Note
The feature guides show how to use specific features of NeuralProphet in detail. For more basic examples, see the tutorial section.
.. toctree:: :maxdepth: 1 Collect Predictions<feature-guides/collect_predictions> Testing and Cross Validation<feature-guides/test_and_crossvalidate> Plotting<feature-guides/plotly> Global Local Modelling<feature-guides/global_local_modeling> Uncertainty Quantification<feature-guides/uncertainty_quantification> Conditional Seasonality<feature-guides/conditional_seasonality_peyton> Multiplicative Seasonality<feature-guides/season_multiplicative_air_travel> Sparse Autoregression<feature-guides/sparse_autoregression_yosemite_temps> Subdaily data<feature-guides/sub_daily_data_yosemite_temps> Hyperparameter Selection<feature-guides/hyperparameter-selection> MLflow Integration<feature-guides/mlflow> Live Plotting during Training<feature-guides/Live_plot_during_training> Network Architecture Visualization<feature-guides/network_architecture_visualization>
Note
Here you can find examples of how to use NeuralProphet on different datasets.
.. toctree:: :maxdepth: 1 Power Demand: Forecasting Load for a Hospital in SF<application-examples/energy_hospital_load> Renewable Energy: Forecasting Solar<application-examples/energy_solar_pv> Forecasting energy load with visualization<application-examples/energy_tool>
.. toctree:: :maxdepth: 1 Migration from Prophet<feature-guides/Migration_from_Prophet> Prophet to TorchProphet<feature-guides/prophet_to_torch_prophet>