-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathequation.tex.sav
executable file
·530 lines (506 loc) · 18.5 KB
/
equation.tex.sav
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
\chapter{Governing Equations}
\label{equation_chap}
The ARW dynamics solver integrates the compressible, nonhydrostatic
Euler equations. The equations are cast in flux form using variables
that have conservation properties, following the philosophy of \citet{ooyama90}.
The equations are formulated using a terrain-following mass
vertical coordinate \citep{laprise92}. In this chapter we define
the vertical coordinate and present the flux form equations in Cartesian
space, we extend the equations to include the effects of moisture in the
atmosphere, and we further augment the equations to include
projections to the sphere.
\section{Vertical Coordinate and Variables}
%\begin{figure}
%\begin{center}
% \includegraphics *[height=6cm,bb= 0 0 445.5 405.2]{../fig0.pdf}
%\end{center}
% \caption{\label{figure:2} Terrain-following coordinate in {\wrf}}
%\end{figure}
%
%
\begin{wrapfigure}{r}{8cm}
\mbox{
\epsfig{file=figures/vertical_coordinate.pdf,width=7cm,height=9.75cm}}
\caption{\label{figure:v_coord}ARW $\eta$ coordinate.}
\end{wrapfigure}
The ARW equations are formulated using a terrain-following
hydrostatic-pressure vertical coordinate denoted by $\eta$ and defined as
%
\begin{equation}
\eta = (p_h-p_{ht})/\mu ~~~~~~~{\rm where
}~~~ \mu = p_{hs}-p_{ht}.
\label{eta_def}
\end{equation}
\noindent $p_h$ is the hydrostatic component of the pressure, and
$p_{hs}$ and $p_{ht}$ refer to values along the surface and top
boundaries, respectively. The coordinate definition \eqref{eta_def},
proposed by \citet{laprise92},
is the traditional $\sigma$ coordinate used
in many hydrostatic atmospheric models. $\eta$ varies from a value of 1
at the surface to 0 at the upper boundary of the model domain (Fig. \ref{figure:v_coord}).
This vertical coordinate is also called a mass vertical coordinate.
Since $\mu(x,y)$ represents the mass per unit area within the
column in the model domain at $(x,y)$, the appropriate flux form variables
are
%
\begin{equation}
\hbox{\bf V} = \mu \hbox{\bf v} =(U,V,W), ~~~~ \Omega = \mu\dot\eta, ~~~~
\Theta = \mu \theta.
\end{equation}
%
\noindent
${\hbox{\bf v}} = (u,v,w)$ are the covariant velocities in the two
horizontal and vertical directions, respectively, while
$\omega = \dot\eta$ is the contravariant `vertical' velocity. $\theta$
is the potential temperature. Also appearing in the governing equations
of the ARW are the non-conserved variables $\phi=gz$ (the
geopotential), $p$ (pressure), and $\alpha = 1/\rho$ (the inverse
density).
\section{Flux-Form Euler Equations}
Using the variables defined above, the flux-form Euler equations can be
written as
\begin{align}
\partial_t U + (\nabla \cdot {\bf V} u )
%+ \mu \alpha \partial_x p
%+ \partial_\eta p \partial_x \phi &= F_U
%% - \partial_x (p\phi_\eta)
%% + \partial_\eta (p\phi_x) &= F_U
- \partial_x (p\partial_\eta \phi)
+ \partial_\eta (p\partial_x \phi) &= F_U
\label{cartesian_begin}
\\
%
\partial_t V + (\nabla \cdot {\bf V} v )
%+ \mu \alpha \partial_y p
%+ \partial_\eta p \partial_y \phi &= F_V \\
%% - \partial_y (p\phi_\eta)
%% + \partial_\eta (p\phi_y) &= F_V \\
- \partial_y (p\partial_\eta \phi)
+ \partial_\eta (p\partial_y \phi) &= F_V \\
%
\partial_t W + (\nabla \cdot {\bf V} w )
- g (\partial_\eta p - \mu) &= F_W
\label{cartesian_w} \\
%
\partial_t \Theta + (\nabla \cdot {\bf V} \theta ) & = F_\Theta
\label{cartesian_theta} \\
%
\partial_t \mu + (\nabla \cdot {\bf V} ) & = 0
\label{continuity0} \\
%
\partial_t \phi + \mu^{-1} [({\bf V} \cdot \nabla \phi ) -gW ] & = 0
\label{prognostic_end}
%
\end{align}
\noindent
along with the diagnostic relation for the inverse density
\begin{equation}
\partial_\eta \phi = - \alpha \mu,
\label{hydrostatic_relation}
\end{equation}
%
\noindent
and the equation of state
%
\begin{equation}
p = p_0 (R_d \theta / p_0 \alpha)^{\gamma}.
\label{cartesian_end}
\end{equation}
%
\noindent
In (\ref{cartesian_begin}) -- (\ref{cartesian_end}), the subscripts
$x$, $y$ and $\eta$ denote
differentiation,
%
\begin{equation}
\nabla \cdot {\bf V } a = \partial_x (Ua) +
\partial_y (Va) +
\partial_\eta (\Omega a),
\notag
\end{equation}
%
\noindent
and
%
\begin{equation}
{\bf V} \cdot \nabla a = U \partial_x a +
V \partial_y a +
\Omega \partial_\eta a,
\notag
\end{equation}
%
\noindent
where $a$ represents a generic variable.
$\gamma=c_p/c_v = 1.4$ is the ratio of
the heat capacities for dry air, $R_d$ is the gas constant for dry
air, and $p_0$ is a reference pressure (typically $10^5$ Pascals).
The right-hand-side (RHS) terms $F_U$, $F_V$, $F_W$, and
$F_\Theta$ represent forcing terms arising from model physics,
turbulent mixing, spherical projections, and the earth's rotation.
The prognostic equations \eqref{cartesian_begin} --
\eqref{prognostic_end} are cast in conservative form except for
\eqref{prognostic_end} which is the material derivative of the
definition of the geopotential. \eqref{prognostic_end} could be cast in
flux form but we find no advantage in doing so since $\mu \phi$ is not a
conserved quantity. We could also use a prognostic pressure equation in
place of \eqref{prognostic_end} \citep[see][]{laprise92}, but pressure is
not a conserved variable and we could not use a pressure equation
together with
the conservation equation for $\Theta$ \eqref{cartesian_theta} because
they are linearly dependent.
Additionally, prognostic pressure
equations have the disadvantage of possessing a mass divergence term
multiplied by a large coefficient (proportional to the sound speed)
which makes spatial and temporal discretization problematic.
It should be noted that the relation for the hydrostatic
balance \eqref{hydrostatic_relation} does not represent a constraint on
the solution, rather it is a diagnostic relation that formally is part
of the coordinate definition. In the hydrostatic counterpart to the
nonhydrostatic equations, \eqref{hydrostatic_relation} replaces the
vertical momentum equation \eqref{cartesian_w} and it becomes a
constraint on the solution.
\section{Inclusion of Moisture}
In formulating the moist Euler equations, we retain the coupling
of dry air mass to the prognostic variables, and we retain the
conservation equation for dry air \eqref{continuity0}, as opposed to
coupling the variables to the full (moist) air mass and hence
introducing source terms in the mass conservation equation
\eqref{continuity0}. Additionally, we define the coordinate with
respect to the dry-air mass. Based on these principles, the vertical
coordinate can be written as
%
\begin{equation}
\eta = (p_{dh}-p_{dht})/\mu_d
\label{eta_def1}
\end{equation}
%
\noindent
where $\mu_d$ represents the mass of the dry air in the column and
$p_{dh}$ and $p_{dht}$ represent the hydrostatic pressure of the dry
atmosphere and the hydrostatic pressure at the top of the dry atmosphere.
The coupled variables are defined as
%
\begin{equation}
\hbox{\bf V} = \mu_d \hbox{\bf v}, ~~~~ \Omega = \mu_d\dot\eta, ~~~~
\Theta = \mu_d \theta.
\end{equation}
%
With these definitions, the moist Euler equations can be written as
%
\begin{align}
\partial_t U + (\nabla \cdot {\bf V} u)
+ \mu_d \alpha \partial_x p
+ (\alpha/\alpha_d) \partial_\eta p \partial_x \phi & = F_U \\
%
\partial_t V + (\nabla \cdot {\bf V} v )
+ \mu_d \alpha \partial_y p
+ (\alpha/\alpha_d) \partial_\eta p \partial_y \phi & = F_V \\
%
\partial_t W + (\nabla \cdot {\bf V} w )
- g [ (\alpha/\alpha_d) \partial_\eta p - \mu_d ] & = F_W \\
%
\partial_t \Theta + (\nabla \cdot {\bf V} \theta ) & = F_\Theta \\
%
\partial_t \mu_d + (\nabla \cdot {\bf V} ) & = 0 \\
%
\partial_t \phi + \mu_d^{-1} [({\bf V} \cdot \nabla \phi ) - gW ] & = 0\\
%
\partial_t Q_m + (\nabla \cdot {\bf V} q_m ) & = F_{Q_m}
%
\end{align}
\noindent
with the diagnostic equation for dry inverse density
%
\begin{equation}
\partial_\eta \phi = - \alpha_d \mu_d
\end{equation}
%
\noindent
and the diagnostic relation for the
full pressure (vapor plus dry air)
%
\begin{equation}
p = p_0 (R_d \theta_m / p_0 \alpha_d)^{\gamma}
\label{ideal_gas_law}
\end{equation}
%
\noindent
In these equations, $\alpha_d$ is the inverse density of the dry air
$(1/\rho_d)$ and $\alpha$ is the inverse density taking into account the
full parcel density
$\alpha = \alpha_d ( 1 + q_v + q_c + q_r + q_i + ...)^{-1}$ where
$q_*$ are the mixing ratios (mass per mass of dry air) for water vapor,
cloud, rain, ice, etc.
Additionally, $\theta_m = \theta (1 + (R_v/R_d) q_v)
\approx \theta (1 + 1.61 q_v)$, and $Q_m = \mu_d q_m; \,\, q_m = q_v, q_c,
q_i, ...$ .
\section{Map Projections, Coriolis and Curvature Terms}
\label{spherical_projections}
The ARW solver currently supports four projections to the sphere--- the
Lambert conformal, polar stereographic, Mercator, and latitude-longitude
projections. These projections are described in
\citet{haltiner_and_williams}. The transformation is isotropic for
three of these projections -- the Lambert conformal, polar stereographic,
and Mercator grids. An isotropic transformation requires $(\Delta
x/\Delta y)|_{earth} = \hbox{constant}$ everywhere on the grid. Only
isotropic transformations were supported in the previous ARW releases.
Starting with the ARWV3 release, we now support anisotropic
projections, in this case the latitude-longitude grid, and with it the
full latitude-longitude global model. The ARW implements the
projections using map factors, and the generalization to anisotropic
transformations introduced in ARW V3 requires that there be map factors
for both the $x$ and $y$ components of the transformation from
computational to physical space in order to accomodate the anisotropy.
In the ARW's computational space, $\Delta x$ and $\Delta y$ are
constants. Orthogonal projections to the sphere require that
the physical distances between grid points in the projection vary with
position on the grid. To transform the governing equations,
map scale factors $m_x$ and $m_y$ are defined as the ratio of the distance
in computational space to the corresponding distance on the earth's surface:
\begin{equation}
(m_x,m_y) = {(\Delta x, \Delta y) \over \hbox{distance on the earth}}.
\end{equation}
%
\noindent
The ARW solver includes the map-scale factors in the governing equations
by redefining the momentum variables as
%
\begin{equation}
U = {\mu}_d u/m_y,~~~V = {\mu}_d v/m_x, ~~~W = \mu_d w / m_y,
~~~\Omega = \mu_d \dot\eta /m_y.
\notag
\end{equation}
%
\noindent
Using these redefined momentum variables,
the governing equations, including map factors and rotational terms,
can be written as
%
\begin{align}
\partial_t U + m_x[\partial_x(Uu) + \partial_y(Vu)] +
\hphantom{(m_y/m_x)}
\partial_\eta (\Omega u)
+ (m_x/m_y)[\mu_d \alpha \partial_x p
+ (\alpha/\alpha_d) \partial_\eta p \partial_x \phi] & = F_U
\label{u-mom-full}
\\
%
\partial_t V + m_y[\partial_x (Uv) + \partial_y (Vv)] + (m_y/m_x)\partial_\eta (\Omega v)
+ (m_y/m_x)[\mu_d \alpha \partial_y p
+ (\alpha/\alpha_d) \partial_\eta p \partial_y \phi] & = F_V
\label{v-mom-full}
\\
%
\partial_t W + (m_x m_y/m_y) [\partial_x (Uw) + \partial_y (Vw)] + \partial_\eta (\Omega w)
- m_y^{-1} g [ (\alpha/\alpha_d) \partial_\eta p - \mu_d ] & = F_W
\label{w-mom-full}
\\
%
\partial_t \Theta +
m_x m_y[\partial_x (U\theta) + \partial_y (V\theta)] + m_y \partial_\eta (\Omega \theta)
& = F_\Theta \\
%
\partial_t \mu_d + m_x m_y[U_x + V_y] + m_y \partial_\eta (\Omega)
& = 0
\label{mass-cons-full}
\\
%
%% \partial_t \phi + \mu_d^{-1} [m_x m_y (U\phi_x + V\phi_y) + m_y
%% \Omega\phi_\eta - m_y gW ] & = 0
\partial_t \phi + \mu_d^{-1} [m_x m_y (U\partial_x\phi + V\partial_y\phi) + m_y
\Omega\partial_\eta\phi - m_y gW ] & = 0
\label{geo-full}
\\
%
\partial_t Q_m +
m_x m_y \partial_x (U q_m) + \partial_y (V q_m)] + m _y\partial_\eta (\Omega q_m)
& = F_{Q_m},
%
\end{align}
\noindent
and, for completeness,
the diagnostic relation for the dry inverse density
%
\begin{equation}
\partial_\eta \phi = - \alpha_d \mu_d,
\label{hydro-full}
\end{equation}
%
\noindent
and the diagnostic equation for full pressure (vapor plus dry air)
%
\begin{equation}
p = p_0 (R_d \theta_m / p_0 \alpha_d)^{\gamma}.
\label{moist-state-equation}
\end{equation}
%
The right-hand-side terms of the momentum equations
\eqref{u-mom-full} -- \eqref{w-mom-full} contain the Coriolis and
curvature terms along with mixing terms and
physical forcings. For the isotropic projections
(Lambert conformal, polar stereographic, and Mercator), where
$m_x=m_y=m$, the Coriolis and
curvature terms are cast in the following form:
\begin{align}
F_{U_{cor}} & = + \biggl(f + u {\partial m \over
\partial y} - v {\partial m \over \partial x}\biggr) V
- e W \cos \alpha_r - {uW \over r_e}
\label{u-mom-rhs}
\\
%
F_{V_{cor}} & = - \biggl(f + u {\partial m \over
\partial y} - v {\partial m \over \partial x}\biggr) U
+ e W \sin \alpha_r - {v W \over r_e} \\
%
F_{W_{cor}} & = + e (U \cos \alpha_r - V \sin \alpha_r)
+ \biggl({ uU +vV \over r_e}\biggr),
\label{w-mom-rhs}
\end{align}
\noindent
where $\alpha_r$ is the local rotation angle between the $y$-axis and the
meridians, $\psi$ is the latitude, $f = 2 \Omega_e \sin \psi $, $e = 2
\Omega_e \cos \psi$, $\Omega_e$ is the angular rotation rate of the earth,
and $r_e$ is the radius of the earth. In this
formulation we have approximated the radial distance from the center of
the earth as the mean earth radius $r_e$, and we have not taken into account
the change in horizontal grid distance as a function of the radius.
The terms containing $m$ are the horizontal curvature terms, those
containing $r_e$ relate to vertical (earth-surface) curvature, and those
with $e$ and $f$ are the Coriolis force.
The curvature and Coriolis terms for the momentum equations
are cast in the following form
for the anisotropic latitude-longitude grid:
%
\begin{align}
F_{U_{cor}} & = {m_x \over m_y} \biggl[fV + {uV \over r_e}
\tan\psi \biggr] - {uW \over r_e} -eW\cos \alpha_r
\label{u-mom-rhs-global}
\\
%
F_{V_{cor}} & = {m_y \over m_x} \biggl[ - fU - {uU \over r_e}
%% \tan \psi + {vW \over r_e}
\tan \psi - {vW \over r_e}
+ eW\sin \alpha_r \biggr]
\label{v-mom-rhs-global}
\\
%
F_{W_{cor}} & = + e (U \cos \alpha_r - (m_x/m_y) V \sin \alpha_r)
+ \biggl({ uU + (m_x/m_y) vV \over r_e}\biggr),
\label{w-mom-rhs-global}
%
\end{align}
%% For idealized cases, the map scale factor $m_x = m_y = 1$,
%% $f$ is often taken to be constant, and $e=0$.
For idealized cases on a Cartesian grid, the map scale factor $m_x = m_y = 1$,
$f$ is specified, and $e$ and $r_e^{-1}$ should be zero to remove the curvature terms.
\section{Perturbation Form of the Governing Equations}
Before constructing the discrete solver, it is advantageous to recast
the governing equations using perturbation variables to reduce
truncation errors in the horizontal pressure gradient calculations in
the discrete solver and machine rounding errors in
the vertical pressure gradient and buoyancy calculations.
For this purpose, new
variables are defined as perturbations from a hydrostatically-balanced
reference state, and we define reference state
variables (denoted by overbars) that are a function of height only and
that satisfy the governing equations for an atmosphere at rest. That is,
the reference state is in hydrostatic balance and is strictly only a
function of $\bar z$. In this manner, $p=\bar p(\bar z)+p'$, $\phi=\bar
\phi(\bar z)
+\phi'$, $\alpha=\bar \alpha_d(\bar z) +\alpha_d'$, and $\mu_d = \bar\mu_d(x,y) +
\mu_d'$. Because the $\eta$ coordinate surfaces are generally not
horizontal, the reference profiles $\bar p$, $\bar\phi$, and
$\bar\alpha$ are functions of $(x,y,\eta)$.
The hydrostatically balanced portion of the pressure gradients in the
reference sounding can be removed without approximation to the equations
using these perturbation variables.
The momentum equations
\eqref{u-mom-full} -- \eqref{w-mom-full} are written as
%
\begin{align}
\partial_t U + m_x[\partial_x(Uu) + \partial_y(Vu)] +
\hphantom{(m_y/m_x)}
\partial_\eta (\Omega u)
+ ({\mu}_d \alpha \partial_x p'
+ {\mu}_d \alpha' \partial_x \bar{p}) ~~~~~~~~ \notag &
\\
+ (\alpha/\alpha_d) ( {\mu}_d \partial_x \phi'
+ \partial_\eta p' \partial_x \phi
- {\mu}_d' \partial_x \phi )
&= F_U
\label{u-mom-pert}
\\
%
\partial_t V + m_y[\partial_x (Uv) + \partial_y (Vv)] + (m_y/m_x) \partial_\eta (\Omega v)
+ ({\mu}_d \alpha \partial_y p'
+ {\mu}_d \alpha' \partial_y \bar{p}) ~~~~~~~~ \notag &
\\
+ (\alpha/\alpha_d) ( {\mu}_d \partial_y \phi'
+ \partial_\eta p' \partial_y \phi
- {\mu}_d' \partial_y \phi )
&= F_V \\
%
\partial_t W + (m_x m_y/m_y) [\partial_x (Uw) + \partial_y (Vw)] + \partial_\eta
(\Omega w) ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~ \notag &
\\
- m_y^{-1} g (\alpha/\alpha_d) [\partial_\eta p'
- {\bar{\mu}}_d (q_v + q_c +q_r)]
+ m_y^{-1} {\mu}_d'g
&= F_W,
\label{w-mom-pert}
\end{align}
%
and the mass conservation equation \eqref{mass-cons-full}
and geopotential equation \eqref{geo-full} become
%
\begin{align}
\partial_t \mu_d' + m_x m_y[\partial_x U + \partial_y V] + m_y
\partial_\eta \Omega
& = 0 \\
%
\partial_t \phi'
+ \mu_d^{-1}
%% [m_x m_y (U\phi_x + V\phi_y) + m_y
%% \Omega\phi_\eta -m_y gW ] = 0.
[m_x m_y (U\partial_x\phi + V\partial_y\phi) + m_y
\Omega\partial_\eta\phi -m_y gW ] = 0.
%
\end{align}
%
\noindent
Remaining unchanged are
the conservation equations for the potential temperature and
scalars
\begin{align}
\partial_t \Theta
+ m_x m_y[\partial_x (U\theta) + \partial_y (V\theta)] + m_y \partial_\eta (\Omega \theta)
& = F_\Theta \\
%
\partial_t Q_m
+ m_x m_y[\partial_x (U q_m) + \partial_y (V q_m)] + m_y \partial_\eta (\Omega q_m)
& = F_{Q_m}.
\label{scalar-pert}
\end{align}
%
\noindent
In the perturbation system
the hydrostatic relation \eqref{hydro-full} becomes
%
\begin{equation}
\partial_\eta \phi' =-\bar\mu_d \alpha'_d-\alpha_d\mu'_d.
\label{hydro-pert}
\end{equation}
%
Equations \eqref{u-mom-pert} -- \eqref{scalar-pert},
together with the equation of state \eqref{ideal_gas_law},
represent the equations solved in the ARW.
The RHS terms in these equations include the
Coriolis terms \eqref{u-mom-rhs} -- \eqref{w-mom-rhs},
mixing terms (described in Chapter \ref{filter_chap}), and
parameterized physics (described in Chapter \ref{physics_chap}).
Also note that the equation of state \eqref{ideal_gas_law} cannot be
written in perturbation form because of the exponent in the expression.
For small perturbation simulations, accuracy for perturbation variables
can be maintained by linearizing \eqref{ideal_gas_law} for the
perturbation variables.
%