- Feature info: using fbank feature, dither, cmvn, online speed perturb
- Training info: lr 0.002, batch size 18, 4 gpu, acc_grad 4, 240 epochs, dither 0.1
- Decoding info: ctc_weight 0.5, average_num 20
- Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode | CER |
---|---|
attention decoder | 5.18 |
ctc greedy search | 4.94 |
ctc prefix beam search | 4.94 |
attention rescoring | 4.61 |
LM + attention rescoring | 4.36 |
- Feature info: using fbank feature, dither=1.0, cmvn, oneline speed perturb
- Training info: lr 0.001, batch size 16, 8 gpu, acc_grad 1, 360 epochs
- Decoding info: ctc_weight 0.3, reverse_weight 0.5 average_num 30, lm_scale 0.7, decoder_scale 0.1, r_decoder_scale 0.7
- Git hash: 5a1342312668e7a5abb83aed1e53256819cebf95
decoding mode/chunk size | full | 16 |
---|---|---|
ctc greedy search | 5.19 | 5.81 |
ctc prefix beam search | 5.17 | 5.81 |
attention rescoring | 4.63 | 5.05 |
LM + attention rescoring | 4.40 | 4.75 |
HLG(k2 LM) | 4.81 | 5.27 |
HLG(k2 LM) + attention rescoring | 4.32 | 4.70 |
HLG(k2 LM) + attention rescoring + LFMMI | 4.11 | 4.47 |
- Feature info: using fbank feature, dither=1.0, cmvn, oneline speed perturb
- Training info: lr 0.001, batch size 16, 8 gpu, acc_grad 1, load a well trained model and continue training 80 epochs with u2++ lite config
- Decoding info: ctc_weight 0.3, reverse_weight 0.5 average_num 30
- Git hash: 73185808fa1463b0163a922dc722513b7baabe9e
decoding mode/chunk size | full | 16 |
---|---|---|
ctc greedy search | 5.21 | 5.91 |
ctc prefix beam search | 5.20 | 5.91 |
attention rescoring | 4.67 | 5.10 |
- Feature info: using fbank feature, dither=0, cmvn, oneline speed perturb
- Training info: lr 0.001, batch size 16, 8 gpu, acc_grad 1, 180 epochs, dither 0.0
- Decoding info: ctc_weight 0.5, average_num 20
- Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode/chunk size | full | 16 | 8 | 4 |
---|---|---|---|---|
attention decoder | 5.40 | 5.60 | 5.74 | 5.86 |
ctc greedy search | 5.56 | 6.29 | 6.68 | 7.10 |
ctc prefix beam search | 5.57 | 6.30 | 6.67 | 7.10 |
attention rescoring | 5.05 | 5.45 | 5.69 | 5.91 |
LM + attention rescoring | 4.73 | 5.08 | 5.22 | 5.38 |
- Feature info: using fbank feature, dither, cmvn, online speed perturb.
- Training info: lr 0.001, batch size 26, 8 gpu, acc_grad 1, 360 epochs, dither 0.1
- Decoding info: ctc_weight 0.2, reverse_weight 0.5, average_num 30
- Git hash: 65270043fc8c2476d1ab95e7c39f730017a670e0
decoding mode/chunk size | full | 16 |
---|---|---|
ctc greedy search | 6.05 | 6.92 |
ctc prefix beam search | 6.05 | 6.90 |
attention rescoring | 5.11 | 5.63 |
LM + attention rescoring | 4.82 | 5.24 |
- Feature info: using fbank feature, dither, with cmvn, online speed perturb.
- Training info: lr 0.002, batch size 26, 4 gpu, acc_grad 4, 240 epochs, dither 0.1
- Decoding info: ctc_weight 0.5, average_num 20
- Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode | CER |
---|---|
attention decoder | 5.69 |
ctc greedy search | 5.92 |
ctc prefix beam search | 5.91 |
attention rescoring | 5.30 |
LM + attention rescoring | 5.04 |
- Feature info: using fbank feature, dither=0, with cmvn, online speed perturb.
- Training info: lr 0.002, batch size 16, 4 gpu, acc_grad 1, 240 epochs, dither 0.1
- Decoding info: ctc_weight 0.5, average_num 20
- Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode/chunk size | full | 16 | 8 | 4 |
---|---|---|---|---|
attention decoder | 6.04 | 6.35 | 6.45 | 6.70 |
ctc greedy search | 6.28 | 6.99 | 7.39 | 7.89 |
ctc prefix beam search | 6.28 | 6.98 | 7.40 | 7.89 |
attention rescoring | 5.52 | 6.05 | 6.28 | 6.62 |
LM + attention rescoring | 5.11 | 5.59 | 5.86 | 6.17 |
- Feature info: using fbank feature, dither, cmvn, online speed perturb
- Training info: lr 0.002, batch size, 4 gpus, acc_grad 4, 240 epochs, dither 0.1, warm up steps 25000
- Decoding info: ctc_weight 0.5, average_num 20
- Git hash: 1bb4e5a269c535340fae5b0739482fa47733d2c1
decoding mode | CER |
---|---|
attention decoder | 5.73 |
ctc greedy search | 5.92 |
ctc prefix beam search | 5.92 |
attention rescoring | 5.31 |
- Feature info: using fbank feature, dither, cmvn, online speed perturb
- Training info: lr 0.004, batch size 16, 2 machines, 8*2=16 gpus, acc_grad 4, 240 epochs, dither 0.1, warm up steps 10000
- Decoding info: ctc_weight 0.5, average_num 20
- Git hash: f6b1409023440da1998d31abbcc3826dd40aaf35
decoding mode | CER |
---|---|
attention decoder | 4.90 |
ctc greedy search | 5.07 |
ctc prefix beam search | 5.06 |
attention rescoring | 4.65 |
- Feature info: using fbank feature, dither, cmvn, online speed perturb
- Training info: lr 0.002, batch size 16, 8 gpu, acc_grad 4, 240 epochs, dither 0.1
- Decoding info: ctc_weight 0.5, average_num 20
decoding mode | with PE | without PE |
---|---|---|
attention decoder | 5.18 | 5.73 |
ctc greedy search | 4.94 | 4.97 |
ctc prefix beam search | 4.94 | 4.97 |
attention rescoring | 4.61 | 4.69 |
- Feature info:
- using fbank feature, cmvn, speed perturb, dither
- Training info:
- train_u2++_efficonformer_v1.yaml
- 8 gpu, batch size 16, acc_grad 1, 200 epochs
- lr 0.001, warmup_steps 25000
- Model info:
- Model Params: 48,488,347
- Downsample rate: 1/4 (conv2d) * 1/2 (efficonformer block)
- encoder_dim 256, output_size 256, head 8, linear_units 2048
- num_blocks 12, cnn_module_kernel 15, group_size 3
- Decoding info:
- ctc_weight 0.5, reverse_weight 0.3, average_num 20
- Model Download: wenet_efficient_conformer_aishell_v1
decoding mode | full | 18 | 16 |
---|---|---|---|
attention decoder | 4.99 | 5.13 | 5.16 |
ctc prefix beam search | 4.98 | 5.23 | 5.23 |
attention rescoring | 4.64 | 4.86 | 4.85 |
- Feature info:
- using fbank feature, cmvn, speed perturb, dither
- Training info:
- train_u2++_efficonformer_v2.yaml
- 8 gpu, batch size 16, acc_grad 1, 200 epochs
- lr 0.001, warmup_steps 25000
- Model info:
- Model Params: 49,354,651
- Downsample rate: 1/2 (conv2d2) * 1/4 (efficonformer block)
- encoder_dim 256, output_size 256, head 8, linear_units 2048
- num_blocks 12, cnn_module_kernel 15, group_size 3
- Decoding info:
- ctc_weight 0.5, reverse_weight 0.3, average_num 20
- Model Download: wenet_efficient_conformer_aishell_v2
decoding mode | full | 18 | 16 |
---|---|---|---|
attention decoder | 4.87 | 5.03 | 5.07 |
ctc prefix beam search | 4.97 | 5.18 | 5.20 |
attention rescoring | 4.56 | 4.75 | 4.77 |
- Feature info: using fbank feature, dither=1.0, cmvn, oneline speed perturb
-
- Model info:
- Model Params: 48,384,667
- Num Encoder Layer: 24
- CNN Kernel Size: 63
- Merge Method: concat
- Model info:
- Training info: lr 0.001, weight_decay: 0.000001, batch size 16, 3 gpu, acc_grad 1, 360 epochs
- Decoding info: ctc_weight 0.3, reverse_weight 0.5 average_num 30, lm_scale 0.7, decoder_scale 0.1, r_decoder_scale 0.7
- Git hash: 5a1342312668e7a5abb83aed1e53256819cebf95
decoding mode | CER |
---|---|
ctc greedy search | 5.28 |
ctc prefix beam search | 5.28 |
attention decoder | 5.12 |
attention rescoring | 4.81 |
LM + attention rescoring | 4.46 |
- Feature info: using fbank feature, dither=1.0, cmvn, online speed perturb
-
- Model info:
- Model Params: 47,570,132
- Num Encoder Layer: 17
- CNN Kernel Size: 31
- Model info:
- Training info: lr 0.001, weight_decay: 0.000001, batch size 16, 4 gpu, acc_grad 1, 240 epochs
- Decoding info: ctc_weight 0.3, average_num 30
- Git hash: 89962d1dcae18dd3a281782a40e74dd2721ae8fe
decoding mode | CER |
---|---|
attention decoder | 4.73 |
ctc greedy search | 4.77 |
ctc prefix beam search | 4.77 |
attention rescoring | 4.39 |
LM + attention rescoring | 4.22 |