-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathrun_cnn_test_k_mil_new.py
148 lines (147 loc) · 6.14 KB
/
run_cnn_test_k_mil_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from __future__ import print_function
import inbreast
import keras.backend as K
from roc_auc import RocAucScoreOp, PrecisionOp, RecallOp, F1Op
from roc_auc import AUCEpoch, PrecisionEpoch, RecallEpoch, F1Epoch, LossEpoch, ACCEpoch
#from keras.preprocessing.image import ImageDataGenerator
from image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization, SpatialDropout2D
from keras.layers import advanced_activations
from keras.layers import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
import numpy as np
from keras.callbacks import ModelCheckpoint
from keras.regularizers import l1l2
import inbreast
#import googlenet
from convnetskeras.convnets import preprocess_image_batch, convnet
import os
from sklearn.metrics import roc_auc_score, roc_curve
np.random.seed(1)
#srng = RandomStreams(1)
fold = 4# 4
valfold = 2
lr = 5e-5#5e-5
nb_epoch = 500
batch_size = 80
l2factor = 1e-5
l1factor = 0#2e-7
usedream = False
weighted = False #True
noises = 50
data_augmentation = True
modelname = 'alexnet' # miccai16, alexnet, levynet, googlenet
pretrain = True
mil=True
savename = modelname+'_fd'+str(fold)+'_vf'+str(valfold)+'_lr'+str(lr)+'_l2'+str(l2factor)+'_l1'\
+str(l1factor)+'_ep'+str(nb_epoch)+'_bs'+str(batch_size)+'_w'+str(weighted)+'_dr'+str(usedream)+str(noises)+str(pretrain)+'_mil'+str(mil)
print(savename)
nb_classes = 2
# input image dimensions
img_rows, img_cols = 227, 227
# the CIFAR10 images are RGB
img_channels = 1
# the data, shuffled and split between train and test sets
trX, y_train, teX, y_test, teteX, y_test_test = inbreast.loaddataenhance(fold, 5, valfold=valfold)
trY = y_train.reshape((y_train.shape[0],1))
teY = y_test.reshape((y_test.shape[0],1))
teteY = y_test_test.reshape((y_test_test.shape[0],1))
print('tr, val, te pos num and shape')
print(trY.sum(), teY.sum(), teteY.sum(), trY.shape[0], teY.shape[0], teteY.shape[0])
ratio = trY.sum()*1./trY.shape[0]*1.
print('tr ratio'+str(ratio))
weights = np.array((ratio, 1-ratio))
#trYori = np.concatenate((1-trY, trY), axis=1)
#teY = np.concatenate((1-teY, teY), axis=1)
#teteY = np.concatenate((1-teteY, teteY), axis=1)
X_train = trX.reshape(-1, img_channels, img_rows, img_cols)
X_test = teX.reshape(-1, img_channels, img_rows, img_cols)
X_test_test = teteX.reshape(-1, img_channels, img_rows, img_cols)
print('tr, val, te mean, std')
print(X_train.mean(), X_test.mean(), X_test_test.mean())
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
Y_test_test = np_utils.to_categorical(y_test_test, nb_classes)
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'val samples')
print(X_test_test.shape[0], 'test samples')
model = Sequential()
lrelu = advanced_activations.LeakyReLU(alpha=0.1)
if modelname == 'alexnet':
X_train_extend = np.zeros((X_train.shape[0],3, 227, 227))
for i in xrange(X_train.shape[0]):
rex = np.resize(X_train[i,:,:,:], (227, 227))
X_train_extend[i,0,:,:] = rex
X_train_extend[i,1,:,:] = rex
X_train_extend[i,2,:,:] = rex
X_train = X_train_extend
X_test_extend = np.zeros((X_test.shape[0], 3,227, 227))
for i in xrange(X_test.shape[0]):
rex = np.resize(X_test[i,:,:,:], (227, 227))
X_test_extend[i,0,:,:] = rex
X_test_extend[i,1,:,:] = rex
X_test_extend[i,2,:,:] = rex
X_test = X_test_extend
X_test_test_extend = np.zeros((X_test_test.shape[0], 3, 227, 227))
for i in xrange(X_test_test.shape[0]):
rex = np.resize(X_test_test[i,:,:,:], (227,227))
X_test_test_extend[i,0,:,:] = rex
X_test_test_extend[i,1,:,:] = rex
X_test_test_extend[i,2,:,:] = rex
X_test_test = X_test_test_extend
if pretrain: # 227*227
alexmodel = convnet('alexnet', weights_path='alexnet_weights.h5', heatmap=False, l1=l1factor, l2=l2factor)
model = convnet('alexnet', outdim=2, l1=l1factor, l2=l2factor, usemil=mil)
for layer, mylayer in zip(alexmodel.layers, model.layers):
print(layer.name)
if mylayer.name == 'mil_1' or mylayer.name == 'dense_3':
break
else:
weightsval = layer.get_weights()
print(len(weightsval))
mylayer.set_weights(weightsval)
else:
model = convnet('alexnet', outdim=2, l1=l1factor,l2=l2factor, usemil=mil)
X_test_test = X_test_test.astype('float32')
for f in os.listdir('./'):
metric = ['loss', 'auc', 'prec', 'reca', 'f1', 'acc']
for m in metric:
if f.endswith('.hdf5') and f.startswith(savename+m):
print(f)
weightname = f
model.load_weights(weightname)
y_pred_val = model.predict(X_test_test) # val for threshold
print(y_pred_val.shape)
#np.savetxt('maxyfold0.txt',y_pred_val)
y_pred_val = y_pred_val[:,1]
y_test = Y_test_test[:,1]
sortindex = np.argsort(y_pred_val)
y_pred_val = y_pred_val[sortindex]
y_test = y_test[sortindex]
bestacc, bestthre = np.mean(y_test == np.ones_like(y_test)), y_pred_val[0]-0.01
for thre in y_pred_val:
if np.mean((y_pred_val > thre) == y_test) > bestacc:
bestacc = np.mean((y_pred_val > thre) == y_test)
bestthre = thre
print(bestthre, bestacc)
y_pred = model.predict(X_test_test)
print(y_pred.shape, Y_test_test.shape)
score = roc_auc_score(Y_test_test[:,1], y_pred[:,1])
fpr, tpr, _ = roc_curve(Y_test_test[:,1], y_pred[:,1])
#np.savetxt('fpr.txt', fpr)
#np.savetxt('tpr.txt', tpr)
y_true = np.argmax(Y_test_test, axis=1)
y_score = np.argmax(y_pred, axis=1)
TP = np.sum(y_true[y_score==1]==1)*1. / sum(y_true)
FP = np.sum(y_true[y_score==1]==0)*1. / (y_true.shape[0]-sum(y_true))
prec = TP / (TP+FP+1e-6)
TP = np.sum(y_true[y_score==1]==1)*1. / sum(y_true)
FN = np.sum(y_true[y_score==0]==1)*1. / sum(y_true)
reca = TP / (TP+FN+1e-6)
f1 = 2*prec*reca / (prec+reca+1e-6)
acc = np.mean(y_true == y_score)
print(acc, score, prec, reca, f1)