-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.aux
924 lines (924 loc) · 49.8 KB
/
main.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
\relax
\providecommand*\new@tpo@label[2]{}
\babel@aux{english}{}
\citation{behcallflux}
\citation{skfluxatmos}
\citation{hierarchyplot}
\citation{nuxsec}
\citation{tn344}
\citation{PhysRevLett.121.171802}
\citation{Abe:2018uyc}
\citation{acciarri2016longbaseline}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:introductions}{{1}{1}}
\citation{FUKUDA2002179}
\citation{Ahmad_2001}
\citation{chadwick}
\citation{bethe1934neutrino}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Neutrino Physics}{3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:NeutrinoPhysics}{{2}{3}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Neutrino Discovery}{3}}
\newlabel{sec:discovery}{{2.1}{3}}
\citation{pauli}
\citation{fermi}
\citation{cowan}
\citation{davis}
\citation{lederman}
\citation{cernnuflavs}
\citation{taudiscovery}
\citation{lepslac}
\citation{universalN}
\newlabel{eqn:argonreact}{{\relax 2.4}{5}}
\citation{behcallflux}
\citation{behcallflux}
\citation{davis2}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Neutrino Oscillations Evidence}{6}}
\newlabel{sec:neutrinooscillationevidence}{{2.2}{6}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Solar Neutrinos}{6}}
\newlabel{sec:solarneutrinos}{{2.2.1}{6}}
\citation{pontecorvo}
\citation{CKM}
\citation{CKM2}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.1}{\ignorespaces Flux of solar neutrinos at Earth as a function of energy for different production mechanisms, according to Bahcall's solar model. Figure from \cite {behcallflux}.\relax }}{7}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{solarflux}{{\relax 2.1}{7}}
\citation{kamiokande}
\citation{gallex}
\citation{sage}
\citation{snoresult}
\citation{reines}
\citation{imb}
\citation{kamiokande2}
\citation{skfluxatmos}
\citation{skfluxatmos}
\citation{kamland}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Atmospheric Neutrinos}{9}}
\newlabel{sec:atmosphericneutrinos}{{2.2.2}{9}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Reactor Neutrinos}{9}}
\newlabel{sec:reactorneutrinos}{{2.2.3}{9}}
\citation{reno}
\citation{doublechooz}
\citation{dayabay}
\citation{k2k}
\citation{minos}
\citation{nova}
\citation{opera}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.2}{\ignorespaces The atmospheric neutrino flux as a function of angle from the first 414 days of Super-Kamiokande data. The boxes represent the prediction, the crosses represent the measured counts. Figure from \cite {skfluxatmos}.\relax }}{10}}
\newlabel{atmosflux}{{\relax 2.2}{10}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Accelerator Neutrinos}{10}}
\newlabel{sec:acceleratorneutrinos}{{2.2.4}{10}}
\citation{lsnd}
\citation{karmen}
\citation{icarus}
\citation{miniboone1}
\citation{miniboone2}
\citation{pmns}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Oscillation Theory}{11}}
\newlabel{sec:oscillationtheory}{{2.3}{11}}
\newlabel{eqn:lincomb}{{\relax 2.15}{11}}
\citation{hierarchyplot}
\citation{hierarchyplot}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.3}{\ignorespaces The flavour content and mass differences of the three mass eigenstates, for both the normal and inverted hierarchys. Figure from \cite {hierarchyplot}.\relax }}{12}}
\newlabel{hierarchy}{{\relax 2.3}{12}}
\newlabel{eqn:masspropagation}{{\relax 2.17}{12}}
\citation{majorana}
\newlabel{eqn:oscprob}{{\relax 2.25}{14}}
\citation{msw}
\citation{massdensity}
\newlabel{eqn:disprob}{{\relax 2.27}{15}}
\citation{lepslac,universalN}
\newlabel{eqn:appprob}{{\relax 2.28}{16}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Neutrino Interactions in Long Baseline Oscillation Experiments}{17}}
\newlabel{sec:interactions}{{2.3.1}{17}}
\citation{models}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.4}{\ignorespaces Feynman diagrams for NC electron elastic scattering (left) and CC elastic scattering (right). The NC interaction can occur for any neutrino flavour $\alpha = e, \mu , \tau $, whereas the CC interaction can only occur for an incoming $\nu _{e}$.\relax }}{18}}
\newlabel{Scattdiagram}{{\relax 2.4}{18}}
\citation{nuxsec}
\citation{nuxsec}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.5}{\ignorespaces Feynman diagram for CCQE (left), CC RES (center), and CC DIS (right) interactions. \relax }}{19}}
\newlabel{feynmandiagrams}{{\relax 2.5}{19}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.6}{\ignorespaces Breakdown of the CC $\nu _\mu $ cross-section for QE, RES, and DIS interactions, along with data from various experiments. Figure from \cite {nuxsec}. \relax }}{19}}
\newlabel{xsecpot}{{\relax 2.6}{19}}
\newlabel{eqn:erec}{{\relax 2.30}{19}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.7}{\ignorespaces Feynman diagram for a 2ph2 interaction. As they both produce 0$\pi $ final states, these events form a background to CCQE interactions. \relax }}{20}}
\newlabel{2p2hdiagram}{{\relax 2.7}{20}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.8}{\ignorespaces Feynman diagram for a CC COH $\pi $ production interaction. \relax }}{21}}
\newlabel{COHdiagram}{{\relax 2.8}{21}}
\citation{microboone}
\citation{sbn}
\citation{borexino}
\citation{snoplus}
\citation{icecube}
\citation{antares}
\citation{danss}
\citation{neos}
\citation{prospect}
\citation{stereo}
\citation{solid}
\citation{pdg}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Current Experimental Status}{22}}
\newlabel{sec:status}{{2.4}{22}}
\citation{juno}
\citation{2011majorana}
\citation{nexo}
\citation{kamlandzen}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Open Questions}{23}}
\citation{darkmatter}
\citation{nova2016}
\citation{PhysRevLett.112.061802}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}The T2K Experiment}{25}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:T2K}{{3}{25}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.1}{\ignorespaces The T2K experiment: Neutrinos are produced on the east coast of Japan, and are measured 280m upstream by the near detectors, and 295km away at the far detector, SK.\relax }}{25}}
\newlabel{t2kcrosssec}{{\relax 3.1}{25}}
\citation{ninja}
\citation{wagasci}
\citation{babymind}
\citation{jparc}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Beamline}{26}}
\newlabel{sec:beam}{{3.1}{26}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.2}{\ignorespaces The J-PARC accelerator complex, with the three main accelerators labelled.\relax }}{26}}
\newlabel{jparc}{{\relax 3.2}{26}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Neutrino Beamline}{27}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.3}{\ignorespaces The T2K neutrino beamline.\relax }}{27}}
\newlabel{beamline}{{\relax 3.3}{27}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.4}{\ignorespaces Side view of the secondary beamline, showing the target station and focusing horns, decay volume, and beam dump.\relax }}{28}}
\newlabel{secondarybeamline}{{\relax 3.4}{28}}
\newlabel{eqn:mesondecay}{{\relax 3.2}{28}}
\citation{mumon}
\newlabel{fig:fhcmode}{{\relax 3.5a}{29}}
\newlabel{sub@fig:fhcmode}{{a}{29}}
\newlabel{fig:rhcmode}{{\relax 3.5b}{29}}
\newlabel{sub@fig:rhcmode}{{b}{29}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.5}{\ignorespaces Prediction of ND280 event rate broken down by neutrino species.\relax }}{29}}
\newlabel{fig:modebreakdown}{{\relax 3.5}{29}}
\citation{Enuoffaxis}
\citation{fluka}
\citation{na61}
\citation{geant4}
\citation{jnubeam}
\citation{gcalor}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.6}{\ignorespaces The total accumulated POT and beam power at T2K for runs 2-9.\relax }}{30}}
\newlabel{fig:pot}{{\relax 3.6}{30}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Off Axis Technique}{30}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.7}{\ignorespaces Energy of neutrinos produced in two-body decay as a function of pion energy, for a variety of different off-axis angles.\relax }}{31}}
\newlabel{offaxisEdep}{{\relax 3.7}{31}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.8}{\ignorespaces Effect of off-axis angle on the predicted neutrino flux, normalised to arbitrary units, along with the oscillation and survival probabilities of $\nu _{e}$ and $\nu _{\mu }$ respectively.\relax }}{31}}
\newlabel{offaxis}{{\relax 3.8}{31}}
\citation{tript}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}The Neutrino Flux Simulation}{32}}
\newlabel{sec:fluxsim}{{3.1.3}{32}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Near Detectors}{32}}
\newlabel{sec:nd}{{3.2}{32}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}INGRID}{32}}
\newlabel{sec:ingrid}{{3.2.1}{32}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.9}{\ignorespaces The T2K near detector suite, 280 m from the beam soure. \relax }}{33}}
\newlabel{ndpit}{{\relax 3.9}{33}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.10}{\ignorespaces INGRID and MUMON measurements of the beam direction and event rate for runs 1-9.\relax }}{33}}
\newlabel{mumoningrid}{{\relax 3.10}{33}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.11}{\ignorespaces The horizontal, vertical, and off-axis modules of the INGRID detector.\relax }}{34}}
\newlabel{ingridcross}{{\relax 3.11}{34}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.12}{\ignorespaces The composition of an INGRID module.\relax }}{34}}
\newlabel{ingridmodule}{{\relax 3.12}{34}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.13}{\ignorespaces The composition of the proton module in the INGRID detector.\relax }}{35}}
\newlabel{protonmodule}{{\relax 3.13}{35}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}ND280}{35}}
\newlabel{sec:nd280}{{3.2.2}{35}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.14}{\ignorespaces Exploded view of ND280, showing it's sub-detectors.\relax }}{36}}
\newlabel{nd280basket}{{\relax 3.14}{36}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}The Fine Grained Detectors}{36}}
\newlabel{sec:fgd}{{3.2.2.1}{36}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}The Time Projection Chambers}{37}}
\newlabel{sec:tpc}{{3.2.2.2}{37}}
\newlabel{fig:fgd1beam}{{\relax 3.15a}{38}}
\newlabel{sub@fig:fgd1beam}{{a}{38}}
\newlabel{fig:FGD1cosmic}{{\relax 3.15b}{38}}
\newlabel{sub@fig:FGD1cosmic}{{b}{38}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.15}{\ignorespaces Integrated deposited energy as a function of range for particles stopping in FGD1. The scatter plot shows data while the curves show the MC predictions for protons, muons, and pions.\relax }}{38}}
\newlabel{fig:FGD1}{{\relax 3.15}{38}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.16}{\ignorespaces Schematic diagram of a TPC module.\relax }}{38}}
\newlabel{fig:tpcconstruction}{{\relax 3.16}{38}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.17}{\ignorespaces Energy loss as a function of momentum for particles in one TPC. The scatter plot shows data while the curves show the MC predictions for protons, electrons, muons, and pions.\relax }}{39}}
\newlabel{fig:tpcpid}{{\relax 3.17}{39}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}The $\pi ^0$ Detector}{39}}
\newlabel{sec:pod}{{3.2.2.3}{39}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.18}{\ignorespaces A schematic diagram of the side on view of the P0D.\relax }}{40}}
\newlabel{fig:podconstruction}{{\relax 3.18}{40}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}The Electromagnetic Calorimeter}{40}}
\newlabel{sec:ecal}{{3.2.2.4}{40}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}The UA1 Magnet and Side Muon Range Detector}{41}}
\newlabel{sec:mag}{{3.2.2.5}{41}}
\citation{neut}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.6}The Data Acquisition System}{42}}
\newlabel{sec:daq}{{3.2.2.6}{42}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Near Detector Simulation}{42}}
\newlabel{sec:ndsim}{{3.2.3}{42}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Super-Kamiokande}{42}}
\newlabel{sec:SK}{{3.3}{42}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.19}{\ignorespaces The Super-Kamiokande detector within the Kamioka mine.\relax }}{43}}
\newlabel{fig:superk}{{\relax 3.19}{43}}
\citation{skrecoalg}
\newlabel{fig:skeventdisplayelectron}{{\relax 3.20a}{44}}
\newlabel{sub@fig:skeventdisplayelectron}{{a}{44}}
\newlabel{fig:skeventdisplaymuon}{{\relax 3.20b}{44}}
\newlabel{sub@fig:skeventdisplaymuon}{{b}{44}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.20}{\ignorespaces SK ID event display, showing the Cherenkov ring PMT hits for an a) electron, and b) muon neutrino event. \relax }}{44}}
\newlabel{fig:skeventdisplay}{{\relax 3.20}{44}}
\citation{geant3}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Far Detector Simulation}{45}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Statistical Treatment}{47}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:stats}{{4}{47}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Bayesian Inference and the T2K Likelihood}{47}}
\newlabel{sec:bayes}{{4.1}{47}}
\citation{beestonbarlow}
\newlabel{eqn:bayes}{{\relax 4.1}{48}}
\newlabel{eqn:llhsample}{{\relax 4.3}{48}}
\newlabel{eqn:llhbb}{{\relax 4.4}{48}}
\newlabel{eqn:bbquad}{{\relax 4.5}{48}}
\newlabel{eqn:systllh}{{4.1}{49}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Monte Carlo Methods}{49}}
\newlabel{sec:montecarlo}{{4.2}{49}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Markov Chain Monte Carlo}{50}}
\newlabel{sec:mcmc}{{4.3}{50}}
\citation{met}
\citation{methast}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}The Metropolis Hastings Algorithm}{51}}
\newlabel{sec:methast}{{4.3.1}{51}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Step Proposal}{52}}
\newlabel{sec:stepprop}{{4.3.2}{52}}
\citation{accrate}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Chain Diagnostics}{53}}
\newlabel{sec:diag}{{4.3.3}{53}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.1}{\ignorespaces The autocorrelation function for a low energy flux at parameter, at different values for the scaling applied to the step size.\relax }}{54}}
\newlabel{fig:autocorr}{{\relax 4.1}{54}}
\newlabel{fig:trace0}{{\relax 4.2a}{55}}
\newlabel{sub@fig:trace0}{{a}{55}}
\newlabel{fig:trace1}{{\relax 4.2b}{55}}
\newlabel{sub@fig:trace1}{{b}{55}}
\newlabel{fig:trace2}{{\relax 4.2c}{55}}
\newlabel{sub@fig:trace2}{{c}{55}}
\newlabel{fig:trace3}{{\relax 4.2d}{55}}
\newlabel{sub@fig:trace3}{{d}{55}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.2}{\ignorespaces The traces for a low energy flux parameter for different scalings of the step size. The red lines show the mean for the second half of the chain.\relax }}{55}}
\newlabel{fig:traces}{{\relax 4.2}{55}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.3}{\ignorespaces The batched means for a low energy flux at parameter. The red line shows the total mean.\relax }}{55}}
\newlabel{fig:batch}{{\relax 4.3}{55}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.4}{\ignorespaces The trace of the first 50,000 steps of high energy flux parameter, showing the initial burn-in phase before reaching the stationary distribution.\relax }}{56}}
\newlabel{fig:burnin}{{\relax 4.4}{56}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Postfit Treatment}{56}}
\newlabel{sec:postfit}{{4.4}{56}}
\newlabel{fig:trace0}{{\relax 4.5a}{57}}
\newlabel{sub@fig:trace0}{{a}{57}}
\newlabel{fig:trace1}{{\relax 4.5b}{57}}
\newlabel{sub@fig:trace1}{{b}{57}}
\newlabel{fig:trace2}{{\relax 4.5c}{57}}
\newlabel{sub@fig:trace2}{{c}{57}}
\newlabel{fig:trace3}{{\relax 4.5d}{57}}
\newlabel{sub@fig:trace3}{{d}{57}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.5}{\ignorespaces Trace of the different contributions to the LLH for 6 merged chains each of 600,000 steps in total. The LLHs all converge within $\sim $20,000 steps, though 150,000 are rejected as burn-in to ensure the stationary distribution has been reached.\relax }}{57}}
\newlabel{fig:llhs}{{\relax 4.5}{57}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Parameter Value Extraction}{57}}
\newlabel{sec:extrac}{{4.4.1}{57}}
\newlabel{fig:b10}{{\relax 4.6a}{58}}
\newlabel{sub@fig:b10}{{a}{58}}
\newlabel{fig:Eb}{{\relax 4.6b}{58}}
\newlabel{sub@fig:Eb}{{b}{58}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.6}{\ignorespaces The 1-dimensional marginalised distribution for two fit parameters, showing the different methods of parameter extraction. The red lines show the prior central values, the gold lines show the fitted Gaussian distributions, and the black lines show the highest posterior density point.\relax }}{58}}
\newlabel{fig:1dposts}{{\relax 4.6}{58}}
\newlabel{fig:corr1}{{\relax 4.7a}{59}}
\newlabel{sub@fig:corr1}{{a}{59}}
\newlabel{fig:corr2}{{\relax 4.7b}{59}}
\newlabel{sub@fig:corr2}{{b}{59}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.7}{\ignorespaces The 2-dimensional marginalised distributions for two pairs of fit parameters.\relax }}{59}}
\newlabel{fig:corrs}{{\relax 4.7}{59}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Postfit Covariance}{59}}
\newlabel{sec:postcov}{{4.4.2}{59}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Posterior Predictions}{60}}
\newlabel{sec:postpred}{{4.4.3}{60}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Goodness of Fit}{60}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}The Near Detector Fit Setup}{63}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:FitSetup}{{5}{63}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Motivation}{63}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.1}{\ignorespaces The pre and postfit cross-section parameter uncertainties from a near detector only, and joint near and far detector fit for the 2018 Oscillation Analysis. The prior uncertainties are significantly reduced by the near detector only fit, but the inclusion of SK data does provide any further constraint.\relax }}{64}}
\newlabel{fig:ndskconstraint}{{\relax 5.1}{64}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.2}{\ignorespaces The predicted event rate at SK, with and without the near detector fit constraint. Using near detector data to reduce systematics narrows the uncertainty on the prediction, allowing more precise oscillation measurements to be made. \relax }}{64}}
\newlabel{fig:ndconstraint}{{\relax 5.2}{64}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Selections}{65}}
\newlabel{sec:sel}{{5.2}{65}}
\citation{tn212}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}FHC $\nu _{\mu }$}{66}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.2}RHC $\mathaccentV {bar}016{\nu _{\mu }}$}{70}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.3}RHC $\nu _{\mu }$}{71}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.4}Updating to RHC Multi $\pi $ Samples}{71}}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}Binning}{72}}
\newlabel{sec:binning}{{5.3}{72}}
\newlabel{fig:th2dFGD1_numuCC_0pi}{{\relax 5.3a}{74}}
\newlabel{sub@fig:th2dFGD1_numuCC_0pi}{{a}{74}}
\newlabel{fig:th2dFGD1_numuCC_1pi}{{\relax 5.3b}{74}}
\newlabel{sub@fig:th2dFGD1_numuCC_1pi}{{b}{74}}
\newlabel{fig:th2dFGD1_numuCC_other}{{\relax 5.3c}{74}}
\newlabel{sub@fig:th2dFGD1_numuCC_other}{{c}{74}}
\newlabel{fig:th2dFGD2_numuCC_0pi}{{\relax 5.3d}{74}}
\newlabel{sub@fig:th2dFGD2_numuCC_0pi}{{d}{74}}
\newlabel{fig:th2dFGD2_numuCC_1pi}{{\relax 5.3e}{74}}
\newlabel{sub@fig:th2dFGD2_numuCC_1pi}{{e}{74}}
\newlabel{fig:th2dFGD2_numuCC_other}{{\relax 5.3f}{74}}
\newlabel{sub@fig:th2dFGD2_numuCC_other}{{f}{74}}
\newlabel{fig:th2dFGD1_anti-numuCC_0pi}{{\relax 5.3g}{74}}
\newlabel{sub@fig:th2dFGD1_anti-numuCC_0pi}{{g}{74}}
\newlabel{fig:th2dth2dFGD1_anti-numuCC_1pi}{{\relax 5.3h}{74}}
\newlabel{sub@fig:th2dth2dFGD1_anti-numuCC_1pi}{{h}{74}}
\newlabel{fig:th2dFGD1_anti-numuCC_other}{{\relax 5.3i}{74}}
\newlabel{sub@fig:th2dFGD1_anti-numuCC_other}{{i}{74}}
\newlabel{fig:th2dFGD2_anti-numuCC_0pi}{{\relax 5.3j}{74}}
\newlabel{sub@fig:th2dFGD2_anti-numuCC_0pi}{{j}{74}}
\newlabel{fig:th2dth2dFGD2_anti-numuCC_1pi}{{\relax 5.3k}{74}}
\newlabel{sub@fig:th2dth2dFGD2_anti-numuCC_1pi}{{k}{74}}
\newlabel{fig:th2dFGD2_anti-numuCC_other}{{\relax 5.3l}{74}}
\newlabel{sub@fig:th2dFGD2_anti-numuCC_other}{{l}{74}}
\newlabel{fig:th2dFGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax 5.3m}{74}}
\newlabel{sub@fig:th2dFGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{m}{74}}
\newlabel{fig:th2dFGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax 5.3n}{74}}
\newlabel{sub@fig:th2dFGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{n}{74}}
\newlabel{fig:th2dFGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax 5.3o}{74}}
\newlabel{sub@fig:th2dFGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{o}{74}}
\newlabel{fig:th2dFGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax 5.3p}{74}}
\newlabel{sub@fig:th2dFGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{p}{74}}
\newlabel{fig:th2dFGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax 5.3q}{74}}
\newlabel{sub@fig:th2dFGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{q}{74}}
\newlabel{fig:th2dFGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax 5.3r}{74}}
\newlabel{sub@fig:th2dFGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{r}{74}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.3}{\ignorespaces Uniform rectangular binning of MC events for T2K runs 2-8.\relax }}{74}}
\newlabel{fig:th2dbin}{{\relax 5.3}{74}}
\citation{root}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3.1}Non-Uniform Rectangular Binning Studies}{75}}
\newlabel{sec:nonrecbinning}{{5.3.1}{75}}
\newlabel{fig:momres2d}{{\relax 5.4a}{76}}
\newlabel{sub@fig:momres2d}{{a}{76}}
\newlabel{fig:angres2d}{{\relax 5.4b}{76}}
\newlabel{sub@fig:angres2d}{{b}{76}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.4}{\ignorespaces True vs reconstructed lepton kinematic variables of CC-inclusive MC events from T2K runs 2-8.\relax }}{76}}
\newlabel{fig:res2d}{{\relax 5.4}{76}}
\newlabel{fig:momres1d}{{\relax 5.5a}{77}}
\newlabel{sub@fig:momres1d}{{a}{77}}
\newlabel{fig:angres1d}{{\relax 5.5b}{77}}
\newlabel{sub@fig:angres1d}{{b}{77}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.5}{\ignorespaces The RMS of the true vs reconstructed lepton kinematic variables for CC-inclusive MC events from T2K runs 2-8, at different values of the true variables.\relax }}{77}}
\newlabel{fig:res1d}{{\relax 5.5}{77}}
\@writefile{toc}{\contentsline {section}{\numberline {5.4}Systematics}{77}}
\newlabel{sec:syst}{{5.4}{77}}
\newlabel{fig:th2polyFGD1_numuCC_0pi}{{\relax 5.6a}{78}}
\newlabel{sub@fig:th2polyFGD1_numuCC_0pi}{{a}{78}}
\newlabel{fig:th2polyFGD1_numuCC_1pi}{{\relax 5.6b}{78}}
\newlabel{sub@fig:th2polyFGD1_numuCC_1pi}{{b}{78}}
\newlabel{fig:th2polyFGD1_numuCC_other}{{\relax 5.6c}{78}}
\newlabel{sub@fig:th2polyFGD1_numuCC_other}{{c}{78}}
\newlabel{fig:th2polyFGD2_numuCC_0pi}{{\relax 5.6d}{78}}
\newlabel{sub@fig:th2polyFGD2_numuCC_0pi}{{d}{78}}
\newlabel{fig:th2polyFGD2_numuCC_1pi}{{\relax 5.6e}{78}}
\newlabel{sub@fig:th2polyFGD2_numuCC_1pi}{{e}{78}}
\newlabel{fig:th2polyFGD2_numuCC_other}{{\relax 5.6f}{78}}
\newlabel{sub@fig:th2polyFGD2_numuCC_other}{{f}{78}}
\newlabel{fig:th2polyFGD1_anti-numuCC_0pi}{{\relax 5.6g}{78}}
\newlabel{sub@fig:th2polyFGD1_anti-numuCC_0pi}{{g}{78}}
\newlabel{fig:th2polyth2polyFGD1_anti-numuCC_1pi}{{\relax 5.6h}{78}}
\newlabel{sub@fig:th2polyth2polyFGD1_anti-numuCC_1pi}{{h}{78}}
\newlabel{fig:th2polyFGD1_anti-numuCC_other}{{\relax 5.6i}{78}}
\newlabel{sub@fig:th2polyFGD1_anti-numuCC_other}{{i}{78}}
\newlabel{fig:th2polyFGD2_anti-numuCC_0pi}{{\relax 5.6j}{78}}
\newlabel{sub@fig:th2polyFGD2_anti-numuCC_0pi}{{j}{78}}
\newlabel{fig:th2polyth2polyFGD2_anti-numuCC_1pi}{{\relax 5.6k}{78}}
\newlabel{sub@fig:th2polyth2polyFGD2_anti-numuCC_1pi}{{k}{78}}
\newlabel{fig:th2polyFGD2_anti-numuCC_other}{{\relax 5.6l}{78}}
\newlabel{sub@fig:th2polyFGD2_anti-numuCC_other}{{l}{78}}
\newlabel{fig:th2polyFGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax 5.6m}{78}}
\newlabel{sub@fig:th2polyFGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{m}{78}}
\newlabel{fig:th2polyFGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax 5.6n}{78}}
\newlabel{sub@fig:th2polyFGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{n}{78}}
\newlabel{fig:th2polyFGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax 5.6o}{78}}
\newlabel{sub@fig:th2polyFGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{o}{78}}
\newlabel{fig:th2polyFGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax 5.6p}{78}}
\newlabel{sub@fig:th2polyFGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{p}{78}}
\newlabel{fig:th2polyFGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax 5.6q}{78}}
\newlabel{sub@fig:th2polyFGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{q}{78}}
\newlabel{fig:th2polyFGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax 5.6r}{78}}
\newlabel{sub@fig:th2polyFGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{r}{78}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.6}{\ignorespaces Non-uniform rectangular binning of MC events for T2K runs 2-8.\relax }}{78}}
\newlabel{fig:th2polybin}{{\relax 5.6}{78}}
\newlabel{fig:2p2h_shape_O_sampolyLLH}{{\relax 5.7a}{79}}
\newlabel{sub@fig:2p2h_shape_O_sampolyLLH}{{a}{79}}
\newlabel{fig:FEFCX_sampolyLLH}{{\relax 5.7b}{79}}
\newlabel{sub@fig:FEFCX_sampolyLLH}{{b}{79}}
\newlabel{fig:b_18_sampolyLLH}{{\relax 5.7c}{79}}
\newlabel{sub@fig:b_18_sampolyLLH}{{c}{79}}
\newlabel{fig:b_40_sampolyLLH}{{\relax 5.7d}{79}}
\newlabel{sub@fig:b_40_sampolyLLH}{{d}{79}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.7}{\ignorespaces Comparison of LLH scans using uniform and non-uniform rectangular fit binning, for two selected interaction and beam parameters.\relax }}{79}}
\newlabel{fig:polyllhscans}{{\relax 5.7}{79}}
\citation{neut}
\citation{benhar}
\citation{tn344}
\citation{Nieves}
\citation{Martini}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.4.1}Interaction}{80}}
\newlabel{sec:xsec}{{5.4.1}{80}}
\citation{reinessehgal}
\citation{bubblechamber}
\citation{reincoh}
\citation{grv98}
\citation{by}
\citation{agky}
\citation{NCxsec}
\citation{fsicascade}
\citation{fsiscatt}
\citation{tn344}
\citation{tn344}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.4.1.1}Binding Energy}{83}}
\newlabel{sec:eb}{{5.4.1.1}{83}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 5.1}{\ignorespaces The interaction parameters used in this analysis.\relax }}{84}}
\newlabel{tab:xsecparams}{{\relax 5.1}{84}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.8}{\ignorespaces The cross-section covariance matrix.\relax }}{85}}
\newlabel{fig:xseccov}{{\relax 5.8}{85}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.9}{\ignorespaces Removal energy (`$E$') at different values of the initial nucleon momentum (`k') for the ground state in the SF model. Figure from \cite {tn344}.\relax }}{85}}
\newlabel{fig:sfshells}{{\relax 5.9}{85}}
\citation{RMFPred}
\citation{tn344}
\newlabel{fig:EbratiosP1}{{\relax 5.10a}{87}}
\newlabel{sub@fig:EbratiosP1}{{a}{87}}
\newlabel{fig:EbratiosM1}{{\relax 5.10b}{87}}
\newlabel{sub@fig:EbratiosM1}{{b}{87}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.10}{\ignorespaces Ratio of the FGD1 FHC CC0$\pi $ sample with $E_{b}\nu C$ parameter set to $\pm 1\sigma $ to the nominal MC.\relax }}{87}}
\newlabel{fig:Ebratios}{{\relax 5.10}{87}}
\citation{na61}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.11}{\ignorespaces Posterior distributions from the binding energy parameters from an Asimov fit.\relax }}{88}}
\newlabel{fig:Ebasimov}{{\relax 5.11}{88}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.4.2}Flux}{88}}
\newlabel{sec:beam}{{5.4.2}{88}}
\citation{fluka}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.12}{\ignorespaces Posterior distributions from the binding energy parameters from a data fit.\relax }}{89}}
\newlabel{fig:Ebdata}{{\relax 5.12}{89}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.13}{\ignorespaces Posterior distributions from the binding energy parameters from fit to fluctuated Asimov data.\relax }}{90}}
\newlabel{fig:Ebdata}{{\relax 5.13}{90}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.14}{\ignorespaces Relative sizes of the sources of flux uncertainties in the ND280 flux parameters.\relax }}{91}}
\newlabel{fig:fluxsourceND}{{\relax 5.14}{91}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.15}{\ignorespaces Relative sizes of the sources of flux uncertainties in the SK flux parameters.\relax }}{92}}
\newlabel{fig:fluxsourceSK}{{\relax 5.15}{92}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.16}{\ignorespaces The flux covariance matrix.\relax }}{93}}
\newlabel{fig:fluxcov}{{\relax 5.16}{93}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.4.3}Detector}{93}}
\newlabel{sec:det}{{5.4.3}{93}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 5.2}{\ignorespaces ND280 detector systematics, and their propagation type and prior uncertainty shape.\relax }}{96}}
\newlabel{tab:detsyst}{{\relax 5.2}{96}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.17}{\ignorespaces Distribution of number of events in selected Gaussian distributed bins after 2000 throws of all detector systematics. The red and green lines show Gaussians fitted with and without the MC statistical uncertainty included, and the dotted black line shows the nominal number of events.\relax }}{97}}
\newlabel{fig:detgaussbins}{{\relax 5.17}{97}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.18}{\ignorespaces Distribution of number of events in selected non-Gaussian distributed bins after 2000 throws of all detector systematics. The red and green lines show Gaussians fitted with and without the MC statistical uncertainty included, and the dotted black line shows the nominal number of events.\relax }}{98}}
\newlabel{fig:detnongaussbins}{{\relax 5.18}{98}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.4.3.1}Detector Binning}{98}}
\newlabel{sec:detbin}{{5.4.3.1}{98}}
\citation{tn315}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.19}{\ignorespaces Distribution of number of events in selected bins after 2000 throws of all detector systematics but the pion SI. The red and green lines show Gaussians fitted with and without the MC statistical uncertainty included, and the dotted black line shows the nominal number of events.\relax }}{99}}
\newlabel{fig:detnopisibins}{{\relax 5.19}{99}}
\citation{tn212}
\@writefile{toc}{\contentsline {section}{\numberline {5.5}Prefit Corrections and Scalings}{101}}
\newlabel{sec:corr}{{5.5}{101}}
\citation{coulombcorr}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 5.3}{\ignorespaces Momentum shifts applied to final state leptons in CC events.\relax }}{102}}
\newlabel{tab:coulomb}{{\relax 5.3}{102}}
\@writefile{toc}{\contentsline {section}{\numberline {5.6}Data}{102}}
\newlabel{sec:data}{{5.6}{102}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 5.4}{\ignorespaces Collected and generated POT for the run periods used in this analysis.\relax }}{103}}
\newlabel{tab:pot}{{\relax 5.4}{103}}
\newlabel{fig:}{{\relax 5.20a}{104}}
\newlabel{sub@fig:}{{a}{104}}
\newlabel{fig:}{{\relax 5.20b}{104}}
\newlabel{sub@fig:}{{b}{104}}
\newlabel{fig:}{{\relax 5.20c}{104}}
\newlabel{sub@fig:}{{c}{104}}
\newlabel{fig:}{{\relax 5.20d}{104}}
\newlabel{sub@fig:}{{d}{104}}
\newlabel{fig:}{{\relax 5.20e}{104}}
\newlabel{sub@fig:}{{e}{104}}
\newlabel{fig:}{{\relax 5.20f}{104}}
\newlabel{sub@fig:}{{f}{104}}
\newlabel{fig:}{{\relax 5.20g}{104}}
\newlabel{sub@fig:}{{g}{104}}
\newlabel{fig:}{{\relax 5.20h}{104}}
\newlabel{sub@fig:}{{h}{104}}
\newlabel{fig:}{{\relax 5.20i}{104}}
\newlabel{sub@fig:}{{i}{104}}
\newlabel{fig:}{{\relax 5.20j}{104}}
\newlabel{sub@fig:}{{j}{104}}
\newlabel{fig:}{{\relax 5.20k}{104}}
\newlabel{sub@fig:}{{k}{104}}
\newlabel{fig:}{{\relax 5.20l}{104}}
\newlabel{sub@fig:}{{l}{104}}
\newlabel{fig:}{{\relax 5.20m}{104}}
\newlabel{sub@fig:}{{m}{104}}
\newlabel{fig:}{{\relax 5.20n}{104}}
\newlabel{sub@fig:}{{n}{104}}
\newlabel{fig:}{{\relax 5.20o}{104}}
\newlabel{sub@fig:}{{o}{104}}
\newlabel{fig:}{{\relax 5.20p}{104}}
\newlabel{sub@fig:}{{p}{104}}
\newlabel{fig:}{{\relax 5.20q}{104}}
\newlabel{sub@fig:}{{q}{104}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.20}{\ignorespaces Flux parameters for fake data fits using different detector binnings.\relax }}{104}}
\newlabel{fig:detcovbinfluxSK}{{\relax 5.20}{104}}
\newlabel{fig:}{{\relax 5.21a}{105}}
\newlabel{sub@fig:}{{a}{105}}
\newlabel{fig:}{{\relax 5.21b}{105}}
\newlabel{sub@fig:}{{b}{105}}
\newlabel{fig:}{{\relax 5.21c}{105}}
\newlabel{sub@fig:}{{c}{105}}
\newlabel{fig:}{{\relax 5.21d}{105}}
\newlabel{sub@fig:}{{d}{105}}
\newlabel{fig:}{{\relax 5.21e}{105}}
\newlabel{sub@fig:}{{e}{105}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.21}{\ignorespaces Interaction parameters for fake data fits using different detector binnings.\relax }}{105}}
\newlabel{fig:detcovbinxsec}{{\relax 5.21}{105}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.22}{\ignorespaces SK posterior predictive distributions from near detector fits using different binnings for the detector covariance.\relax }}{106}}
\newlabel{fig:detbinSK}{{\relax 5.22}{106}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.23}{\ignorespaces The ND280 detector covariance matrix with 574 merged bins.\relax }}{107}}
\newlabel{fig:detcov574}{{\relax 5.23}{107}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.24}{\ignorespaces The ND280 detector covariance matrix with the full 3071-bin non-uniform fit binning.\relax }}{107}}
\newlabel{fig:detcovFit}{{\relax 5.24}{107}}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}2020 Near Detector Fit Results}{109}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:2020Fit}{{6}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Nominal MC}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}Log Likelihood Scans}{109}}
\newlabel{sec:llhscan}{{6.2}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.3}Parameter Variations}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.4}Asimov Fit}{109}}
\newlabel{sec:asimov}{{6.4}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.5}Data Fit}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.6}Cross Group Validations}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.7}Posterior Predictions}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.8}Finer Fit and Detector Binning}{109}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.8.1}Asimov Fits}{109}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.8.2}Data Fits}{109}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.8.3}Posterior Predictions}{109}}
\@writefile{toc}{\contentsline {section}{\numberline {6.9}Oscillation Parameter Sensitivity}{109}}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Conclusions}{111}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {chapter}{Appendices}{113}}
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Selection Binning}{115}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{appendix:bintemplates}{{A}{115}}
\newlabel{fig:TH2Poly_Reset5000FGD1_numuCC_0pi}{{\relax A.1a}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_numuCC_0pi}{{a}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD1_numuCC_1pi}{{\relax A.1b}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_numuCC_1pi}{{b}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD1_numuCC_other}{{\relax A.1c}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_numuCC_other}{{c}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_numuCC_0pi}{{\relax A.1d}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_numuCC_0pi}{{d}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_numuCC_1pi}{{\relax A.1e}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_numuCC_1pi}{{e}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_numuCC_other}{{\relax A.1f}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_numuCC_other}{{f}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD1_anti-numuCC_0pi}{{\relax A.1g}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_anti-numuCC_0pi}{{g}{116}}
\newlabel{fig:th2polyTH2Poly_Reset5000FGD1_anti-numuCC_1pi}{{\relax A.1h}{116}}
\newlabel{sub@fig:th2polyTH2Poly_Reset5000FGD1_anti-numuCC_1pi}{{h}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD1_anti-numuCC_other}{{\relax A.1i}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_anti-numuCC_other}{{i}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_anti-numuCC_0pi}{{\relax A.1j}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_anti-numuCC_0pi}{{j}{116}}
\newlabel{fig:th2polyTH2Poly_Reset5000FGD2_anti-numuCC_1pi}{{\relax A.1k}{116}}
\newlabel{sub@fig:th2polyTH2Poly_Reset5000FGD2_anti-numuCC_1pi}{{k}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_anti-numuCC_other}{{\relax A.1l}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_anti-numuCC_other}{{l}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax A.1m}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{m}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax A.1n}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{n}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax A.1o}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{o}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax A.1p}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{p}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax A.1q}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{q}{116}}
\newlabel{fig:TH2Poly_Reset5000FGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax A.1r}{116}}
\newlabel{sub@fig:TH2Poly_Reset5000FGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{r}{116}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.1}{\ignorespaces Non-uniform rectangular binning used in this analysis for each sample. The x-axis is reduced to better show the smaller bins at low momentum and high angle.\relax }}{116}}
\newlabel{fig:th2polybinreset5000}{{\relax A.1}{116}}
\newlabel{fig:TH2Poly_ResetFGD1_numuCC_0pi}{{\relax A.2a}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_numuCC_0pi}{{a}{117}}
\newlabel{fig:TH2Poly_ResetFGD1_numuCC_1pi}{{\relax A.2b}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_numuCC_1pi}{{b}{117}}
\newlabel{fig:TH2Poly_ResetFGD1_numuCC_other}{{\relax A.2c}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_numuCC_other}{{c}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_numuCC_0pi}{{\relax A.2d}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_numuCC_0pi}{{d}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_numuCC_1pi}{{\relax A.2e}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_numuCC_1pi}{{e}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_numuCC_other}{{\relax A.2f}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_numuCC_other}{{f}{117}}
\newlabel{fig:TH2Poly_ResetFGD1_anti-numuCC_0pi}{{\relax A.2g}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_anti-numuCC_0pi}{{g}{117}}
\newlabel{fig:th2polyTH2Poly_ResetFGD1_anti-numuCC_1pi}{{\relax A.2h}{117}}
\newlabel{sub@fig:th2polyTH2Poly_ResetFGD1_anti-numuCC_1pi}{{h}{117}}
\newlabel{fig:TH2Poly_ResetFGD1_anti-numuCC_other}{{\relax A.2i}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_anti-numuCC_other}{{i}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_anti-numuCC_0pi}{{\relax A.2j}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_anti-numuCC_0pi}{{j}{117}}
\newlabel{fig:th2polyTH2Poly_ResetFGD2_anti-numuCC_1pi}{{\relax A.2k}{117}}
\newlabel{sub@fig:th2polyTH2Poly_ResetFGD2_anti-numuCC_1pi}{{k}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_anti-numuCC_other}{{\relax A.2l}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_anti-numuCC_other}{{l}{117}}
\newlabel{fig:TH2Poly_ResetFGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax A.2m}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_NuMuBkg_CC0pi_in_AntiNu_Mode}{{m}{117}}
\newlabel{fig:TH2Poly_ResetFGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax A.2n}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_NuMuBkg_CC1pi_in_AntiNu_Mode}{{n}{117}}
\newlabel{fig:TH2Poly_ResetFGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax A.2o}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD1_NuMuBkg_CCOther_in_AntiNu_Mode}{{o}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{\relax A.2p}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_NuMuBkg_CC0pi_in_AntiNu_Mode}{{p}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{\relax A.2q}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_NuMuBkg_CC1pi_in_AntiNu_Mode}{{q}{117}}
\newlabel{fig:TH2Poly_ResetFGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{\relax A.2r}{117}}
\newlabel{sub@fig:TH2Poly_ResetFGD2_NuMuBkg_CCOther_in_AntiNu_Mode}{{r}{117}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.2}{\ignorespaces Non-uniform rectangular binning used in this analysis for each sample.\relax }}{117}}
\newlabel{fig:th2polybinreset}{{\relax A.2}{117}}
\@writefile{toc}{\contentsline {chapter}{\numberline {B}Alternative Fit Studies}{119}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {B.1}FGD1 and FGD2 Only Fits}{119}}
\@writefile{toc}{\contentsline {section}{\numberline {B.2}FHC and RHC Only Fits}{119}}
\@writefile{toc}{\contentsline {section}{\numberline {B.3}New and Old Data Only Fits}{119}}
\@writefile{toc}{\contentsline {section}{\numberline {B.4}Flat MAQE Prior and Less $Q^2$ Freedom}{119}}
\citation{tn315}
\@writefile{toc}{\contentsline {chapter}{\numberline {C}RHC Multi Pi Samples Validation}{121}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{appendix:rhcmpi}{{C}{121}}
\bibstyle{unsrt}
\bibdata{MyBibFile}
\newlabel{fig:}{{\relax C.1a}{123}}
\newlabel{sub@fig:}{{a}{123}}
\newlabel{fig:}{{\relax C.1b}{123}}
\newlabel{sub@fig:}{{b}{123}}
\newlabel{fig:}{{\relax C.1c}{123}}
\newlabel{sub@fig:}{{c}{123}}
\newlabel{fig:}{{\relax C.1d}{123}}
\newlabel{sub@fig:}{{d}{123}}
\newlabel{fig:}{{\relax C.1e}{123}}
\newlabel{sub@fig:}{{e}{123}}
\newlabel{fig:}{{\relax C.1f}{123}}
\newlabel{sub@fig:}{{f}{123}}
\newlabel{fig:}{{\relax C.1g}{123}}
\newlabel{sub@fig:}{{g}{123}}
\newlabel{fig:}{{\relax C.1h}{123}}
\newlabel{sub@fig:}{{h}{123}}
\newlabel{fig:}{{\relax C.1i}{123}}
\newlabel{sub@fig:}{{i}{123}}
\newlabel{fig:}{{\relax C.1j}{123}}
\newlabel{sub@fig:}{{j}{123}}
\newlabel{fig:}{{\relax C.1k}{123}}
\newlabel{sub@fig:}{{k}{123}}
\newlabel{fig:}{{\relax C.1l}{123}}
\newlabel{sub@fig:}{{l}{123}}
\newlabel{fig:}{{\relax C.1m}{123}}
\newlabel{sub@fig:}{{m}{123}}
\newlabel{fig:}{{\relax C.1n}{123}}
\newlabel{sub@fig:}{{n}{123}}
\newlabel{fig:}{{\relax C.1o}{123}}
\newlabel{sub@fig:}{{o}{123}}
\newlabel{fig:}{{\relax C.1p}{123}}
\newlabel{sub@fig:}{{p}{123}}
\newlabel{fig:}{{\relax C.1q}{123}}
\newlabel{sub@fig:}{{q}{123}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.1}{\ignorespaces Fux parameters for Asimov fits using FHC only data.\relax }}{123}}
\newlabel{fig:rhcmpidat248fluxSK}{{\relax C.1}{123}}
\newlabel{fig:}{{\relax C.2a}{124}}
\newlabel{sub@fig:}{{a}{124}}
\newlabel{fig:}{{\relax C.2b}{124}}
\newlabel{sub@fig:}{{b}{124}}
\newlabel{fig:}{{\relax C.2c}{124}}
\newlabel{sub@fig:}{{c}{124}}
\newlabel{fig:}{{\relax C.2d}{124}}
\newlabel{sub@fig:}{{d}{124}}
\newlabel{fig:}{{\relax C.2e}{124}}
\newlabel{sub@fig:}{{e}{124}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.2}{\ignorespaces Interaction parameters for data fits using FHC only data.\relax }}{124}}
\newlabel{fig:rhcmpidat248xsec}{{\relax C.2}{124}}
\newlabel{fig:}{{\relax C.3a}{125}}
\newlabel{sub@fig:}{{a}{125}}
\newlabel{fig:}{{\relax C.3b}{125}}
\newlabel{sub@fig:}{{b}{125}}
\newlabel{fig:}{{\relax C.3c}{125}}
\newlabel{sub@fig:}{{c}{125}}
\newlabel{fig:}{{\relax C.3d}{125}}
\newlabel{sub@fig:}{{d}{125}}
\newlabel{fig:}{{\relax C.3e}{125}}
\newlabel{sub@fig:}{{e}{125}}
\newlabel{fig:}{{\relax C.3f}{125}}
\newlabel{sub@fig:}{{f}{125}}
\newlabel{fig:}{{\relax C.3g}{125}}
\newlabel{sub@fig:}{{g}{125}}
\newlabel{fig:}{{\relax C.3h}{125}}
\newlabel{sub@fig:}{{h}{125}}
\newlabel{fig:}{{\relax C.3i}{125}}
\newlabel{sub@fig:}{{i}{125}}
\newlabel{fig:}{{\relax C.3j}{125}}
\newlabel{sub@fig:}{{j}{125}}
\newlabel{fig:}{{\relax C.3k}{125}}
\newlabel{sub@fig:}{{k}{125}}
\newlabel{fig:}{{\relax C.3l}{125}}
\newlabel{sub@fig:}{{l}{125}}
\newlabel{fig:}{{\relax C.3m}{125}}
\newlabel{sub@fig:}{{m}{125}}
\newlabel{fig:}{{\relax C.3n}{125}}
\newlabel{sub@fig:}{{n}{125}}
\newlabel{fig:}{{\relax C.3o}{125}}
\newlabel{sub@fig:}{{o}{125}}
\newlabel{fig:}{{\relax C.3p}{125}}
\newlabel{sub@fig:}{{p}{125}}
\newlabel{fig:}{{\relax C.3q}{125}}
\newlabel{sub@fig:}{{q}{125}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.3}{\ignorespaces Flux parameters for Asimov fits using FHC and RHC data.\relax }}{125}}
\newlabel{fig:rhcmpiasmvSK}{{\relax C.3}{125}}
\newlabel{fig:}{{\relax C.4a}{126}}
\newlabel{sub@fig:}{{a}{126}}
\newlabel{fig:}{{\relax C.4b}{126}}
\newlabel{sub@fig:}{{b}{126}}
\newlabel{fig:}{{\relax C.4c}{126}}
\newlabel{sub@fig:}{{c}{126}}
\newlabel{fig:}{{\relax C.4d}{126}}
\newlabel{sub@fig:}{{d}{126}}
\newlabel{fig:}{{\relax C.4e}{126}}
\newlabel{sub@fig:}{{e}{126}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.4}{\ignorespaces Interaction parameters for Asimov fits using FHC and RHC data.\relax }}{126}}
\newlabel{fig:rhcmpiasmvxsec}{{\relax C.4}{126}}
\newlabel{fig:}{{\relax C.5a}{127}}
\newlabel{sub@fig:}{{a}{127}}
\newlabel{fig:}{{\relax C.5b}{127}}
\newlabel{sub@fig:}{{b}{127}}
\newlabel{fig:}{{\relax C.5c}{127}}
\newlabel{sub@fig:}{{c}{127}}
\newlabel{fig:}{{\relax C.5d}{127}}
\newlabel{sub@fig:}{{d}{127}}
\newlabel{fig:}{{\relax C.5e}{127}}
\newlabel{sub@fig:}{{e}{127}}
\newlabel{fig:}{{\relax C.5f}{127}}
\newlabel{sub@fig:}{{f}{127}}
\newlabel{fig:}{{\relax C.5g}{127}}
\newlabel{sub@fig:}{{g}{127}}
\newlabel{fig:}{{\relax C.5h}{127}}
\newlabel{sub@fig:}{{h}{127}}
\newlabel{fig:}{{\relax C.5i}{127}}
\newlabel{sub@fig:}{{i}{127}}
\newlabel{fig:}{{\relax C.5j}{127}}
\newlabel{sub@fig:}{{j}{127}}
\newlabel{fig:}{{\relax C.5k}{127}}
\newlabel{sub@fig:}{{k}{127}}
\newlabel{fig:}{{\relax C.5l}{127}}
\newlabel{sub@fig:}{{l}{127}}
\newlabel{fig:}{{\relax C.5m}{127}}
\newlabel{sub@fig:}{{m}{127}}
\newlabel{fig:}{{\relax C.5n}{127}}
\newlabel{sub@fig:}{{n}{127}}
\newlabel{fig:}{{\relax C.5o}{127}}
\newlabel{sub@fig:}{{o}{127}}
\newlabel{fig:}{{\relax C.5p}{127}}
\newlabel{sub@fig:}{{p}{127}}
\newlabel{fig:}{{\relax C.5q}{127}}
\newlabel{sub@fig:}{{q}{127}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.5}{\ignorespaces Flux parameters for data fits using FHC and RHC data.\relax }}{127}}
\newlabel{fig:rhcmpidat28SK}{{\relax C.5}{127}}
\newlabel{fig:}{{\relax C.6a}{128}}
\newlabel{sub@fig:}{{a}{128}}
\newlabel{fig:}{{\relax C.6b}{128}}
\newlabel{sub@fig:}{{b}{128}}
\newlabel{fig:}{{\relax C.6c}{128}}
\newlabel{sub@fig:}{{c}{128}}
\newlabel{fig:}{{\relax C.6d}{128}}
\newlabel{sub@fig:}{{d}{128}}
\newlabel{fig:}{{\relax C.6e}{128}}
\newlabel{sub@fig:}{{e}{128}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.6}{\ignorespaces Interaction parameters for data fits using FHC and RHC data.\relax }}{128}}
\newlabel{fig:rhcmpidat28xsec}{{\relax C.6}{128}}
\bibcite{behcallflux}{1}
\bibcite{skfluxatmos}{2}
\bibcite{hierarchyplot}{3}
\bibcite{nuxsec}{4}
\bibcite{tn344}{5}
\bibcite{PhysRevLett.121.171802}{6}
\bibcite{Abe:2018uyc}{7}
\bibcite{acciarri2016longbaseline}{8}
\bibcite{FUKUDA2002179}{9}
\bibcite{Ahmad_2001}{10}
\bibcite{chadwick}{11}
\bibcite{bethe1934neutrino}{12}
\bibcite{pauli}{13}
\bibcite{fermi}{14}
\bibcite{cowan}{15}
\bibcite{davis}{16}
\bibcite{lederman}{17}
\bibcite{cernnuflavs}{18}
\bibcite{taudiscovery}{19}
\bibcite{lepslac}{20}
\bibcite{universalN}{21}
\bibcite{davis2}{22}
\bibcite{pontecorvo}{23}
\bibcite{CKM}{24}
\bibcite{CKM2}{25}
\bibcite{kamiokande}{26}
\bibcite{gallex}{27}
\bibcite{sage}{28}
\bibcite{snoresult}{29}
\bibcite{reines}{30}
\bibcite{imb}{31}
\bibcite{kamiokande2}{32}
\bibcite{kamland}{33}
\bibcite{reno}{34}
\bibcite{doublechooz}{35}
\bibcite{dayabay}{36}
\bibcite{k2k}{37}
\bibcite{minos}{38}
\bibcite{nova}{39}
\bibcite{opera}{40}
\bibcite{lsnd}{41}
\bibcite{karmen}{42}
\bibcite{icarus}{43}
\bibcite{miniboone1}{44}
\bibcite{miniboone2}{45}
\bibcite{pmns}{46}
\bibcite{majorana}{47}
\bibcite{msw}{48}
\bibcite{massdensity}{49}
\bibcite{models}{50}
\bibcite{microboone}{51}
\bibcite{sbn}{52}
\bibcite{borexino}{53}
\bibcite{snoplus}{54}
\bibcite{icecube}{55}
\bibcite{antares}{56}
\bibcite{danss}{57}
\bibcite{neos}{58}
\bibcite{prospect}{59}
\bibcite{stereo}{60}
\bibcite{solid}{61}
\bibcite{pdg}{62}
\bibcite{juno}{63}
\bibcite{2011majorana}{64}
\bibcite{nexo}{65}
\bibcite{kamlandzen}{66}
\bibcite{darkmatter}{67}
\bibcite{nova2016}{68}
\bibcite{PhysRevLett.112.061802}{69}
\bibcite{ninja}{70}
\bibcite{wagasci}{71}
\bibcite{babymind}{72}
\bibcite{jparc}{73}
\bibcite{mumon}{74}
\bibcite{Enuoffaxis}{75}
\bibcite{fluka}{76}
\bibcite{na61}{77}
\bibcite{geant4}{78}
\bibcite{jnubeam}{79}
\bibcite{gcalor}{80}
\bibcite{tript}{81}
\bibcite{neut}{82}
\bibcite{skrecoalg}{83}
\bibcite{geant3}{84}
\bibcite{beestonbarlow}{85}
\bibcite{met}{86}
\bibcite{methast}{87}
\bibcite{accrate}{88}
\bibcite{tn212}{89}
\bibcite{root}{90}
\bibcite{benhar}{91}
\bibcite{Nieves}{92}
\bibcite{Martini}{93}
\bibcite{reinessehgal}{94}
\bibcite{bubblechamber}{95}
\bibcite{reincoh}{96}
\bibcite{grv98}{97}
\bibcite{by}{98}
\bibcite{agky}{99}
\bibcite{NCxsec}{100}
\bibcite{fsicascade}{101}
\bibcite{fsiscatt}{102}
\bibcite{RMFPred}{103}
\bibcite{tn315}{104}
\bibcite{coulombcorr}{105}
\global\csname @altsecnumformattrue\endcsname
\global\@namedef{scr@dte@chapter@lastmaxnumwidth}{17.74667pt}
\global\@namedef{scr@dte@section@lastmaxnumwidth}{25.42328pt}
\global\@namedef{scr@dte@subsection@lastmaxnumwidth}{32.11626pt}
\global\@namedef{scr@dte@table@lastmaxnumwidth}{22.97746pt}
\global\@namedef{scr@dte@figure@lastmaxnumwidth}{28.8524pt}