forked from zbowang/BeamerTheme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontent.tex
251 lines (202 loc) · 6.92 KB
/
content.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
\frame[plain]{\titlepage}
\frame{\frametitle{Outline}\tableofcontents}
\section{Introduction}
\begin{frame}
\frametitle{Introduction}
\begin{figure}[h]
\centering
\includegraphics[width=8cm,height=5cm]{imgs/1.png}
\caption{Comparison between (a) our single-stage solution and (b) existing two-stage solution to multi-person pose estimation. The proposed SPM model directly predicts structured poses of multiple persons in a single stage, offering a more compact pipeline and attractive efficiency advantages over two-stage based top-down or bottom-up strategies. See more details in the main text.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Introduction}
Multi-person pose estimation from a single monocular RGB image aims to simultaneously isolate and locate body joints of multiple person instances. It is a fundamental yet challenging task with broad applications in action recognition, person Re-ID, pedestrian tracking, etc.
\vspace{0.4cm}
\pause
Existing methods typically adopt two-stage solutions. As shown in Figure(b), they either follow the top-Existing methods typically adopt two-stage solutions. As shown in Figure 1 (b), they either follow the top-down strategy that employs off-the- shelf detectors to localize person instances at first and then locates their joints individually; or the bottom-up strategy that locates all the body joints at first and then assigns them to the corresponding person.
\end{frame}
\section{Background}
\subsection{Hightlight}
\begin{frame}
\frametitle{Block and Alert}
\begin{block}{Pythagorean theorem}
\vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0.6pt}
\begin{align*}
a^2 + b^2 = c^2
\end{align*}
% \vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0.1pt}
where c represents the length of the hypotenuse and
a and b the lengths of the triangle's other two sides.
\end{block}
\begin{alertblock}{Remark}
\begin{itemize}
\item the environment above is \alert{block}
\item the environment here is \alert{alertblock}
\end{itemize}
\end{alertblock}
\end{frame}
\begin{frame}
\frametitle{Proof}
\begin{block}{Pythagorean theorem}
\vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0.1pt}
\begin{align*}
a^2 + b^2 = c^2
\end{align*}
% \vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0.2pt}
\end{block}
\vspace{0.4cm}
\begin{proof}
\vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt}
\begin{align*}
&3^2 + 4^2 = 5^2\\
&5^2 + 12^2 = 13^2
\end{align*}
% \vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt}
\end{proof}
\end{frame}
\subsection{Other Environments}
\begin{frame}{Algorithm}
\scriptsize
\begin{algorithm}[H]
\KwData{this text}
\KwResult{how to write algorithm with \LaTeX2e }
initialization\;
\While{not at end of this document}{
read current\;
\eIf{understand}{
go to next section\;
current section becomes this one\;
}{
go back to the beginning of current section\;
}
}
\caption{How to write algorithms
(copied from \href{https://en.wikibooks.org/wiki/LaTeX/Algorithms}{here})}
\end{algorithm}
\end{frame}
\begin{frame}[fragile]
\frametitle{An Algorithm For Finding Primes Numbers.}
\scriptsize
\begin{verbatim}
int main (void)
{
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
{
std::cout << i << " ";
for (int j = i; j < 100; is_prime [j] = false, j+=i);
}
return 0;
}
\end{verbatim}
\vspace{-0.7cm}
\begin{uncoverenv}
Note the use of \verb|\alert|.
\end{uncoverenv}
\end{frame}
\begin{frame}{More}
More environments such as
\begin{itemize}
\item Definition
\item lemma
\item corollary
\item example
\end{itemize}
\end{frame}
\section{Structured pose representation}
\subsection{Split Screen}
\begin{frame}{Minipage}
\begin{minipage}{0.5\linewidth}
\begin{figure}[h]
\includegraphics[width=\textwidth]{imgs/pythagorean.jpg}
\end{figure}
\end{minipage}%
\hfill
\begin{minipage}{0.4\linewidth}
\begin{enumerate}
\item item
\item another
\item more
\begin{itemize}
\item first
\item second
\item third
\end{itemize}
\end{enumerate}
\end{minipage}
\end{frame}
\begin{frame}{Columns}
\begin{columns}
\column{0.5\textwidth}
This is a text in first column.
$$E=mc^2$$
\begin{itemize}
\item First item
\item Second item
\end{itemize}
\column{0.5\textwidth}
\begin{block}{first block}
columns achieves splitting the screen
\end{block}
\begin{block}{second block}
stack block in columns
\end{block}
\end{columns}
\end{frame}
\subsection{Table}
\begin{frame}{Create Tables}
\begin{center}
\begin{table}[!t]
% \caption{Three line}
% \label{table_time}
\begin{tabular}{ccc}
\toprule
first&second&third\\
\midrule
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\bottomrule
\end{tabular}
\end{table}
\end{center}
\end{frame}
\subsection{Math}
\begin{frame}{Equation1}
A matrix in text must be set smaller:
$\bigl(\begin{smallmatrix}
a&b \\ c&d
\end{smallmatrix} \bigr)$
to not increase leading in a portion of text.
\[ f(n) =
\begin{cases}
n/2 & \quad \text{if } n \text{ is even}\\
-(n+1)/2 & \quad \text{if } n \text{ is odd}
\end{cases}
\]
$$50 apples \times 100 apples = lots of apples^2$$
\end{frame}
\begin{frame}{Equation2}
$$\sum_{\substack{0<i<m \\ 0<j<n }}
P(i,j)=\int\limits_a^b\prod P(i,j)$$
$$P\left(A=2\middle|\frac{A^2}{B}>4\right)$$
$$( a ), [ b ], \{ c \}, | d |, \| e \|,
\langle f \rangle, \lfloor g \rfloor,Experiments
\lceil h \rceil, \ulcorner i \urcorner$$
\end{frame}
\begin{frame}{Equation3}
$$Q(\alpha)=\alpha_i\alpha_jy_iy_j(x_i\cdot x_j)$$
$$Q(\alpha)=\alpha^i\alpha^jy^{(i)}y^{(j)}(x^i\cdot x^j)$$
$$\Gamma=\beta+\alpha+\gamma+\rho$$
\end{frame}
\section{Single-stage multi-person pose machine}
\subsection{Regression targets}
\subsection{Network architecture}
\subsection{Training and inference}
\section{Experiments}
\section{Conclusion}
\begin{frame}{End}
The last page.
\end{frame}