-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
130 lines (100 loc) · 4.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import division, print_function, absolute_import
import os
import pdb
import logging
import torch
import numpy as np
class GOATLogger:
def __init__(self, args):
args.save = args.save + '-{}'.format(args.seed)
self.mode = args.mode
self.save_root = args.save
self.log_freq = args.log_freq
if self.mode == 'train':
if not os.path.exists(self.save_root):
os.mkdir(self.save_root)
filename = os.path.join(self.save_root, 'console.log')
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s.%(msecs)03d - %(message)s',
datefmt='%b-%d %H:%M:%S',
filename=filename,
filemode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter('%(message)s'))
logging.getLogger('').addHandler(console)
logging.info("Logger created at {}".format(filename))
else:
logging.basicConfig(level=logging.INFO,
format='%(asctime)s.%(msecs)03d - %(message)s',
datefmt='%b-%d %H:%M:%S')
logging.info("Random Seed: {}".format(args.seed))
self.reset_stats()
def reset_stats(self):
if self.mode == 'train':
self.stats = {'train': {'loss': [], 'acc': []},
'eval': {'loss': [], 'acc': []}}
else:
self.stats = {'eval': {'loss': [], 'acc': []}}
def batch_info(self, **kwargs):
if kwargs['phase'] == 'train':
self.stats['train']['loss'].append(kwargs['loss'])
self.stats['train']['acc'].append(kwargs['acc'])
if kwargs['eps'] % self.log_freq == 0 and kwargs['eps'] != 0:
loss_mean = np.mean(self.stats['train']['loss'])
acc_mean = np.mean(self.stats['train']['acc'])
#self.draw_stats()
self.loginfo("[{:5d}/{:5d}] loss: {:6.4f} ({:6.4f}), acc: {:6.3f}% ({:6.3f}%)".format(\
kwargs['eps'], kwargs['totaleps'], kwargs['loss'], loss_mean, kwargs['acc'], acc_mean))
elif kwargs['phase'] == 'eval':
self.stats['eval']['loss'].append(kwargs['loss'])
self.stats['eval']['acc'].append(kwargs['acc'])
elif kwargs['phase'] == 'evaldone':
loss_mean = np.mean(self.stats['eval']['loss'])
loss_std = np.std(self.stats['eval']['loss'])
acc_mean = np.mean(self.stats['eval']['acc'])
acc_std = np.std(self.stats['eval']['acc'])
self.loginfo("[{:5d}] Eval ({:3d} episode) - loss: {:6.4f} +- {:6.4f}, acc: {:6.3f} +- {:5.3f}%".format(\
kwargs['eps'], kwargs['totaleps'], loss_mean, loss_std, acc_mean, acc_std))
self.reset_stats()
return loss_mean, acc_mean
else:
raise ValueError("phase {} not supported".format(kwargs['phase']))
def logdebug(self, strout):
logging.debug(strout)
def loginfo(self, strout):
logging.info(strout)
def accuracy(output, target, topk=(1,)):
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res[0].item() if len(res) == 1 else [r.item() for r in res]
def save_ckpt(episode, metalearner, optim, save):
if not os.path.exists(os.path.join(save, 'ckpts')):
os.mkdir(os.path.join(save, 'ckpts'))
torch.save({
'episode': episode,
'metalearner': metalearner.state_dict(),
'optim': optim.state_dict()
}, os.path.join(save, 'ckpts', 'meta-learner-{}.pth.tar'.format(episode)))
def resume_ckpt(metalearner, optim, resume, device):
ckpt = torch.load(resume, map_location=device)
last_episode = ckpt['episode']
metalearner.load_state_dict(ckpt['metalearner'])
optim.load_state_dict(ckpt['optim'])
return last_episode, metalearner, optim
def preprocess_grad_loss(x):
p = 10
indicator = (x.abs() >= np.exp(-p)).to(torch.float32)
# preproc1
x_proc1 = indicator * torch.log(x.abs() + 1e-8) / p + (1 - indicator) * -1
# preproc2
x_proc2 = indicator * torch.sign(x) + (1 - indicator) * np.exp(p) * x
return torch.stack((x_proc1, x_proc2), 1)