-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
124 lines (96 loc) · 4.55 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
r""" Hypercorrelation Squeeze testing code """
import argparse
import torch.nn.functional as F
import torch.nn as nn
import torch
from model.mymodel import fewshotnet
from common.logger import Logger, AverageMeter
from common.vis import Visualizer
from common.evaluation import Evaluator
from common import utils
from data.dataset import FSSDataset
import torch
from torch.utils.data import Dataset,DataLoader
import torch.nn as nn
import numpy as np
def compute_miou(Es_mask, qmask):
Es_mask, qmask = Es_mask.detach().cpu().numpy(), qmask.detach().cpu().numpy()
ious = 0.0
Es_mask = np.where(Es_mask> 0.5, 1. , 0.)
for idx in range(Es_mask.shape[0]):
notTrue = 1 - qmask[idx]
union = np.sum(qmask[idx] + (notTrue * Es_mask[idx]))
intersection = np.sum(qmask[idx] * Es_mask[idx])
ious += (intersection / union)
miou = (ious / Es_mask.shape[0])
return miou
def test(model, dataloader, nshot):
r""" Test HSNet """
miou = 0.0
# Freeze randomness during testing for reproducibility
utils.fix_randseed(0)
average_meter = AverageMeter(dataloader.dataset)
for idx, batch in enumerate(dataloader):
batch = utils.to_cuda(batch)
pred_mask = model.module.predict_mask_nshot(batch, nshot=nshot)
miou += compute_miou(pred_mask, batch['query_mask'])
# name = batch['query_name'][0][:-4]+'_pred.png'
# mask = pred_mask.detach().cpu().numpy()[0]
# from PIL import Image
# from matplotlib import cm
# from matplotlib import pyplot as plt
# plt.imsave(name, mask, cmap=cm.gray)
# assert pred_mask.size() == batch['query_mask'].size()
# # 2. Evaluate prediction
# area_inter, area_union = Evaluator.classify_prediction(pred_mask.clone(), batch)
# average_meter.update(area_inter, area_union, batch['class_id'], loss=None)
# average_meter.write_process(idx, len(dataloader), epoch=-1, write_batch_idx=1)
# # Visualize predictions
# if Visualizer.visualize:
# Visualizer.visualize_prediction_batch(batch['support_imgs'], batch['support_masks'],
# batch['query_img'], batch['query_mask'],
# pred_mask, batch['class_id'], idx,
# area_inter[1].float() / area_union[1].float())
# # Write evaluation results
# average_meter.write_result('Test', 0)
# miou, fb_iou = average_meter.compute_iou()
return miou/(idx)*100.
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='Annotation free few-shot segmentation Pytorch Implementation')
parser.add_argument('--datapath', type=str, default='D:/dataset/fewshot_data/')
parser.add_argument('--benchmark', type=str, default='fss')
parser.add_argument('--logpath', type=str, default='')
parser.add_argument('--bsz', type=int, default=24)
parser.add_argument('--nworker', type=int, default=0)
parser.add_argument('--load', type=str, default='./logs/fss_weightsnew.pt')
parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3])
parser.add_argument('--nshot', type=int, default=1)
parser.add_argument('--backbone', type=str, default='resnet50')
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--use_original_imgsize', action='store_true')
args = parser.parse_args()
Logger.initialize(args, training=False)
# Model initialization
model = fewshotnet()
model.eval()
Logger.log_params(model)
# Device setup
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Logger.info('# available GPUs: %d' % torch.cuda.device_count())
model = nn.DataParallel(model)
model.to(device)
# Load trained model
if args.load == '': raise Exception('Pretrained model not specified.')
model.load_state_dict(torch.load(args.load))
print('model created and weight file is loaded')
# Helper classes (for testing) initialization
Evaluator.initialize()
Visualizer.initialize(args.visualize)
# Dataset initialization
FSSDataset.initialize(img_size=400, datapath=args.datapath, use_original_imgsize=args.use_original_imgsize)
dataloader_test = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot)
# Test HSNet
with torch.no_grad():
test_mio = test(model, dataloader_test, args.nshot)
print(f'Test MIO is:{test_mio}')