forked from CASIA-IVA-Lab/FastSAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegpredict.py
52 lines (45 loc) · 1.4 KB
/
segpredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from fastsam import FastSAM, FastSAMPrompt
import torch
model = FastSAM('FastSAM.pt')
IMAGE_PATH = './images/dogs.jpg'
DEVICE = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
everything_results = model(
IMAGE_PATH,
device=DEVICE,
retina_masks=True,
imgsz=1024,
conf=0.4,
iou=0.9,
)
prompt_process = FastSAMPrompt(IMAGE_PATH, everything_results, device=DEVICE)
# # everything prompt
ann = prompt_process.everything_prompt()
# # bbox prompt
# # bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
# bboxes default shape [[0,0,0,0]] -> [[x1,y1,x2,y2]]
# ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
# ann = prompt_process.box_prompt(bboxes=[[200, 200, 300, 300], [500, 500, 600, 600]])
# # text prompt
# ann = prompt_process.text_prompt(text='a photo of a dog')
# # point prompt
# # points default [[0,0]] [[x1,y1],[x2,y2]]
# # point_label default [0] [1,0] 0:background, 1:foreground
# ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1])
# point prompt
# points default [[0,0]] [[x1,y1],[x2,y2]]
# point_label default [0] [1,0] 0:background, 1:foreground
ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1])
prompt_process.plot(
annotations=ann,
output='./output/',
mask_random_color=True,
better_quality=True,
retina=False,
withContours=True,
)