-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
192 lines (172 loc) · 7.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.utils.data
from torchvision.transforms import transforms
import torchvision
import torch.multiprocessing as mp
import os
import argparse
from model import ResNet34
from utils import progress_bar
os.environ['CUDA_VISIBLE_DEVICES'] = '2,3'
# 创建一个解析器
parser = argparse.ArgumentParser(description='PyTorch CIFAR100 Training')
# 添加lr参数,默认=1
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
# 添加参数,是否加载checkpoint,继续训练
parser.add_argument('--resume',
'-r',
action='store_true',
help='resume from checkpoint')
parser.add_argument('--warm_up',
'-w',
action='store_true',
default=False,
help='warm_up by learning rate=0.01')
# 解析参数
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize(
(0.5070751592371323, 0.48654887331495095, 0.4409178433670343),
(0.2673342858792401, 0.2564384629170883, 0.27615047132568404))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.5070751592371323, 0.48654887331495095, 0.4409178433670343),
(0.2673342858792401, 0.2564384629170883, 0.27615047132568404))
])
trainset = torchvision.datasets.CIFAR100(root='./data',
train=True,
download=True,
transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=128,
shuffle=True,
num_workers=4)
cifar100_test = torchvision.datasets.CIFAR100(root='./data',
train=False,
download=True,
transform=transform_test)
cifar100_test_loader = torch.utils.data.DataLoader(cifar100_test,
batch_size=100,
shuffle=False,
num_workers=4)
print('==> Building model..')
net = ResNet34()
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir(
'checkpoint-100'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint-100/ckpt-100.pth')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
# criterion = nn.MSELoss(reduce=False, size_average=False, reduction='sum')
optimizer = optim.SGD(net.parameters(),
lr=args.lr,
momentum=0.9,
weight_decay=5e-4) # 权重L2正则化
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
mode='max',
factor=0.2,
patience=10,
verbose=False,
threshold=0.0001,
threshold_mode='rel',
cooldown=5,
min_lr=0,
eps=1e-08)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
# T_max=200) # 待调
# train_scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
# milestones=[1, 3, 5],
# gamma=0.2)
def Warmup_LR(optimizer, epoch, use_warmup=False):
"""Warmup"""
if use_warmup:
if epoch < 2:
lr = 0.01
elif (optimizer.param_groups[0]['lr'] == 0.01):
lr = 0.1
args.warm_up = False
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
Warmup_LR(optimizer, epoch, use_warmup=args.warm_up)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(
batch_idx, len(trainloader),
'lr= %.6f | Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(optimizer.param_groups[0]['lr'], train_loss /
(batch_idx + 1), 100. * correct / total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(cifar100_test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(
batch_idx, len(cifar100_test_loader),
'Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(test_loss /
(batch_idx + 1), 100. * correct / total, correct, total))
# Save checkpoint.
acc = 100. * correct / total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint-100'):
os.mkdir('checkpoint-100')
torch.save(state, './checkpoint-100/ckpt-100.pth')
best_acc = acc
for epoch in range(start_epoch, start_epoch + 200):
train(epoch)
test(epoch)
scheduler.step(best_acc)