-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_qbert.py
415 lines (350 loc) · 19 KB
/
base_qbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import torch
import torch.nn as nn
import torch.optim as optim
import torch.autograd as autograd
import torch.nn.functional as F
import os
from os.path import basename, splitext
import numpy as np
import time
import sentencepiece as spm
from statistics import mean
from jericho import *
from jericho.template_action_generator import TemplateActionGenerator
from jericho.util import unabbreviate, clean
import jericho.defines
from representations import StateAction
from models import QBERT
from env import *
from vec_env import *
import logger
device = torch.device("cuda")
def configure_logger(log_dir):
logger.configure(log_dir, format_strs=['log'])
global tb
tb = logger.Logger(log_dir, [logger.make_output_format('tensorboard', log_dir),
logger.make_output_format('csv', log_dir),
logger.make_output_format('stdout', log_dir)])
global log
logger.set_level(60)
log = logger.log
class QBERTTrainer(object):
'''
QBERT main class.
'''
def __init__(self, params):
configure_logger(params['output_dir'])
log('Parameters {}'.format(params))
self.params = params
self.binding = load_bindings(params['rom_file_path'])
self.max_word_length = self.binding['max_word_length']
self.sp = spm.SentencePieceProcessor()
self.sp.Load(params['spm_file'])
kg_env = QBERTEnv(params['rom_file_path'], params['seed'], self.sp,
params['tsv_file'], step_limit=params['reset_steps'],
stuck_steps=params['stuck_steps'], gat=params['gat'])
self.vec_env = VecEnv(params['batch_size'], kg_env, params['openie_path'], params['buffer_size'])
self.template_generator = TemplateActionGenerator(self.binding)
env = FrotzEnv(params['rom_file_path'])
self.cur_reload_state = env.get_state()
self.vocab_act, self.vocab_act_rev = load_vocab(env)
self.model = QBERT(params, self.template_generator.templates, self.max_word_length,
self.vocab_act, self.vocab_act_rev, len(self.sp), gat=self.params['gat']).cuda()
self.batch_size = params['batch_size']
if params['preload_weights']:
self.model = torch.load(self.params['preload_weights'])['model']
self.optimizer = optim.Adam(self.model.parameters(), lr=params['lr'])
self.loss_fn1 = nn.BCELoss()
self.loss_fn2 = nn.BCEWithLogitsLoss()
self.loss_fn3 = nn.MSELoss()
def generate_targets(self, admissible, objs):
'''
Generates ground-truth targets for admissible actions.
:param admissible: List-of-lists of admissible actions. Batch_size x Admissible
:param objs: List-of-lists of interactive objects. Batch_size x Objs
:returns: template targets and object target tensors
'''
tmpl_target = []
obj_targets = []
for adm in admissible:
obj_t = set()
cur_t = [0] * len(self.template_generator.templates)
for a in adm:
cur_t[a.template_id] = 1
obj_t.update(a.obj_ids)
tmpl_target.append(cur_t)
obj_targets.append(list(obj_t))
tmpl_target_tt = torch.FloatTensor(tmpl_target).cuda()
# Note: Adjusted to use the objects in the admissible actions only
object_mask_target = []
for objl in obj_targets: # in objs
cur_objt = [0] * len(self.vocab_act)
for o in objl:
cur_objt[o] = 1
object_mask_target.append([[cur_objt], [cur_objt]])
obj_target_tt = torch.FloatTensor(object_mask_target).squeeze().cuda()
return tmpl_target_tt, obj_target_tt
def generate_graph_mask(self, graph_infos):
assert len(graph_infos) == self.batch_size
mask_all = []
for graph_info in graph_infos:
mask = [0] * len(self.vocab_act.keys())
if self.params['masking'] == 'kg':
# Uses the knowledge graph as the mask.
graph_state = graph_info.graph_state
# print (graph_info)
# print (graph_state)
ents = set()
for u, v in graph_state.edges:
ents.add(u)
ents.add(v)
for ent in ents:
for ent_word in ent.split():
if ent_word[:self.max_word_length] in self.vocab_act_rev:
idx = self.vocab_act_rev[ent_word[:self.max_word_length]]
mask[idx] = 1
elif self.params['masking'] == 'interactive':
# Uses interactive objects grount truth as the mask.
for o in graph_info.objs:
o = o[:self.max_word_length]
if o in self.vocab_act_rev.keys() and o != '':
mask[self.vocab_act_rev[o]] = 1
elif self.params['masking'] == 'none':
# No mask at all.
mask = [1] * len(self.vocab_act.keys())
else:
assert False, 'Unrecognized masking {}'.format(self.params['masking'])
mask_all.append(mask)
return torch.BoolTensor(mask_all).cuda().detach()
def discount_reward(self, transitions, last_values):
returns, advantages = [], []
R = last_values.data
for t in reversed(range(len(transitions))):
_, _, values, rewards, done_masks, _, _, _, _, _, _ = transitions[t]
R = rewards + self.params['gamma'] * R * done_masks
adv = R - values
returns.append(R)
advantages.append(adv)
return returns[::-1], advantages[::-1]
def train(self, max_steps):
start = time.time()
transitions = []
self.back_step = -1
previous_best_seen_score = float("-inf")
previous_best_step = 0
previous_best_state = None
previous_best_snapshot = None
self.cur_reload_step = 0
force_reload = [False] * self.params['batch_size']
last_edges = None
obs, infos, graph_infos, env_str = self.vec_env.reset()
# print (obs)
# print (infos)
# print (graph_infos)
for step in range(1, max_steps + 1):
if any(force_reload):
print ("FORCING RELOAD")
# obs, infos, graph_infos, env_str = self.vec_env.reset()
print (force_reload)
self.vec_env.load_from(self.cur_reload_state, force_reload)
force_reload = [False] * self.params['batch_size']
# do i need to extract obs, infos, graph_infos from the refreshed state?
tb.logkv('Step', step)
obs_reps = np.array([g.ob_rep for g in graph_infos])
graph_mask_tt = self.generate_graph_mask(graph_infos)
graph_state_reps = [g.graph_state_rep for g in graph_infos]
scores = [info['score'] for info in infos]
tmpl_pred_tt, obj_pred_tt, dec_obj_tt, dec_tmpl_tt, value, dec_steps = self.model(
obs_reps, scores, graph_state_reps, graph_mask_tt)
tb.logkv_mean('Value', value.mean().item())
# Log the predictions and ground truth values
topk_tmpl_probs, topk_tmpl_idxs = F.softmax(tmpl_pred_tt[0]).topk(5)
topk_tmpls = [self.template_generator.templates[t] for t in topk_tmpl_idxs.tolist()]
tmpl_pred_str = ', '.join(['{} {:.3f}'.format(tmpl, prob) for tmpl, prob in zip(topk_tmpls, topk_tmpl_probs.tolist())])
# Generate the ground truth and object mask
admissible = [g.admissible_actions for g in graph_infos]
objs = [g.objs for g in graph_infos]
tmpl_gt_tt, obj_mask_gt_tt = self.generate_targets(admissible, objs)
# Log template/object predictions/ground_truth
gt_tmpls = [self.template_generator.templates[i] for i in tmpl_gt_tt[0].nonzero().squeeze().cpu().numpy().flatten().tolist()]
gt_objs = [self.vocab_act[i] for i in obj_mask_gt_tt[0,0].nonzero().squeeze().cpu().numpy().flatten().tolist()]
log('TmplPred: {} GT: {}'.format(tmpl_pred_str, ', '.join(gt_tmpls)))
topk_o1_probs, topk_o1_idxs = F.softmax(obj_pred_tt[0,0]).topk(5)
topk_o1 = [self.vocab_act[o] for o in topk_o1_idxs.tolist()]
o1_pred_str = ', '.join(['{} {:.3f}'.format(o, prob) for o, prob in zip(topk_o1, topk_o1_probs.tolist())])
# graph_mask_str = [self.vocab_act[i] for i in graph_mask_tt[0].nonzero().squeeze().cpu().numpy().flatten().tolist()]
log('ObjtPred: {} GT: {}'.format(o1_pred_str, ', '.join(gt_objs))) # , ', '.join(graph_mask_str)))
chosen_actions = self.decode_actions(dec_tmpl_tt, dec_obj_tt)
obs, rewards, dones, infos, graph_infos, env_str = self.vec_env.step(chosen_actions)
force_reload = dones
edges = [set(graph_info.graph_state.edges) for graph_info in graph_infos]
if last_edges:
stayed_same = [1 if (len(edges[i] - last_edges[i]) <= self.params['kg_diff_threshold']) else 0 for i in range(self.params['batch_size'])]
# print ("stayed_same: {}".format(stayed_same))
valid_kg_update = last_edges and sum(stayed_same) / self.params['batch_size'] > self.params['kg_diff_batch_percentage']
last_edges = edges
snapshot = self.vec_env.get_snapshot()
scores = np.array([infos[i]['score'] for i in range(len(rewards))])
cur_max_score_idx = np.argmax(scores)
if scores[cur_max_score_idx] > previous_best_seen_score:# or valid_kg_update:
print ("New Reward Founded OR KG updated")
previous_best_step = step
previous_best_state = env_str[cur_max_score_idx]
previous_best_seen_score = scores[cur_max_score_idx]
previous_best_snapshot = snapshot[cur_max_score_idx]
print ("\tepoch: {}".format(previous_best_step))
print ("\tnew score: {}".format(previous_best_seen_score))
# print ("\tnew state: {}".format(previous_best_state[0]))
# print ("rewards: {}".format(rewards))
print ("step {}: scores: {}, max_score: {}".format(step, scores, previous_best_seen_score))
tb.logkv_mean('TotalStepsPerEpisode', sum([i['steps'] for i in infos]) / float(len(graph_infos)))
tb.logkv_mean('Valid', infos[0]['valid'])
log('Act: {}, Rew {}, Score {}, Done {}, Value {:.3f}'.format(
chosen_actions[0], rewards[0], infos[0]['score'], dones[0], value[0].item()))
log('Obs: {}'.format(clean(obs[0])))
if dones[0]:
log('Step {} EpisodeScore {}\n'.format(step, infos[0]['score']))
for done, info in zip(dones, infos):
if done:
tb.logkv_mean('EpisodeScore', info['score'])
rew_tt = torch.FloatTensor(rewards).cuda().unsqueeze(1)
done_mask_tt = (~torch.tensor(dones)).float().cuda().unsqueeze(1)
self.model.reset_hidden(done_mask_tt)
transitions.append((tmpl_pred_tt, obj_pred_tt, value, rew_tt,
done_mask_tt, tmpl_gt_tt, dec_tmpl_tt,
dec_obj_tt, obj_mask_gt_tt, graph_mask_tt, dec_steps))
if len(transitions) >= self.params['bptt']:
tb.logkv('StepsPerSecond', float(step) / (time.time() - start))
self.model.clone_hidden()
obs_reps = np.array([g.ob_rep for g in graph_infos])
graph_mask_tt = self.generate_graph_mask(graph_infos)
graph_state_reps = [g.graph_state_rep for g in graph_infos]
scores = [info['score'] for info in infos]
_, _, _, _, next_value, _ = self.model(obs_reps, scores, graph_state_reps, graph_mask_tt)
returns, advantages = self.discount_reward(transitions, next_value)
log('Returns: ', ', '.join(['{:.3f}'.format(a[0].item()) for a in returns]))
log('Advants: ', ', '.join(['{:.3f}'.format(a[0].item()) for a in advantages]))
tb.logkv_mean('Advantage', advantages[-1].median().item())
loss = self.update(transitions, returns, advantages)
del transitions[:]
self.model.restore_hidden()
if step % self.params['checkpoint_interval'] == 0:
parameters = { 'model': self.model }
torch.save(parameters, os.path.join(self.params['output_dir'], 'qbert.pt'))
if step - previous_best_step >= self.params['patience']:
new_back_step = (step - previous_best_step - self.params['patience']) // self.params['patience']
if new_back_step == 0:
self.vec_env.import_snapshot(previous_best_snapshot)
self.cur_reload_state = previous_best_snapshot[-1 - new_back_step]
self.cur_reload_step = previous_best_step
if new_back_step != self.back_step:
force_reload = [True] * self.params['batch_size']
self.back_step = new_back_step
print ("Bottleneck detected at step: {}".format(step))
print ("preivous_best_step: {}".format(previous_best_step))
print ("Stepping back num: {}".format(self.back_step))
print ("Reloading with env_str: {}".format(self.cur_reload_state[0]))
self.vec_env.close_extras()
def update(self, transitions, returns, advantages):
assert len(transitions) == len(returns) == len(advantages)
loss = 0
for trans, ret, adv in zip(transitions, returns, advantages):
tmpl_pred_tt, obj_pred_tt, value, _, _, tmpl_gt_tt, dec_tmpl_tt, \
dec_obj_tt, obj_mask_gt_tt, graph_mask_tt, dec_steps = trans
# Supervised Template Loss
tmpl_probs = F.softmax(tmpl_pred_tt, dim=1)
template_loss = self.params['template_coeff'] * self.loss_fn1(tmpl_probs, tmpl_gt_tt)
# Supervised Object Loss
object_mask_target = obj_mask_gt_tt.permute((1, 0, 2))
obj_probs = F.softmax(obj_pred_tt, dim=2)
object_mask_loss = self.params['object_coeff'] * self.loss_fn1(obj_probs, object_mask_target)
# Build the object mask
o1_mask, o2_mask = [0] * self.batch_size, [0] * self.batch_size
for d, st in enumerate(dec_steps):
if st > 1:
o1_mask[d] = 1
o2_mask[d] = 1
elif st == 1:
o1_mask[d] = 1
o1_mask = torch.FloatTensor(o1_mask).cuda()
o2_mask = torch.FloatTensor(o2_mask).cuda()
# Policy Gradient Loss
policy_obj_loss = torch.FloatTensor([0]).cuda()
cnt = 0
for i in range(self.batch_size):
if dec_steps[i] >= 1:
cnt += 1
batch_pred = obj_pred_tt[0, i, graph_mask_tt[i]]
action_log_probs_obj = F.log_softmax(batch_pred, dim=0)
dec_obj_idx = dec_obj_tt[0,i].item()
graph_mask_list = graph_mask_tt[i].nonzero().squeeze().cpu().numpy().flatten().tolist()
idx = graph_mask_list.index(dec_obj_idx)
log_prob_obj = action_log_probs_obj[idx]
policy_obj_loss += -log_prob_obj * adv[i].detach()
if cnt > 0:
policy_obj_loss /= cnt
tb.logkv_mean('PolicyObjLoss', policy_obj_loss.item())
log_probs_obj = F.log_softmax(obj_pred_tt, dim=2)
log_probs_tmpl = F.log_softmax(tmpl_pred_tt, dim=1)
action_log_probs_tmpl = log_probs_tmpl.gather(1, dec_tmpl_tt).squeeze()
policy_tmpl_loss = (-action_log_probs_tmpl * adv.detach().squeeze()).mean()
tb.logkv_mean('PolicyTemplateLoss', policy_tmpl_loss.item())
policy_loss = policy_tmpl_loss + policy_obj_loss
value_loss = self.params['value_coeff'] * self.loss_fn3(value, ret)
tmpl_entropy = -(tmpl_probs * log_probs_tmpl).mean()
tb.logkv_mean('TemplateEntropy', tmpl_entropy.item())
object_entropy = -(obj_probs * log_probs_obj).mean()
tb.logkv_mean('ObjectEntropy', object_entropy.item())
# Minimizing entropy loss will lead to increased entropy
entropy_loss = self.params['entropy_coeff'] * -(tmpl_entropy + object_entropy)
loss += template_loss + object_mask_loss + value_loss + entropy_loss + policy_loss
tb.logkv('Loss', loss.item())
tb.logkv('TemplateLoss', template_loss.item())
tb.logkv('ObjectLoss', object_mask_loss.item())
tb.logkv('PolicyLoss', policy_loss.item())
tb.logkv('ValueLoss', value_loss.item())
tb.logkv('EntropyLoss', entropy_loss.item())
tb.dumpkvs()
loss.backward()
# Compute the gradient norm
grad_norm = 0
for p in list(filter(lambda p: p.grad is not None, self.model.parameters())):
grad_norm += p.grad.data.norm(2).item()
tb.logkv('UnclippedGradNorm', grad_norm)
nn.utils.clip_grad_norm_(self.model.parameters(), self.params['clip'])
# Clipped Grad norm
grad_norm = 0
for p in list(filter(lambda p: p.grad is not None, self.model.parameters())):
grad_norm += p.grad.data.norm(2).item()
tb.logkv('ClippedGradNorm', grad_norm)
self.optimizer.step()
self.optimizer.zero_grad()
return loss
def decode_actions(self, decoded_templates, decoded_objects):
'''
Returns string representations of the given template actions.
:param decoded_template: Tensor of template indices.
:type decoded_template: Torch tensor of size (Batch_size x 1).
:param decoded_objects: Tensor of o1, o2 object indices.
:type decoded_objects: Torch tensor of size (2 x Batch_size x 1).
'''
decoded_actions = []
for i in range(self.batch_size):
decoded_template = decoded_templates[i].item()
decoded_object1 = decoded_objects[0][i].item()
decoded_object2 = decoded_objects[1][i].item()
decoded_action = self.tmpl_to_str(decoded_template, decoded_object1, decoded_object2)
decoded_actions.append(decoded_action)
return decoded_actions
def tmpl_to_str(self, template_idx, o1_id, o2_id):
""" Returns a string representation of a template action. """
template_str = self.template_generator.templates[template_idx]
holes = template_str.count('OBJ')
assert holes <= 2
if holes <= 0:
return template_str
elif holes == 1:
return template_str.replace('OBJ', self.vocab_act[o1_id])
else:
return template_str.replace('OBJ', self.vocab_act[o1_id], 1)\
.replace('OBJ', self.vocab_act[o2_id], 1)