-
Notifications
You must be signed in to change notification settings - Fork 35
/
BA10K.py
57 lines (44 loc) · 2.31 KB
/
BA10K.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python
# Copyright (C) 2020-2023 Greenweaves Software Limited
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
''' BA10K Implement Baum-Welch Learning'''
from argparse import ArgumentParser
from os.path import basename
from time import time
from helpers import read_strings, create_hmm_from_strings
from hmm import BaumWelch,formatEmission,formatTransition
if __name__=='__main__':
start = time()
parser = ArgumentParser(__doc__)
parser.add_argument('--sample', default=False, action='store_true', help='process sample dataset')
parser.add_argument('--rosalind', default=False, action='store_true', help='process Rosalind dataset')
parser.add_argument('--precision', default=4, help='Controls display of probabilities')
args = parser.parse_args()
if args.sample:
pass
if args.rosalind:
Input = read_strings(f'data/rosalind_{basename(__file__).split(".")[0]}.txt')
xs,alphabet,States,Transition,Emission = create_hmm_from_strings(Input[2:],sep='\t')
Transitions,Emissions = BaumWelch(xs,alphabet,States,Transition,Emission,N=100)
with open(f'{basename(__file__).split(".")[0]}.txt','w') as f:
for row in formatTransition(Transitions,Input[6].split(),precision=args.precision):
print (row)
f.write(f'{row}\n')
print ('--------')
f.write('--------\n')
for row in formatEmission(Emissions,Input[6].split(), alphabet,precision=args.precision):
print (row)
f.write(f'{row}\n')
elapsed = time() - start
minutes = int(elapsed/60)
seconds = elapsed - 60*minutes
print (f'Elapsed Time {minutes} m {seconds:.2f} s')