-
Notifications
You must be signed in to change notification settings - Fork 1
/
crypto_openssl.c
269 lines (210 loc) · 6.09 KB
/
crypto_openssl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#ifndef CONFIG
#define CONFIG "config.h"
#endif // CONFIG
#include CONFIG
#if defined(_CRYPTO_OPENSSL)
#include "crypto.h"
#include "crypto_openssl.h" // Required for Eclipse only
#include <stdint.h>
#include "endian.h"
#ifndef _OPENSSL_NO_HMAC
int Sha256HmacInit_OpenSSL(HMAC_CTX *c, const void *k, int l)
{
HMAC_CTX_init(c);
#if OPENSSL_VERSION_NUMBER >= 0x10000000L
int result =
#else
int result = TRUE;
#endif
HMAC_Init_ex(c, k, l, EVP_sha256(), NULL);
return result;
}
int Sha256HmacFinish_OpenSSL(HMAC_CTX *c, unsigned char *h, unsigned int *l)
{
#if OPENSSL_VERSION_NUMBER >= 0x10000000L
int result =
#else
int result = !0;
#endif
HMAC_Final(c, h, l);
HMAC_CTX_cleanup(c);
return result;
}
int_fast8_t Sha256Hmac(BYTE* key, BYTE* restrict data, DWORD len, BYTE* restrict hmac)
{
HMAC_CTX Ctx;
# if OPENSSL_VERSION_NUMBER >= 0x10000000L
return
Sha256HmacInit_OpenSSL(&Ctx, key, 16) &&
HMAC_Update(&Ctx, data, len) &&
Sha256HmacFinish_OpenSSL(&Ctx, hmac, NULL);
# else // OpenSSL 0.9.x
Sha256HmacInit_OpenSSL(&Ctx, key, 16);
HMAC_Update(&Ctx, data, len);
Sha256HmacFinish_OpenSSL(&Ctx, hmac, NULL);
return TRUE;
# endif
}
#else // _OPENSSL_NO_HMAC (some routers have OpenSSL without support for HMAC)
int _Sha256HmacInit(Sha256HmacCtx *Ctx, BYTE *key, size_t klen)
{
BYTE IPad[64];
unsigned int i;
memset(IPad, 0x36, sizeof(IPad));
memset(Ctx->OPad, 0x5C, sizeof(Ctx->OPad));
if ( klen > 64 )
{
BYTE *temp = (BYTE*)alloca(32);
SHA256(key, klen, temp);
klen = 32;
key = temp;
}
for (i = 0; i < klen; i++)
{
IPad[ i ] ^= key[ i ];
Ctx->OPad[ i ] ^= key[ i ];
}
SHA256_Init(&Ctx->ShaCtx);
return SHA256_Update(&Ctx->ShaCtx, IPad, sizeof(IPad));
}
int _Sha256HmacUpdate(Sha256HmacCtx *Ctx, BYTE *data, size_t len)
{
int rc = SHA256_Update(&Ctx->ShaCtx, data, len);
return rc;
}
int _Sha256HmacFinish(Sha256HmacCtx *Ctx, BYTE *hmac, void* dummy)
{
BYTE temp[32];
SHA256_Final(temp, &Ctx->ShaCtx);
SHA256_Init(&Ctx->ShaCtx);
SHA256_Update(&Ctx->ShaCtx, Ctx->OPad, sizeof(Ctx->OPad));
SHA256_Update(&Ctx->ShaCtx, temp, sizeof(temp));
return SHA256_Final(hmac, &Ctx->ShaCtx);
}
int_fast8_t Sha256Hmac(BYTE* key, BYTE* restrict data, DWORD len, BYTE* restrict hmac)
{
Sha256HmacCtx Ctx;
_Sha256HmacInit(&Ctx, key, 16);
_Sha256HmacUpdate(&Ctx, data, len);
_Sha256HmacFinish(&Ctx, hmac, NULL);
return TRUE;
}
#endif
#if defined(_USE_AES_FROM_OPENSSL)
void TransformOpenSslEncryptKey(AES_KEY *k, const AesCtx *const Ctx)
{
uint32_t *rk_OpenSSL = k->rd_key, *rk_vlmcsd = (uint32_t*)Ctx->Key;
k->rounds = Ctx->rounds;
for (; rk_OpenSSL < k->rd_key + ((k->rounds + 1) << 2); rk_OpenSSL++, rk_vlmcsd++)
{
#ifdef _OPENSSL_SOFTWARE
*rk_OpenSSL = BE32(*rk_vlmcsd);
#else
*rk_OpenSSL = LE32(*rk_vlmcsd);
#endif
}
}
void TransformOpenSslDecryptKey(AES_KEY *k, const AesCtx *const Ctx)
{
uint_fast8_t i;
#ifdef _DEBUG_OPENSSL
AES_set_decrypt_key((BYTE*)Ctx->Key, 128, k);
errorout("Correct V5 round key:");
for (i = 0; i < (Ctx->rounds + 1) << 4; i++)
{
if (!(i % 16)) errorout("\n");
if (!(i % 4)) errorout(" ");
errorout("%02X", ((BYTE*)(k->rd_key))[i]);
}
errorout("\n");
#endif
k->rounds = Ctx->rounds;
/* invert the order of the round keys blockwise (1 Block = AES_BLOCK_SIZE = 16): */
for (i = 0; i < (Ctx->rounds + 1) << 2; i++)
{
#ifdef _OPENSSL_SOFTWARE
k->rd_key[((Ctx->rounds-(i >> 2)) << 2) + (i & 3)] = BE32(Ctx->Key[i]);
#else
k->rd_key[((Ctx->rounds-(i >> 2)) << 2) + (i & 3)] = LE32(Ctx->Key[i]);
#endif
}
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
uint32_t *rk = k->rd_key + 4;
for (i = 0; i < (Ctx->rounds - 1); i++)
{
MixColumnsR((BYTE*)(rk + (i << 2)));
}
#ifdef _DEBUG_OPENSSL
errorout("Real round key:");
for (i = 0; i < (Ctx->rounds + 1) << 4; i++)
{
if (!(i % 16)) errorout("\n");
if (!(i % 4)) errorout(" ");
errorout("%02X", ((BYTE*)(k->rd_key))[i]);
}
errorout("\n");
#endif
}
static BYTE NullIV[AES_BLOCK_SIZE + 8]; // OpenSSL may overwrite bytes behind IV
void AesEncryptCbc(const AesCtx *const Ctx, BYTE *iv, BYTE *data, size_t *len)
{
AES_KEY k;
// OpenSSL overwrites IV plus 4 bytes
BYTE localIV[24]; // 4 spare bytes for safety
if (iv) memcpy(localIV, iv, AES_BLOCK_SIZE);
// OpenSSL Low-Level APIs do not pad. Could use EVP API instead but needs more code to access the expanded key
uint_fast8_t pad = (~*len & (AES_BLOCK_SIZE - 1)) + 1;
#if defined(__GNUC__) && (__GNUC__ == 4 && __GNUC_MINOR__ == 8) // gcc 4.8 memset bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56977
size_t i;
for (i = 0; i < pad; i++) data[*len + i] = pad;
#else
memset(data + *len, pad, pad);
#endif
*len += pad;
memset(NullIV, 0, sizeof(NullIV));
TransformOpenSslEncryptKey(&k, Ctx);
AES_cbc_encrypt(data, data, *len, &k, iv ? localIV : NullIV, AES_ENCRYPT);
}
void AesDecryptBlock(const AesCtx *const Ctx, BYTE *block)
{
AES_KEY k;
TransformOpenSslDecryptKey(&k, Ctx);
AES_decrypt(block, block, &k);
}
#if defined(_CRYPTO_OPENSSL) && defined(_USE_AES_FROM_OPENSSL) && !defined(_OPENSSL_SOFTWARE)
void AesEncryptBlock(const AesCtx *const Ctx, BYTE *block)
{
AES_KEY k;
TransformOpenSslEncryptKey(&k, Ctx);
AES_encrypt(block, block, &k);
}
#endif
void AesDecryptCbc(const AesCtx *const Ctx, BYTE *iv, BYTE *data, size_t len)
{
AES_KEY k;
memset(NullIV, 0, sizeof(NullIV));
TransformOpenSslDecryptKey(&k, Ctx);
AES_cbc_encrypt(data, data, len, &k, iv ? iv : NullIV, AES_DECRYPT);
}
#ifndef _OPENSSL_SOFTWARE
void AesCmacV4(BYTE *Message, size_t MessageSize, BYTE *HashOut)
{
size_t i;
BYTE hash[AES_BLOCK_BYTES];
AesCtx Ctx;
AES_KEY k;
AesInitKey(&Ctx, AesKeyV4, FALSE, V4_KEY_BYTES);
TransformOpenSslEncryptKey(&k, &Ctx);
memset(hash, 0, sizeof(hash));
memset(Message + MessageSize, 0, AES_BLOCK_BYTES);
Message[MessageSize] = 0x80;
for (i = 0; i <= MessageSize; i += AES_BLOCK_BYTES)
{
XorBlock(Message + i, hash);
AES_encrypt(hash, hash, &k);
}
memcpy(HashOut, hash, AES_BLOCK_BYTES);
}
#endif // !_OPENSSL_SOFTWARE
#endif // defined(_USE_AES_FROM_OPENSSL)
#endif // _CRYPTO_OPENSSL