-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathfacial_rec_live_camera.py
155 lines (114 loc) · 6.09 KB
/
facial_rec_live_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tkinter as tk, numpy as np, cv2, os, face_recognition
from datetime import datetime
# Initialize empty lists to store images and people's names.
known_faces = []
face_labels = []
# Get a list of all images in the TrainingImages directory.
image_files = os.listdir("TrainingImages")
# Loop through the images in the directory.
for image_name in image_files:
# Read each image and add it to the known_faces list.
current_image = cv2.imread(f'TrainingImages/{image_name}')
known_faces.append(current_image)
# Extract the person's name by removing the file extension and add it to the face_labels list.
face_labels.append(os.path.splitext(image_name)[0])
# Function to get face encodings from a list of images.
def get_face_encodings(images):
encoding_list = []
for image in images:
# Convert the image to RGB format. RGB is Red Green Blue.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Get the face encoding for the first face found in the image.
face_encoding = face_recognition.face_encodings(image)[0]
encoding_list.append(face_encoding)
return encoding_list
# Define a function to document the recognized face.
def document_recognised_face(name, filename='records.csv'):
# Get the current date in the YYYY-MM-DD format.
capture_date = datetime.now().strftime("%Y-%m-%d")
# Check if the specified CSV file exists.
if not os.path.isfile(filename):
# If the file doesn't exist, create it and write the header.
with open(filename, 'w') as f:
f.write('Name,Date,Time') # Create the file and write the header.
# Open the CSV file for reading and writing ('r+')
with open(filename, 'r+') as file:
# Read all lines from the file into a list.
lines = file.readlines()
# Extract the names from existing lines in the CSV.
existing_names = [line.split(",")[0] for line in lines]
# Check if the provided name is not already in the existing names.
if name not in existing_names:
# Get the current time in the HH:MM:SS format.
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
# Write the new entry to the CSV file including name, capture date, and time.
file.write(f'\n{name},{capture_date},{current_time}')
# Get face encodings for known images.
known_face_encodings = get_face_encodings(known_faces)
# Function to start the Facial recognition program.
def start_recognition_program():
# Open a webcam for capturing video. If you are using your computer's webcam, change 1 to 0.
# If using an external webcam, leave it as 1.
video_capture = cv2.VideoCapture(1)
while True:
# Read a frame from the webcam.
frame = video_capture.read()
# Check if the frame is not None (indicating a successful frame capture).
if frame is not None:
frame = frame[1] # The frame is usually the second element of the tuple returned by video_capture.read().
# Resize the image to a smaller size.
resized_frame = cv2.resize(frame, (0, 0), None, 0.25, 0.25)
resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB)
# Detect faces in the current frame.
face_locations = face_recognition.face_locations(resized_frame)
# Get face encodings for the faces detected in the current frame.
current_face_encodings = face_recognition.face_encodings(resized_frame, face_locations)
# Loop through the detected faces in the current frame.
for face_encoding, location in zip(current_face_encodings, face_locations):
# Compare the current face encoding with the known encodings.
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
# Find the index of the best match. That is, the best resemblance.
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
# If a match is found, get the name of the recognized person.
recognized_name = face_labels[best_match_index].upper()
# Extract face location coordinates.
top, right, bottom, left = location
top, right, bottom, left = top * 4, right * 4, bottom * 4, left * 4
# Draw a rectangle around the recognized face.
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
# Draw a filled rectangle and display the name above the face.
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 255, 0), cv2.FILLED)
cv2.putText(frame, recognized_name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_COMPLEX, 1,
(255, 255, 255), 2)
document_recognised_face(recognized_name)
# Display the image with recognized faces.
cv2.imshow("Webcam", frame)
# Check for key press
key = cv2.waitKey(1) & 0xFF
# Check if the 'q' key is pressed to exit the program.
if key == ord('q'):
break
# Release the video capture and close all OpenCV windows.
video_capture.release()
cv2.destroyAllWindows()
# Create the main application window.
root = tk.Tk()
root.title("Face Recognition Program")
# Create a label
label = tk.Label(root, text="Click the button to start the facial recognition program")
label.pack(pady=10)
# Create a button to start the program
start_button = tk.Button(root, text="Start Recognition", command=start_recognition_program)
start_button.pack(pady=10)
# Function to quit the application. This is for quitting the entire program. To quit the webcam stream, hit q.
def quit_app():
root.quit()
cv2.destroyAllWindows()
# Create a quit button to exit the application.
exit_button = tk.Button(root, text="Close", command=quit_app)
exit_button.pack(pady=10)
# Start the Tkinter event loop.
root.mainloop()