forked from CV-IP/SegDoctor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric.py
97 lines (75 loc) · 3.16 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import numpy as np
# https://blog.csdn.net/qq_21466543/article/details/82936246
class Evaluator(object):
def __init__(self, num_class):
self.num_class = num_class
self.confusion_matrix = np.zeros((self.num_class,)*2) # shape:(num_class, num_class)
def Pixel_Accuracy(self):
Acc = np.diag(self.confusion_matrix).sum() / self.confusion_matrix.sum()
return Acc
def Pixel_Accuracy_Class(self): #MPA
Acc = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1)
Acc = np.nanmean(Acc)
return Acc
def Mean_Intersection_over_Union(self):
MIoU = np.diag(self.confusion_matrix) / (
np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -
np.diag(self.confusion_matrix))
return MIoU
def Frequency_Weighted_Intersection_over_Union(self):
freq = np.sum(self.confusion_matrix, axis=1) / np.sum(self.confusion_matrix)
iu = np.diag(self.confusion_matrix) / (
np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -
np.diag(self.confusion_matrix))
FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
return FWIoU
# 生成混淆矩阵
def _generate_matrix(self, gt_image, pre_image):
mask = (gt_image >= 0) & (gt_image < self.num_class)
label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]
count = np.bincount(label, minlength=self.num_class**2)
confusion_matrix = count.reshape(self.num_class, self.num_class)
return confusion_matrix
# 输入预测和标签,生成混淆矩阵
def add_batch(self, gt_image, pre_image):
pre_image = pre_image.squeeze().long().cpu().numpy()
gt_image = gt_image.squeeze().long().cpu().numpy()
assert gt_image.shape == pre_image.shape
self.confusion_matrix += self._generate_matrix(gt_image, pre_image)
def export_tensor(self):
return torch.tensor(self.confusion_matrix)
def set_confusion_matrix(self, confusion_matrix):
self.confusion_matrix = confusion_matrix.cpu().numpy()
def reset(self):
self.confusion_matrix = np.zeros((self.num_class,) * 2)
if __name__ == '__main__':
import torch
eva = Evaluator(3) # 输入类别
# 一维度
# x = [2, 1, 0, 1, 2, 0]
# y = [2, 0, 0, 1, 2, 1]
# 输入的必须是整形的类别
x = [[2, 1, 0],[1, 2, 0]]
y = [[2, 1, 0], [1, 2, 1]]
x = np.array(x)
y = np.array(y)
print(x)
print(y)
print('====================')
# print(torch.min(y),torch.max(y))
confusion_matrix = eva._generate_matrix(x,y)
print(confusion_matrix) # 类别一定是class_num * class_num
eva.add_batch(x, y) # 评价标准使用
PA = eva.Pixel_Accuracy()
print("PA:",PA)
Acc = eva.Pixel_Accuracy_Class()
# print(Acc.shape)
print("Acc:",Acc)
MIoU = eva.Mean_Intersection_over_Union()
# print(MIoU.shape)
print("MIoU:",MIoU)
print('====================')
FWIoU = eva.Frequency_Weighted_Intersection_over_Union()
# print(FWIoU.shape)
print("FWIoU:",FWIoU)