diff --git a/examples/optimizer/meta_optimizer.py b/examples/optimizer/meta_optimizer.py index cfc7688b..72e71721 100644 --- a/examples/optimizer/meta_optimizer.py +++ b/examples/optimizer/meta_optimizer.py @@ -7,7 +7,8 @@ inner_cv=KFold(n_splits=5), outer_cv=KFold(n_splits=3), optimizer='switch', - optimizer_params={'name': 'sk_opt', 'n_configurations': 50}, + optimizer_params={'name': 'grid_search'}, + # optimizer_params={'name': 'random_search', 'n_configurations': 50}, metrics=['accuracy', 'precision', 'recall', 'balanced_accuracy'], best_config_metric='accuracy', project_folder='./tmp', @@ -16,7 +17,7 @@ my_pipe.add(PipelineElement('StandardScaler')) my_pipe += PipelineElement('PCA', - hyperparameters={'n_components': IntegerRange(10, 30)}, + hyperparameters={'n_components': IntegerRange(10, 30, step=5)}, test_disabled=True) # set up two learning algorithms in an ensemble @@ -25,10 +26,10 @@ estimator_selection += PipelineElement('RandomForestClassifier', criterion='gini', hyperparameters={'min_samples_split': IntegerRange(2, 4), - 'max_features': ['auto', 'sqrt', 'log2'], + 'max_features': ['sqrt', 'log2'], 'bootstrap': [True, False]}) estimator_selection += PipelineElement('SVC', - hyperparameters={'C': FloatRange(0.5, 25), + hyperparameters={'C': FloatRange(0.5, 25, num=10), 'kernel': ['linear', 'rbf']}) my_pipe += estimator_selection @@ -36,4 +37,4 @@ X, y = load_breast_cancer(return_X_y=True) my_pipe.fit(X, y) -my_pipe.results_handler.get_mean_of_best_validation_configs_per_estimator() +print(my_pipe.results_handler.get_mean_of_best_validation_configs_per_estimator())