.has( 'WEBGL_draw_buffers' ), rendererExtensionShaderTextureLod: isWebGL2 || extensions.has( 'EXT_shader_texture_lod' ), - rendererExtensionMultiDraw: object.isBatchedMesh && extensions.has( 'WEBGL_multi_draw' ), rendererExtensionParallelShaderCompile: extensions.has( 'KHR_parallel_shader_compile' ), - customProgramCacheKey: material.customProgramCacheKey(), - programCacheKey: '', + customProgramCacheKey: material.customProgramCacheKey() }; - parameters.programCacheKey = material.programCacheKey(parameters); - return parameters; } function getProgramCacheKey( parameters ) { - if (parameters.programCacheKey) { - return parameters.programCacheKey; - } - const array = []; if ( parameters.shaderID ) { @@ -20616,16 +20539,13 @@ function WebGLShadowMap( _renderer, _objects, _capabilities ) { _viewport = new Vector4(), - _depthMaterial = new MeshDepthMaterial( { depthPacking: RGBADepthPacking, fog: false } ), - _distanceMaterial = new MeshDistanceMaterial({ fog: false }), + _depthMaterial = new MeshDepthMaterial( { depthPacking: RGBADepthPacking } ), + _distanceMaterial = new MeshDistanceMaterial(), _materialCache = {}, _maxTextureSize = _capabilities.maxTextureSize; - _depthMaterial.freeze(); - _distanceMaterial.freeze(); - const shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide }; const shadowMaterialVertical = new ShaderMaterial( { @@ -23772,10 +23692,6 @@ function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, } - function getTexture(texture) { - return properties.get(texture).__webglTexture; - } - // this.allocateTextureUnit = allocateTextureUnit; @@ -23794,7 +23710,6 @@ function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, this.safeSetTexture2D = safeSetTexture2D; this.safeSetTextureCube = safeSetTextureCube; - this.getTexture = getTexture; } @@ -25927,12 +25842,6 @@ function WebGLRenderer( parameters = {} ) { let _transmissionRenderTarget = null; - // Multi draw - - const multiDrawStarts = []; - const multiDrawCounts = []; - const multiDrawInstanceCounts = []; - // camera matrices cache const _projScreenMatrix = new Matrix4(); @@ -26054,7 +25963,7 @@ function WebGLRenderer( parameters = {} ) { _currentDrawBuffers[ 0 ] = 1029; - info = new WebGLInfo( _gl ); + info = new WebGLInfo(); properties = new WebGLProperties(); textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); cubemaps = new WebGLCubeMaps( _this ); @@ -26085,9 +25994,6 @@ function WebGLRenderer( parameters = {} ) { _this.state = state; _this.info = info; - _this.attributes = attributes; - _this.textures = textures; - } initGLContext(); @@ -26551,27 +26457,7 @@ function WebGLRenderer( parameters = {} ) { } - if ( object.isBatchedMesh ) { - - // @TODO: Instancing Batched mesh support - - object.getDrawSpec( camera, multiDrawStarts, multiDrawCounts, multiDrawInstanceCounts ); - - if ( multiDrawStarts.length > 0 ) { - - if (object.isInstancedMesh) { - - renderer.renderMultiDrawInstances( multiDrawStarts, multiDrawCounts, multiDrawInstanceCounts, multiDrawStarts.length ); - - } else { - - renderer.renderMultiDraw( multiDrawStarts, multiDrawCounts, multiDrawStarts.length ); - - } - - } - - } else if ( object.isInstancedMesh ) { + if ( object.isInstancedMesh ) { renderer.renderInstances( drawStart, drawCount, object.count ); @@ -27072,45 +26958,6 @@ function WebGLRenderer( parameters = {} ) { } - } else if ( object.isBatchedMesh ) { - - // object.resetCullingStatus(); - - if ( object.isSkinnedMesh ) { - - // update skeleton only once in a frame - - if ( object.skeleton.frame !== info.render.frame ) { - - object.skeleton.update(); - object.skeleton.frame = info.render.frame; - - } - - } - - if ( ! object.frustumCulled || object.intersectsFrustum( _frustum ) ) { - - if ( sortObjects ) { - - _vector3.setFromMatrixPosition( object.matrixWorld ) - .applyMatrix4( _projScreenMatrix ); - - } - - const geometry = objects.update( object ); - const material = object.material; - - // @TODO: Support multi materials? - - if ( material.visible ) { - - currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); - - } - - } - } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( object.isSkinnedMesh ) { @@ -27399,16 +27246,6 @@ function WebGLRenderer( parameters = {} ) { } - this.getProgramCacheKey = (object, material) => { - const scene = new Scene(); - const lights = new WebGLLights(); - const shadowsArray = []; - - const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object ); - const programCacheKey = programCache.getProgramCacheKey( parameters ); - return programCacheKey; - }; - function getUniformList( materialProperties ) { if ( materialProperties.uniformsList === null ) { @@ -28219,69 +28056,6 @@ function WebGLRenderer( parameters = {} ) { }; - function clientWaitAsync(sync, flags = 0, interval_ms = 10) { - return new Promise((resolve, reject) => { - let check = () => { - const res = _gl.clientWaitSync(sync, flags, 0); - if (res == _gl.WAIT_FAILED) { - reject(); - return; - } - if (res == _gl.TIMEOUT_EXPIRED) { - setTimeout(check, interval_ms); - return; - } - resolve(); - }; - - check(); - }); - } - function readPixelsAsync(x, y, w, h, format, type, texture, outputBuffer) { - // latch old fb - const oldFb = _gl.getParameter(_gl.FRAMEBUFFER_BINDING); - const tempFb = _gl.createFramebuffer(); - { - // make this the current frame buffer - _gl.bindFramebuffer(_gl.FRAMEBUFFER, tempFb); - - // attach the texture to the framebuffer. - _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, texture, 0); - } - - // read pixels - const buf = _gl.createBuffer(); - _gl.bindBuffer(_gl.PIXEL_PACK_BUFFER, buf); - _gl.bufferData(_gl.PIXEL_PACK_BUFFER, outputBuffer.byteLength, _gl.STREAM_READ); - _gl.readPixels(x, y, w, h, format, type, 0); - _gl.bindBuffer(_gl.PIXEL_PACK_BUFFER, null); - - const sync = _gl.fenceSync(_gl.SYNC_GPU_COMMANDS_COMPLETE, 0); - if (!sync) { - return Promise.resolve(null); - } - - // restore old fb and dispose of the temporary fb - _gl.bindFramebuffer(_gl.FRAMEBUFFER, oldFb); - _gl.deleteFramebuffer(tempFb); - - // flush - _gl.flush(); - - // wait for results - return clientWaitAsync(sync, 0, 10).then(() => { - _gl.deleteSync(sync); - - _gl.bindBuffer(_gl.PIXEL_PACK_BUFFER, buf); - _gl.getBufferSubData(_gl.PIXEL_PACK_BUFFER, 0, outputBuffer); - _gl.bindBuffer(_gl.PIXEL_PACK_BUFFER, null); - _gl.deleteBuffer(buf); - - return outputBuffer; - }); - } - this.readPixelsAsync = readPixelsAsync; - this.initTexture = function ( texture ) { textures.setTexture2D( texture, 0 );