-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathappenb.tex
149 lines (138 loc) · 7.19 KB
/
appenb.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
\chapter{List of Symbols}
\label{List of Symbols}
Symbols used in this document are listed in alphabatical order in this appendix.
\\[2ex]
\begin{tabular}{ l p{5.5in} }
{\em Symbols} & {\em Definition} \\
\\
$a$ & generic variable \\
$A$ & coefficient (Chapter \ref{filter_chap}), base-state lapse rate constant (Chapter \ref{initialization_chap}) \\
$B$ & Vertical profile in hydrid coordinate definition (Chapter \ref{equation_chap}) \\
{\bf B} & background error covariance matrix \\
$c$ & scalar coefficient \\
$c_s$ & speed of sound \\
$C_k$ & a constant used in TKE closure \\
$Cr$ & Courant number \\
$Cr_{max}$ & maximum Courant number \\
$Cr_{theory}$ & Courant number from Table 3.1 \\
$Cr_{\beta}$ & activation Courant number in vertical velocity damping \\
$C_s$ & a constant used in eddy viscosity calculation \\
$D$ & deformation \\
$D_{nm}$ & deformation tensor, where $n, m$ = 1, 2 and 3 \\
$e$ & cosine component of the Coriolis term (Chapters \ref{equation_chap}, \ref{discretization_chap}); turbulent kinetic energy (Chapter \ref{filter_chap}) \\
{\bf E} & observation error covariance matrix \\
$f$ & sine component of the Coriolis term \\
$F$ & forcing terms for $U$, $V$, $W$, $\Theta$ and $Q_m$ \\
{\bf F} & representivity error covariance matrix \\
$F_{X_{cor}}$ & Coriolis forcing terms for $X = $ $U$, $V$, and $W$ \\
$F_{1,2}$ & coefficients for weighting functions in specified boundary condition \\
$g$ & acceleration due to gravity \\
$G_k$ & regression coefficient \\
$H$ & observation operator \\
$J$ & cost function \\
$K_{dh,dv}$ & horizontal and vertical eddy viscosity for gravity wave absorbing layer \\
$K_{h,v}$ & horizontal and vertical eddy viscosities \\
\end{tabular}
\newpage
\vskip 5pt
\begin{tabular}{ l p{5.5in} }
{\em Symbols} & {\em Definition} \\
\\
$l_0$ & minimum length scale for dissipation \\
$l_{h,v}$ & horizontal and vertical length scales for turbulence \\
$l_{cr}$ & critical length scale for dissipation \\
$L$ & latent heat of condensation \\
$L_{x,y}$ & periodicity length in $x$ and $y$ \\
$m$ & map scale factor \\
$n_s$ & ratio of the RK3 time step to the acoustic time step \\
$N$ & Brunt-V\"ais\"al\"a frequency \\
$p$ & pressure \\
$p'$ & perturbation pressure \\
$p_0$ & reference sea-level pressure \\
$p_c$ & dry hydrostatic pressure difference between the surface and the model top \\
$p_d$ & dry hydrostatic pressure \\
$p_{t,s}$ & dry hydrostatic pressure at the top and surface of the model \\
$P_r$ & Prandtl number \\
$q$ & generic scalar \\
$q_{c,i,r,s}$ & mixing ratios for cloud water, ice, rain water and snow \\
$q_m$ & generic mixing ratios for moisture \\
$q_v$ & mixing ratio for water vapor \\
$q_{vs}$ & saturation mixing ratio for water vapor \\
$Q_m$ & generic coupled moisture variable \\
$r$ & relative humidity \\
$r_e$ & radius of earth \\
$R$ & remaining terms in equations \\
$R_d$ & gas constant for dry air \\
$R_v$ & gas constant for water vapor \\
$t$ & time \\
$\Delta t$ & a full model time step \\
$T$ & temperature \\
$T_0$ & reference sea-level temperature \\
$u$ & horizontal component of velocity in $x$-direction \\
$U$ & coupled horizontal component of velocity in $x$-direction (Chapters \ref{equation_chap}, \ref{discretization_chap}, \ref{lbc_chap}, \ref{nesting_chap}); control variable transform (Chapter \ref{var_chap}) \\
$U_h$ & horizontal correlation \\
$U_p$ & multivariate covariance \\
$U_v$ & vertical covariance \\
$v$ & horizontal component of velocity in $y$-direction \\
$\bf v$ & three dimensional vector velocity \\
$V$ & coupled horizontal component of velocity in $y$-direction \\
$\bf V$ & three dimensional coupled vector velocity \\
$w$ & vertical component of velocity \\
$W$ & coupled vertical component of velocity \\
\end{tabular}
\newpage
\begin{tabular}{ l p{5.5in} }
{\em Symbols} & {\em Definition} \\
\\
$W_k$ & regression coefficient \\
$z$ & height \\
$z_d$ & depth of damping layer \\
$z_{top}$ & height of model top \\
$\alpha$ & inverse density of air \\
$\alpha'$ & perturbation inverse density of air \\
$\bar\alpha$ & inverse density of air for the reference state \\
$\alpha_d$ & inverse density of dry air \\
$\alpha_r$ & local rotation angle between $y$-axis and the meridian \\
$\beta$ & off-centering coefficient for semi-implicit acoustic step \\
$\gamma$ & ratio of heat capacities for dry air at constant pressure and volume \\
$\gamma_d$ & divergence damping coefficient \\
$\gamma_e$ & external mode damping coefficient \\
$\gamma_g$ & damping coefficient for upper boundary gravity wave absorbing layer \\
$\gamma_r$ & Rayleigh damping coefficient \\
$\epsilon$ & molecular weight of water over the molecular weight of dry air (Chapter \ref{filter_chap}); true background error (Chapter \ref{var_chap}) \\
$\eta$ & terrain-following hybrid sigma-pressure vertical coordinate \\
$\dot\eta$ & contravariant `vertical' velocity or coordinate velocity \\
$\theta$ & potential temperature \\
$\theta_e$ & equivalent potential temperature \\
$\theta_m$ & moist potential temperature \\
$\Theta_m$ & coupled moist potential temperature \\
$\bar\mu_d$ & reference state vertical coordinate metric \\
$\mu_d$ & vertical coordinate metric \\
$\tau$ & acoustic time (Chapter \ref{discretization_chap}), vertical structure function for Rayleigh damping (Chapter \ref{filter_chap}) \\
$\tau_{nm}$ & stress tensor (Chapter \ref{filter_chap}) where $n. m$ = 1, 2 and 3 \\
$\Delta \tau$ & acoustic time step \\
$\phi$ & geopotential (Chapters \ref{equation_chap}, \ref{discretization_chap}, \ref{initialization_chap}); latitude (Chapter \ref{var_chap}) \\
$\bar \phi$ & geopotential for reference state \\
$\phi'$ & perturbation geopotential \\
$\Phi$ & generic prognostic variable (coupled) \\
$\psi$ & generic variable (Chapter \ref{lbc_chap}) \\
$\psi'$ & streamfunction increment \\
$\chi'$ & velocity potential increment \\
$\omega$ & same as $\dot\eta$ \\
$\Omega$ & coupled coordinate velocity \\
$\Omega_e$ & angular rotation rate of the earth \\
\\
\end{tabular}
\newpage
\normalsize
\begin{tabular}{ l p{5.5in} }
{\em Subscripts/Superscripts} & {\em Definition} \\
\\
$()_d$ & dry \\
$()_h$ & hydrostatic \\
$()_0$ & base state sea-level constant \\
$\overline{()}$ & reference state \\
$()'$ & perturbation from reference state \\
$()^{t^*}$ & full value at a Runge-Kutta step \\
$()''$ & perturbation from Runge-Kutta step value in acoustic steps \\
\end{tabular}