-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.yaml
55 lines (46 loc) · 2.51 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
metrics:
- name: cpu_usage #metric name in prometheus
data_store :
name : influxdb
url: 192.168.1.9
port: 8086
user : admin
pass : admin
db_name : telegraf
measurement : cpu
start_time: '2022-09-14 11:19:00'
end_time: '2022-09-14 11:20:00'
query: SELECT mean("usage_idle") *-1 +100 FROM "autogen"."cpu" WHERE ("host" = 'ip-172-31-31-81') AND time >= '2022-09-14 11:19:00' AND time <= '2022-09-14 11:20:00' GROUP BY time(10s)
training_interval: 1h #amount of data should be used for training
forecast_duration: 5m #How data points should be predicted, here it will predict for 5 mins
forecast_every: 60 #At what interval the app do the predictions
forecast_basedon: 60 #Forecast based on past how many data points
write_back_metric: forecast_cpu_use #Where should it write back the metrics
models :
model_name: prophet
hyperparameters:
changepoint_prior_scale : 0.05 #determines the flexibility of the trend changes
seasonality_prior_scale : 10 #determines the flexibility of the seasonality changes
holidays_prior_scale : 10 #determines the flexibiity to fit the holidays
changepoint_range : 0.8 #proportion of the history where the trend changes are applied
seasonality_mode : additive #whether the mode of seasonality is additive or multiplicative
- name: memory_usage #metric name in prometheus
data_store :
name : prometheus
url: http://192.168.1.9:9090
start_time: '2022-09-14 11:19:00'
end_time: '2022-09-14 11:20:00'
query: 100 - ((node_memory_MemAvailable_bytes{instance="node-exporter:9100"} * 100) / node_memory_MemTotal_bytes{instance="node-exporter:9100"})
training_interval: 1h #amount of data should be used for training
forecast_duration: 5m #How data points should be predicted, here it will predict for 5 mins
forecast_every: 60 #At what interval the app do the predictions
forecast_basedon: 60 #Forecast based on past how many data points
write_back_metric: forecast_mem_usage #Where should it write back the metrics
models :
model_name: prophet
hyperparameters:
changepoint_prior_scale : 0.05 #determines the flexibility of the trend changes
seasonality_prior_scale : 10 #determines the flexibility of the seasonality changes
holidays_prior_scale : 10 #determines the flexibiity to fit the holidays
changepoint_range : 0.8 #proportion of the history where the trend changes are applied
seasonality_mode : additive #whether the mode of seasonality is additive or multiplicative