forked from google-research/fixmatch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
remixmatch_no_cta.py
227 lines (195 loc) · 9.64 KB
/
remixmatch_no_cta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import os
import numpy as np
import tensorflow as tf
from absl import app
from absl import flags
from libml import data, layers, utils
from libml.utils import EasyDict
from mixmatch import MixMatch
FLAGS = flags.FLAGS
class ReMixMatch(MixMatch):
def classifier_rot(self, x):
with tf.variable_scope('classify_rot', reuse=tf.AUTO_REUSE):
return tf.layers.dense(x, 4, kernel_initializer=tf.glorot_normal_initializer())
def guess_label(self, logits_y, p_data, p_model, T, use_dm, redux, **kwargs):
del kwargs
if redux == 'swap':
p_model_y = tf.concat([tf.nn.softmax(x) for x in logits_y[1:] + logits_y[:1]], axis=0)
elif redux == 'mean':
p_model_y = sum(tf.nn.softmax(x) for x in logits_y) / len(logits_y)
p_model_y = tf.tile(p_model_y, [len(logits_y), 1])
elif redux == '1st':
p_model_y = tf.nn.softmax(logits_y[0])
p_model_y = tf.tile(p_model_y, [len(logits_y), 1])
else:
raise NotImplementedError()
# Compute the target distribution.
# 1. Rectify the distribution or not.
if use_dm:
p_ratio = (1e-6 + p_data) / (1e-6 + p_model)
p_weighted = p_model_y * p_ratio
p_weighted /= tf.reduce_sum(p_weighted, axis=1, keep_dims=True)
else:
p_weighted = p_model_y
# 2. Apply sharpening.
p_target = tf.pow(p_weighted, 1. / T)
p_target /= tf.reduce_sum(p_target, axis=1, keep_dims=True)
return EasyDict(p_target=p_target, p_model=p_model_y)
def model(self, batch, lr, wd, beta, w_kl, w_match, w_rot, K, use_xe, warmup_kimg=1024, T=0.5,
mixmode='xxy.yxy', dbuf=128, ema=0.999, **kwargs):
hwc = [self.dataset.height, self.dataset.width, self.dataset.colors]
xt_in = tf.placeholder(tf.float32, [batch] + hwc, 'xt') # For training
x_in = tf.placeholder(tf.float32, [None] + hwc, 'x')
y_in = tf.placeholder(tf.float32, [batch, K + 1] + hwc, 'y')
l_in = tf.placeholder(tf.int32, [batch], 'labels')
w_match *= tf.clip_by_value(tf.cast(self.step, tf.float32) / (warmup_kimg << 10), 0, 1)
lrate = tf.clip_by_value(tf.to_float(self.step) / (FLAGS.train_kimg << 10), 0, 1)
lr *= tf.cos(lrate * (7 * np.pi) / (2 * 8))
tf.summary.scalar('monitors/lr', lr)
augment = layers.MixMode(mixmode)
gpu = utils.get_gpu()
def classifier_to_gpu(x, **kw):
with tf.device(next(gpu)):
return self.classifier(x, **kw, **kwargs).logits
def random_rotate(x):
b4 = batch // 4
x, xt = x[:2 * b4], tf.transpose(x[2 * b4:], [0, 2, 1, 3])
l = np.zeros(b4, np.int32)
l = tf.constant(np.concatenate([l, l + 1, l + 2, l + 3], axis=0))
return tf.concat([x[:b4], x[b4:, ::-1, ::-1], xt[:b4, ::-1], xt[b4:, :, ::-1]], axis=0), l
# Moving average of the current estimated label distribution
p_model = layers.PMovingAverage('p_model', self.nclass, dbuf)
p_target = layers.PMovingAverage('p_target', self.nclass, dbuf) # Rectified distribution (only for plotting)
# Known (or inferred) true unlabeled distribution
p_data = layers.PData(self.dataset)
if w_rot > 0:
rot_y, rot_l = random_rotate(y_in[:, 1])
with tf.device(next(gpu)):
rot_logits = self.classifier_rot(self.classifier(rot_y, training=True, **kwargs).embeds)
loss_rot = tf.nn.softmax_cross_entropy_with_logits_v2(labels=tf.one_hot(rot_l, 4), logits=rot_logits)
loss_rot = tf.reduce_mean(loss_rot)
tf.summary.scalar('losses/rot', loss_rot)
else:
loss_rot = 0
if kwargs['redux'] == '1st' and w_kl <= 0:
logits_y = [classifier_to_gpu(y_in[:, 0], training=True)] * (K + 1)
elif kwargs['redux'] == '1st':
logits_y = [classifier_to_gpu(y_in[:, i], training=True) for i in range(2)]
logits_y += logits_y[:1] * (K - 1)
else:
logits_y = [classifier_to_gpu(y_in[:, i], training=True) for i in range(K + 1)]
guess = self.guess_label(logits_y, p_data(), p_model(), T=T, **kwargs)
ly = tf.stop_gradient(guess.p_target)
if w_kl > 0:
w_kl *= tf.clip_by_value(tf.cast(self.step, tf.float32) / (warmup_kimg << 10), 0, 1)
loss_kl = tf.nn.softmax_cross_entropy_with_logits_v2(labels=ly[:batch], logits=logits_y[1])
loss_kl = tf.reduce_mean(loss_kl)
tf.summary.scalar('losses/kl', loss_kl)
else:
loss_kl = 0
del logits_y
lx = tf.one_hot(l_in, self.nclass)
xy, labels_xy = augment([xt_in] + [y_in[:, i] for i in range(K + 1)], [lx] + tf.split(ly, K + 1),
[beta, beta])
x, y = xy[0], xy[1:]
labels_x, labels_y = labels_xy[0], tf.concat(labels_xy[1:], 0)
del xy, labels_xy
batches = layers.interleave([x] + y, batch)
logits = [classifier_to_gpu(yi, training=True) for yi in batches[:-1]]
skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
logits.append(classifier_to_gpu(batches[-1], training=True))
post_ops = [v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops]
logits = layers.interleave(logits, batch)
logits_x = logits[0]
logits_y = tf.concat(logits[1:], 0)
del batches, logits
loss_xe = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_x, logits=logits_x)
loss_xe = tf.reduce_mean(loss_xe)
if use_xe:
loss_xeu = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_y, logits=logits_y)
else:
loss_xeu = tf.square(labels_y - tf.nn.softmax(logits_y))
loss_xeu = tf.reduce_mean(loss_xeu)
tf.summary.scalar('losses/xe', loss_xe)
tf.summary.scalar('losses/%s' % ('xeu' if use_xe else 'l2u'), loss_xeu)
self.distribution_summary(p_data(), p_model(), p_target())
# L2 regularization
loss_wd = sum(tf.nn.l2_loss(v) for v in utils.model_vars('classify') if 'kernel' in v.name)
tf.summary.scalar('losses/wd', loss_wd)
ema = tf.train.ExponentialMovingAverage(decay=ema)
ema_op = ema.apply(utils.model_vars())
ema_getter = functools.partial(utils.getter_ema, ema)
post_ops.extend([ema_op,
p_model.update(guess.p_model),
p_target.update(guess.p_target)])
if p_data.has_update:
post_ops.append(p_data.update(lx))
train_op = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True).minimize(
loss_xe + w_kl * loss_kl + w_match * loss_xeu + w_rot * loss_rot + wd * loss_wd,
colocate_gradients_with_ops=True)
with tf.control_dependencies([train_op]):
train_op = tf.group(*post_ops)
return EasyDict(
xt=xt_in, x=x_in, y=y_in, label=l_in, train_op=train_op,
classify_op=tf.nn.softmax(classifier_to_gpu(x_in, getter=ema_getter, training=False)),
classify_raw=tf.nn.softmax(classifier_to_gpu(x_in, training=False))) # No EMA, for debugging.
def main(argv):
utils.setup_main()
del argv # Unused.
dataset = data.MANY_DATASETS()[FLAGS.dataset]()
log_width = utils.ilog2(dataset.width)
model = ReMixMatch(
os.path.join(FLAGS.train_dir, dataset.name),
dataset,
lr=FLAGS.lr,
wd=FLAGS.wd,
arch=FLAGS.arch,
batch=FLAGS.batch,
nclass=dataset.nclass,
K=FLAGS.K,
beta=FLAGS.beta,
w_kl=FLAGS.w_kl,
w_match=FLAGS.w_match,
w_rot=FLAGS.w_rot,
redux=FLAGS.redux,
use_dm=FLAGS.use_dm,
use_xe=FLAGS.use_xe,
warmup_kimg=FLAGS.warmup_kimg,
scales=FLAGS.scales or (log_width - 2),
filters=FLAGS.filters,
repeat=FLAGS.repeat)
model.train(FLAGS.train_kimg << 10, FLAGS.report_kimg << 10)
if __name__ == '__main__':
utils.setup_tf()
flags.DEFINE_float('wd', 0.0005, 'Weight decay.')
flags.DEFINE_float('beta', 0.75, 'Mixup beta distribution.')
flags.DEFINE_float('w_kl', 0.5, 'Weight for KL loss.')
flags.DEFINE_float('w_match', 1.5, 'Weight for distribution matching loss.')
flags.DEFINE_float('w_rot', 0.5, 'Weight for rotation loss.')
flags.DEFINE_integer('scales', 0, 'Number of 2x2 downscalings in the classifier.')
flags.DEFINE_integer('filters', 32, 'Filter size of convolutions.')
flags.DEFINE_integer('repeat', 4, 'Number of residual layers per stage.')
flags.DEFINE_integer('warmup_kimg', 1024, 'Unannealing duration for SSL loss.')
flags.DEFINE_enum('redux', 'swap', 'swap mean 1st'.split(), 'Logit selection.')
flags.DEFINE_bool('use_dm', True, 'Whether to use distribution matching.')
flags.DEFINE_bool('use_xe', True, 'Whether to use cross-entropy or Brier.')
FLAGS.set_default('augment', 'd.d.d')
FLAGS.set_default('dataset', 'cifar10.3@250-5000')
FLAGS.set_default('batch', 64)
FLAGS.set_default('lr', 0.03)
FLAGS.set_default('train_kimg', 1 << 16)
app.run(main)