-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdataset.py
362 lines (278 loc) · 13 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# The code is developed based on SPADE
# https://github.com/NVlabs/SPADE/
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch
import numpy as np
from PIL import Image
import torch.utils.data as data
import torchvision.transforms as transforms
import random
import re
import os
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tiff', '.webp']
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
'''
alist.sort(key=natural_keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
'''
return [atoi(c) for c in re.split('(\d+)', text)]
def natural_sort(items):
items.sort(key=natural_keys)
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset_rec(dir, images):
assert os.path.isdir(dir), '%s is not a valid directory' % dir
for root, dnames, fnames in sorted(os.walk(dir, followlinks=True)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
images.append(path)
def make_dataset(dir, recursive=False, read_cache=False, write_cache=False):
images = []
if read_cache:
possible_filelist = os.path.join(dir, 'files.list')
if os.path.isfile(possible_filelist):
with open(possible_filelist, 'r') as f:
images = f.read().splitlines()
return images
if recursive:
make_dataset_rec(dir, images)
else:
assert os.path.isdir(dir) or os.path.islink(dir), '%s is not a valid directory' % dir
for root, dnames, fnames in sorted(os.walk(dir)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
images.append(path)
if write_cache:
filelist_cache = os.path.join(dir, 'files.list')
with open(filelist_cache, 'w') as f:
for path in images:
f.write("%s\n" % path)
print('wrote filelist cache at %s' % filelist_cache)
return images
def get_params(preprocess_mode, load_size, crop_size, size):
w, h = size
new_h = h
new_w = w
if preprocess_mode == 'resize_and_crop':
new_h = new_w = load_size
elif preprocess_mode == 'scale_width_and_crop':
new_w = load_size
new_h = load_size * h // w
elif preprocess_mode == 'scale_shortside_and_crop':
ss, ls = min(w, h), max(w, h) # shortside and longside
width_is_shorter = w == ss
ls = int(load_size * ls / ss)
new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss)
x = random.randint(0, np.maximum(0, new_w - crop_size))
y = random.randint(0, np.maximum(0, new_h - crop_size))
flip = random.random() > 0.5
return {'crop_pos': (x, y), 'flip': flip}
def get_transform(params, preprocess_mode='resize_and_crop', load_size=286, crop_size=256, aspect_ratio=1.0, flip=True,
method=Image.BILINEAR, normalize=True, toTensor=True, colorjitter=False):
transform_list = []
if 'resize' in preprocess_mode:
osize = [load_size, load_size]
transform_list.append(transforms.Resize(osize, interpolation=method))
elif 'scale_width' in preprocess_mode:
transform_list.append(transforms.Lambda(lambda img: __scale_width(img, load_size, method)))
elif 'scale_shortside' in preprocess_mode:
transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, load_size, method)))
if 'crop' in preprocess_mode:
transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], crop_size)))
if preprocess_mode == 'none':
base = 32
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
if preprocess_mode == 'fixed':
w = crop_size
h = round(crop_size / aspect_ratio)
transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method)))
if flip:
transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
if colorjitter:
transform_list.append(transforms.ColorJitter(brightness=0.3, contrast=0.3, hue=0.1))
if toTensor:
transform_list += [transforms.ToTensor()]
if normalize:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def normalize():
return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
def __resize(img, w, h, method=Image.BICUBIC):
return img.resize((w, h), method)
def __make_power_2(img, base, method=Image.BICUBIC):
ow, oh = img.size
h = int(round(oh / base) * base)
w = int(round(ow / base) * base)
if (h == oh) and (w == ow):
return img
return img.resize((w, h), method)
def __scale_width(img, target_width, method=Image.BICUBIC):
ow, oh = img.size
if (ow == target_width):
return img
w = target_width
h = int(target_width * oh / ow)
return img.resize((w, h), method)
def __scale_shortside(img, target_width, method=Image.BICUBIC):
ow, oh = img.size
ss, ls = min(ow, oh), max(ow, oh) # shortside and longside
width_is_shorter = ow == ss
if (ss == target_width):
return img
ls = int(target_width * ls / ss)
nw, nh = (ss, ls) if width_is_shorter else (ls, ss)
return img.resize((nw, nh), method)
def __crop(img, pos, size):
ow, oh = img.size
x1, y1 = pos
tw = th = size
return img.crop((x1, y1, x1 + tw, y1 + th))
def __flip(img, flip):
if flip:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return img
class UnpairedDataset(data.Dataset):
def initialize(self, sfiles, tfiles, sdataset_sizes, tdataset_sizes,
preprocess_mode='resize_and_crop', load_size=286, crop_size=256):
self.source_paths = []
self.target_paths = []
assert len(sfiles)==len(tfiles) and len(sfiles)==len(sdataset_sizes) and len(tfiles)==len(tdataset_sizes), \
"The list number of source image paths, target image paths and dataset sizes don't match."
for i in range(len(sfiles)):
source_paths, target_paths = self.get_paths(sfiles[i], tfiles[i])
sdataset_size, tdataset_size = sdataset_sizes[i], tdataset_sizes[i]
natural_sort(source_paths)
natural_sort(target_paths)
sdataset_size = min(sdataset_size, len(source_paths))
tdataset_size = min(tdataset_size, len(target_paths))
source_paths = source_paths[:sdataset_size]
target_paths = target_paths[:tdataset_size]
self.source_paths += source_paths
self.target_paths += target_paths
random.shuffle(self.source_paths)
random.shuffle(self.target_paths)
self.dataset_size = len(self.source_paths)
self.load_size = load_size
self.preprocess_mode = preprocess_mode
self.crop_size = crop_size
def get_paths(self, sfiles, tfiles):
source_paths = make_dataset(sfiles, recursive=False, read_cache=True)
target_paths = make_dataset(tfiles, recursive=False, read_cache=True)
return source_paths, target_paths
def __getitem__(self, index):
# Label Image
source_path = self.source_paths[index]
source = Image.open(source_path)
source = source.convert('RGB')
indexB = random.randint(0, len(self.target_paths) - 1)
target_path = self.target_paths[indexB]
target = Image.open(target_path)
target = target.convert('RGB')
params = get_params(self.preprocess_mode, self.load_size, self.crop_size, source.size)
transform_image = get_transform(params, self.preprocess_mode, self.load_size, self.crop_size)
source_tensor = transform_image(source)
target_tensor = transform_image(target)
input_dict = {'source': source_tensor,
'target': target_tensor}
return input_dict
def __len__(self):
return self.dataset_size
def create_unpaired_dataloader(sfiles, tfiles, sdataset_sizes, tdataset_sizes, batchSize=16, shuffle=True, nworkers=4,
preprocess_mode='resize_and_crop', load_size=286, crop_size=256):
unpairdataset = UnpairedDataset()
unpairdataset.initialize(sfiles, tfiles, sdataset_sizes, tdataset_sizes, preprocess_mode, load_size, crop_size)
print("dataset [%s] of size %d was created" % (type(unpairdataset).__name__, len(unpairdataset)))
dataloader = torch.utils.data.DataLoader(
unpairdataset,
batch_size=batchSize,
shuffle=shuffle,
num_workers=nworkers,
drop_last=True
)
return dataloader
class ImageMaskLabelDataset(data.Dataset):
def initialize(self, imgroot, maskroot, files, dataset_sizes, labels,
preprocess_mode='resize_and_crop', load_size=286, crop_size=256, pair=False):
self.image_paths = []
assert len(files)==len(dataset_sizes) and len(files)==len(labels), \
"The list number of image paths, dataset sizes and labels don't match."
for i in range(len(files)):
image_path = self.get_paths(imgroot, files[i])
natural_sort(image_path)
dataset_size = min(dataset_sizes[i], len(image_path))
mask_path = []
for j in range(dataset_size):
mask_name = image_path[j].replace(imgroot, maskroot, 1)
mask_path += [os.path.splitext(mask_name)[0] + '.jpg']
image_path = [[image_path[j], labels[i], mask_path[j]] for j in range(dataset_size)]
self.image_paths += image_path
self.dataset_size = len(self.image_paths)
self.load_size = load_size
self.preprocess_mode = preprocess_mode
self.crop_size = crop_size
self.pair = pair
def get_paths(self, root, file):
image_dir = os.path.join(root, file)
image_paths = make_dataset(image_dir, recursive=False, read_cache=True)
return image_paths
def __getitem__(self, index):
image_path = self.image_paths[index][0]
image = Image.open(image_path)
image = image.convert('RGB')
label = self.image_paths[index][1]
mask_path = self.image_paths[index][2]
mask = Image.open(mask_path)
mask = mask.convert('RGB')
params = get_params(self.preprocess_mode, self.load_size, self.crop_size, image.size)
transform_image = get_transform(params, self.preprocess_mode, self.load_size, self.crop_size)
image_tensor = transform_image(image)
label_tensor = torch.tensor(label)
mask_tensor = transform_image(mask)
if self.pair:
indexB = random.randint(0, len(self.image_paths) - 1)
imageB_path = self.image_paths[indexB][0]
imageB_path = os.path.join(os.path.dirname(imageB_path), os.path.basename(image_path))
imageB = Image.open(imageB_path)
imageB = imageB.convert('RGB')
labelB = self.image_paths[indexB][1]
maskB_path = self.image_paths[indexB][2]
maskB_path = os.path.join(os.path.dirname(maskB_path), os.path.basename(image_path))
maskB = Image.open(maskB_path)
maskB = maskB.convert('RGB')
imageB_tensor = transform_image(imageB)
labelB_tensor = torch.tensor(labelB)
maskB_tensor = transform_image(maskB)
input_dict = {'label': label_tensor,
'image': image_tensor,
'mask': mask_tensor}
if self.pair:
input_dict['labelB'] = labelB_tensor
input_dict['imageB'] = imageB_tensor
input_dict['maskB'] = maskB_tensor
return input_dict
def __len__(self):
return self.dataset_size
def create_imagemasklabel_dataloader(imgroot, maskroot, files, dataset_sizes, labels, batchSize=16, shuffle=True, nworkers=4,
preprocess_mode='resize_and_crop', load_size=286, crop_size=256, pair=False):
imagemasklabeldataset = ImageMaskLabelDataset()
imagemasklabeldataset.initialize(imgroot, maskroot, files, dataset_sizes, labels, preprocess_mode, load_size, crop_size, pair)
print("dataset [%s] of size %d was created" % (type(imagemasklabeldataset).__name__, len(imagemasklabeldataset)))
dataloader = torch.utils.data.DataLoader(
imagemasklabeldataset,
batch_size=batchSize,
shuffle=shuffle,
num_workers=nworkers,
drop_last=True
)
return dataloader