-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel_my_variant2.py
145 lines (127 loc) · 5.5 KB
/
model_my_variant2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import print_function
import argparse
import numpy as np
import torch
import torch.utils.data
from torch import nn, optim
import torch.nn.functional as F
class CDAE(nn.Module):
def __init__(self, NUM_USER, NUM_MOVIE, NUM_BOOK, EMBED_SIZE, dropout, is_sparse=False):
super(CDAE, self).__init__()
self.NUM_MOVIE = NUM_MOVIE
self.NUM_BOOK = NUM_BOOK
self.NUM_USER = NUM_USER
self.emb_size = EMBED_SIZE
self.user_embeddings = nn.Embedding(self.NUM_USER, EMBED_SIZE, sparse=is_sparse)
self.user_embeddings.weight.data = torch.from_numpy(np.random.normal(0, 0.01, size=[self.NUM_USER, EMBED_SIZE])).float()
self.encoder_x = nn.Sequential(
nn.Linear(self.NUM_MOVIE, EMBED_SIZE),
nn.ReLU(),
nn.Linear(EMBED_SIZE, EMBED_SIZE)
)
self.decoder_x = nn.Sequential(
nn.Linear(EMBED_SIZE, EMBED_SIZE),
nn.ReLU(),
nn.Linear(EMBED_SIZE, self.NUM_MOVIE)
)
self.encoder_y = nn.Sequential(
nn.Linear(self.NUM_BOOK, EMBED_SIZE),
nn.ReLU(),
nn.Linear(EMBED_SIZE, EMBED_SIZE)
)
self.decoder_y = nn.Sequential(
nn.Linear(EMBED_SIZE, EMBED_SIZE),
nn.ReLU(),
nn.Linear(EMBED_SIZE, self.NUM_BOOK)
)
self.orthogonal_w1 = nn.Parameter(nn.init.xavier_uniform(torch.Tensor(EMBED_SIZE, EMBED_SIZE).type(
torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)),
requires_grad=True)
self.orthogonal_w2 = nn.Parameter(nn.init.xavier_uniform(torch.Tensor(EMBED_SIZE, EMBED_SIZE).type(
torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)),
requires_grad=True)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU
def orthogonal_map(self, z_x, z_y):
mapped_z_x = torch.matmul(z_x, self.orthogonal_w1)
mapped_z_y = torch.matmul(z_y, self.orthogonal_w2)
return mapped_z_x, mapped_z_y
def forward(self, batch_user, batch_user_x, batch_user_y):
h_user_x = self.encoder_x(self.dropout(batch_user_x))
h_user_y = self.encoder_y(self.dropout(batch_user_y))
h_user = self.user_embeddings(batch_user)
feature_x = torch.add(h_user_x, h_user)
feature_y = torch.add(h_user_y, h_user)
z_x = F.relu(feature_x)
z_y = F.relu(feature_y)
preds_x = self.decoder_x(z_x)
preds_y = self.decoder_y(z_y)
mapped_z_x, mapped_z_y = self.orthogonal_map(z_x, z_y)
preds_x2y = self.decoder_y(mapped_z_x)
preds_y2x = self.decoder_x(mapped_z_y)
# # define orthogonal constraint loss
z_x_ = torch.matmul(mapped_z_x, self.orthogonal_w2)
z_y_ = torch.matmul(mapped_z_y, self.orthogonal_w1)
z_x_reg_loss = torch.norm(z_x - z_x_, p=1, dim=1)
z_y_reg_loss = torch.norm(z_y - z_y_, p=1, dim=1)
return preds_x, preds_y, preds_x2y, preds_y2x, feature_x, feature_y, z_x_reg_loss, z_y_reg_loss
def get_user_embedding(self, batch_user_x, batch_user_y):
h_user_x = self.encoder_x(self.dropout(batch_user_x))
h_user_y = self.encoder_y(self.dropout(batch_user_y))
return h_user_x, h_user_y
# class MI_Map(nn.Module):
# def __init__(self, n_input):
# super(MI_Map, self).__init__()
#
# self.fc_x = nn.Linear(n_input, n_input, bias=False)
# # self.fc_y = nn.Linear(n_input, n_input, bias=False)
#
# def forward(self, z_x, z_y):
# # make mlp for discriminator
# logits = torch.sum(self.fc_x(z_x)*z_y, dim=1)
# return logits
class Discriminator(nn.Module):
def __init__(self, n_fts, dropout):
super(Discriminator, self).__init__()
self.dropout = dropout
self.training = True
self.disc = nn.Sequential(
nn.Linear(n_fts, int(n_fts/2)),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(int(n_fts/2), 1))
def forward(self, x):
# make mlp for discriminator
h = self.disc(x)
return h
def save_embedding_process(model, save_loader, feed_data, is_cuda):
fts1 = feed_data['fts1']
fts2 = feed_data['fts2']
user_embedding1_list = []
user_embedding2_list = []
model.eval()
for batch_idx, data in enumerate(save_loader):
data = data.reshape([-1])
val_user_arr = data.numpy()
v_item1 = fts1[val_user_arr]
v_item2 = fts2[val_user_arr]
if is_cuda:
v_user = torch.LongTensor(val_user_arr).cuda()
v_item1 = torch.FloatTensor(v_item1).cuda()
v_item2 = torch.FloatTensor(v_item2).cuda()
else:
v_user = torch.LongTensor(val_user_arr)
v_item1 = torch.FloatTensor(v_item1)
v_item2 = torch.FloatTensor(v_item2)
res = model.get_user_embedding(v_item1, v_item2)
user_embedding1 = res[0]
user_embedding2 = res[1]
if is_cuda:
user_embedding1 = user_embedding1.detach().cpu().numpy()
user_embedding2 = user_embedding2.detach().cpu().numpy()
else:
user_embedding1 = user_embedding1.detach().numpy()
user_embedding2 = user_embedding2.detach().numpy()
user_embedding1_list.append(user_embedding1)
user_embedding2_list.append(user_embedding2)
return np.concatenate(user_embedding1_list, axis=0), np.concatenate(user_embedding2_list, axis=0)