-
Notifications
You must be signed in to change notification settings - Fork 395
/
efficientnet.py
575 lines (505 loc) · 24.2 KB
/
efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# Copyright 2019 The TensorFlow Authors, Pavel Yakubovskiy, Björn Barz. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for EfficientNet model.
[1] Mingxing Tan, Quoc V. Le
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
ICML'19, https://arxiv.org/abs/1905.11946
"""
# Code of this model implementation is mostly written by
# Björn Barz ([@Callidior](https://github.com/Callidior))
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import json
import math
import string
import collections
import numpy as np
from six.moves import xrange
from keras_applications.imagenet_utils import _obtain_input_shape
from keras_applications.imagenet_utils import decode_predictions
from keras_applications.imagenet_utils import preprocess_input as _preprocess_input
from utils import get_submodules_from_kwargs
from layers import BatchNormalization
backend = None
layers = None
models = None
keras_utils = None
BASE_WEIGHTS_PATH = (
'https://github.com/Callidior/keras-applications/'
'releases/download/efficientnet/')
WEIGHTS_HASHES = {
'efficientnet-b0': ('163292582f1c6eaca8e7dc7b51b01c61'
'5b0dbc0039699b4dcd0b975cc21533dc',
'c1421ad80a9fc67c2cc4000f666aa507'
'89ce39eedb4e06d531b0c593890ccff3'),
'efficientnet-b1': ('d0a71ddf51ef7a0ca425bab32b7fa7f1'
'6043ee598ecee73fc674d9560c8f09b0',
'75de265d03ac52fa74f2f510455ba64f'
'9c7c5fd96dc923cd4bfefa3d680c4b68'),
'efficientnet-b2': ('bb5451507a6418a574534aa76a91b106'
'f6b605f3b5dde0b21055694319853086',
'433b60584fafba1ea3de07443b74cfd3'
'2ce004a012020b07ef69e22ba8669333'),
'efficientnet-b3': ('03f1fba367f070bd2545f081cfa7f3e7'
'6f5e1aa3b6f4db700f00552901e75ab9',
'c5d42eb6cfae8567b418ad3845cfd63a'
'a48b87f1bd5df8658a49375a9f3135c7'),
'efficientnet-b4': ('98852de93f74d9833c8640474b2c698d'
'b45ec60690c75b3bacb1845e907bf94f',
'7942c1407ff1feb34113995864970cd4'
'd9d91ea64877e8d9c38b6c1e0767c411'),
'efficientnet-b5': ('30172f1d45f9b8a41352d4219bf930ee'
'3339025fd26ab314a817ba8918fefc7d',
'9d197bc2bfe29165c10a2af8c2ebc675'
'07f5d70456f09e584c71b822941b1952'),
'efficientnet-b6': ('f5270466747753485a082092ac9939ca'
'a546eb3f09edca6d6fff842cad938720',
'1d0923bb038f2f8060faaf0a0449db4b'
'96549a881747b7c7678724ac79f427ed'),
'efficientnet-b7': ('876a41319980638fa597acbbf956a82d'
'10819531ff2dcb1a52277f10c7aefa1a',
'60b56ff3a8daccc8d96edfd40b204c11'
'3e51748da657afd58034d54d3cec2bac')
}
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'strides', 'se_ratio'
])
# defaults will be a public argument for namedtuple in Python 3.7
# https://docs.python.org/3/library/collections.html#collections.namedtuple
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
DEFAULT_BLOCKS_ARGS = [
BlockArgs(kernel_size=3, num_repeat=1, input_filters=32, output_filters=16,
expand_ratio=1, id_skip=True, strides=[1, 1], se_ratio=0.25),
BlockArgs(kernel_size=3, num_repeat=2, input_filters=16, output_filters=24,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=5, num_repeat=2, input_filters=24, output_filters=40,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=3, num_repeat=3, input_filters=40, output_filters=80,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=5, num_repeat=3, input_filters=80, output_filters=112,
expand_ratio=6, id_skip=True, strides=[1, 1], se_ratio=0.25),
BlockArgs(kernel_size=5, num_repeat=4, input_filters=112, output_filters=192,
expand_ratio=6, id_skip=True, strides=[2, 2], se_ratio=0.25),
BlockArgs(kernel_size=3, num_repeat=1, input_filters=192, output_filters=320,
expand_ratio=6, id_skip=True, strides=[1, 1], se_ratio=0.25)
]
CONV_KERNEL_INITIALIZER = {
'class_name': 'VarianceScaling',
'config': {
'scale': 2.0,
'mode': 'fan_out',
# EfficientNet actually uses an untruncated normal distribution for
# initializing conv layers, but keras.initializers.VarianceScaling use
# a truncated distribution.
# We decided against a custom initializer for better serializability.
'distribution': 'normal'
}
}
DENSE_KERNEL_INITIALIZER = {
'class_name': 'VarianceScaling',
'config': {
'scale': 1. / 3.,
'mode': 'fan_out',
'distribution': 'uniform'
}
}
def preprocess_input(x, **kwargs):
kwargs = {k: v for k, v in kwargs.items() if k in ['backend', 'layers', 'models', 'utils']}
return _preprocess_input(x, mode='torch', **kwargs)
def get_swish(**kwargs):
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
def swish(x):
"""Swish activation function: x * sigmoid(x).
Reference: [Searching for Activation Functions](https://arxiv.org/abs/1710.05941)
"""
if backend.backend() == 'tensorflow':
try:
# The native TF implementation has a more
# memory-efficient gradient implementation
return backend.tf.nn.swish(x)
except AttributeError:
pass
return x * backend.sigmoid(x)
return swish
def get_dropout(**kwargs):
"""Wrapper over custom dropout. Fix problem of ``None`` shape for tf.keras.
It is not possible to define FixedDropout class as global object,
because we do not have modules for inheritance at first time.
Issue:
https://github.com/tensorflow/tensorflow/issues/30946
"""
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
class FixedDropout(layers.Dropout):
def _get_noise_shape(self, inputs):
if self.noise_shape is None:
return self.noise_shape
symbolic_shape = backend.shape(inputs)
noise_shape = [symbolic_shape[axis] if shape is None else shape
for axis, shape in enumerate(self.noise_shape)]
return tuple(noise_shape)
return FixedDropout
def round_filters(filters, width_coefficient, depth_divisor):
"""Round number of filters based on width multiplier."""
filters *= width_coefficient
new_filters = int(filters + depth_divisor / 2) // depth_divisor * depth_divisor
new_filters = max(depth_divisor, new_filters)
# Make sure that round down does not go down by more than 10%.
if new_filters < 0.9 * filters:
new_filters += depth_divisor
return int(new_filters)
def round_repeats(repeats, depth_coefficient):
"""Round number of repeats based on depth multiplier."""
return int(math.ceil(depth_coefficient * repeats))
def mb_conv_block(inputs, block_args, activation, drop_rate=None, prefix='', freeze_bn=False):
"""Mobile Inverted Residual Bottleneck."""
has_se = (block_args.se_ratio is not None) and (0 < block_args.se_ratio <= 1)
bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
# workaround over non working dropout with None in noise_shape in tf.keras
Dropout = get_dropout(
backend=backend,
layers=layers,
models=models,
utils=keras_utils
)
# Expansion phase
filters = block_args.input_filters * block_args.expand_ratio
if block_args.expand_ratio != 1:
x = layers.Conv2D(filters, 1,
padding='same',
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'expand_conv')(inputs)
# x = BatchNormalization(freeze=freeze_bn, axis=bn_axis, name=prefix + 'expand_bn')(x)
x = layers.BatchNormalization(axis=bn_axis, name=prefix + 'expand_bn')(x)
x = layers.Activation(activation, name=prefix + 'expand_activation')(x)
else:
x = inputs
# Depthwise Convolution
x = layers.DepthwiseConv2D(block_args.kernel_size,
strides=block_args.strides,
padding='same',
use_bias=False,
depthwise_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'dwconv')(x)
# x = BatchNormalization(freeze=freeze_bn, axis=bn_axis, name=prefix + 'bn')(x)
x = layers.BatchNormalization(axis=bn_axis, name=prefix + 'bn')(x)
x = layers.Activation(activation, name=prefix + 'activation')(x)
# Squeeze and Excitation phase
if has_se:
num_reduced_filters = max(1, int(
block_args.input_filters * block_args.se_ratio
))
se_tensor = layers.GlobalAveragePooling2D(name=prefix + 'se_squeeze')(x)
target_shape = (1, 1, filters) if backend.image_data_format() == 'channels_last' else (filters, 1, 1)
se_tensor = layers.Reshape(target_shape, name=prefix + 'se_reshape')(se_tensor)
se_tensor = layers.Conv2D(num_reduced_filters, 1,
activation=activation,
padding='same',
use_bias=True,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'se_reduce')(se_tensor)
se_tensor = layers.Conv2D(filters, 1,
activation='sigmoid',
padding='same',
use_bias=True,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'se_expand')(se_tensor)
if backend.backend() == 'theano':
# For the Theano backend, we have to explicitly make
# the excitation weights broadcastable.
pattern = ([True, True, True, False] if backend.image_data_format() == 'channels_last'
else [True, False, True, True])
se_tensor = layers.Lambda(
lambda x: backend.pattern_broadcast(x, pattern),
name=prefix + 'se_broadcast')(se_tensor)
x = layers.multiply([x, se_tensor], name=prefix + 'se_excite')
# Output phase
x = layers.Conv2D(block_args.output_filters, 1,
padding='same',
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=prefix + 'project_conv')(x)
# x = BatchNormalization(freeze=freeze_bn, axis=bn_axis, name=prefix + 'project_bn')(x)
x = layers.BatchNormalization(axis=bn_axis, name=prefix + 'project_bn')(x)
if block_args.id_skip and all(
s == 1 for s in block_args.strides
) and block_args.input_filters == block_args.output_filters:
if drop_rate and (drop_rate > 0):
x = Dropout(drop_rate,
noise_shape=(None, 1, 1, 1),
name=prefix + 'drop')(x)
x = layers.add([x, inputs], name=prefix + 'add')
return x
def EfficientNet(width_coefficient,
depth_coefficient,
default_resolution,
dropout_rate=0.2,
drop_connect_rate=0.2,
depth_divisor=8,
blocks_args=DEFAULT_BLOCKS_ARGS,
model_name='efficientnet',
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
freeze_bn=False,
**kwargs):
"""Instantiates the EfficientNet architecture using given scaling coefficients.
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
# Arguments
width_coefficient: float, scaling coefficient for network width.
depth_coefficient: float, scaling coefficient for network depth.
default_resolution: int, default input image size.
dropout_rate: float, dropout rate before final classifier layer.
drop_connect_rate: float, dropout rate at skip connections.
depth_divisor: int.
blocks_args: A list of BlockArgs to construct block modules.
model_name: string, model name.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False.
It should have exactly 3 inputs channels.
pooling: optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
global backend, layers, models, keras_utils
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
features = []
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=default_resolution,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights)
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if backend.backend() == 'tensorflow':
from tensorflow.python.keras.backend import is_keras_tensor
else:
is_keras_tensor = backend.is_keras_tensor
if not is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
activation = get_swish(**kwargs)
# Build stem
x = img_input
x = layers.Conv2D(round_filters(32, width_coefficient, depth_divisor), 3,
strides=(2, 2),
padding='same',
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name='stem_conv')(x)
# x = BatchNormalization(freeze=freeze_bn, axis=bn_axis, name='stem_bn')(x)
x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x)
x = layers.Activation(activation, name='stem_activation')(x)
# Build blocks
num_blocks_total = sum(block_args.num_repeat for block_args in blocks_args)
block_num = 0
for idx, block_args in enumerate(blocks_args):
assert block_args.num_repeat > 0
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters,
width_coefficient, depth_divisor),
output_filters=round_filters(block_args.output_filters,
width_coefficient, depth_divisor),
num_repeat=round_repeats(block_args.num_repeat, depth_coefficient))
# The first block needs to take care of stride and filter size increase.
drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
x = mb_conv_block(x, block_args,
activation=activation,
drop_rate=drop_rate,
prefix='block{}a_'.format(idx + 1),
freeze_bn=freeze_bn
)
block_num += 1
if block_args.num_repeat > 1:
# pylint: disable=protected-access
block_args = block_args._replace(
input_filters=block_args.output_filters, strides=[1, 1])
# pylint: enable=protected-access
for bidx in xrange(block_args.num_repeat - 1):
drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
block_prefix = 'block{}{}_'.format(
idx + 1,
string.ascii_lowercase[bidx + 1]
)
x = mb_conv_block(x, block_args,
activation=activation,
drop_rate=drop_rate,
prefix=block_prefix,
freeze_bn=freeze_bn
)
block_num += 1
if idx < len(blocks_args) - 1 and blocks_args[idx + 1].strides[0] == 2:
features.append(x)
elif idx == len(blocks_args) - 1:
features.append(x)
return features
def EfficientNetB0(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.0, 1.0, 224, 0.2,
model_name='efficientnet-b0',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB1(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.0, 1.1, 240, 0.2,
model_name='efficientnet-b1',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB2(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.1, 1.2, 260, 0.3,
model_name='efficientnet-b2',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB3(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.2, 1.4, 300, 0.3,
model_name='efficientnet-b3',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB4(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.4, 1.8, 380, 0.4,
model_name='efficientnet-b4',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB5(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.6, 2.2, 456, 0.4,
model_name='efficientnet-b5',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB6(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(1.8, 2.6, 528, 0.5,
model_name='efficientnet-b6',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
def EfficientNetB7(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
return EfficientNet(2.0, 3.1, 600, 0.5,
model_name='efficientnet-b7',
include_top=include_top, weights=weights,
input_tensor=input_tensor, input_shape=input_shape,
pooling=pooling, classes=classes,
**kwargs)
setattr(EfficientNetB0, '__doc__', EfficientNet.__doc__)
setattr(EfficientNetB1, '__doc__', EfficientNet.__doc__)
setattr(EfficientNetB2, '__doc__', EfficientNet.__doc__)
setattr(EfficientNetB3, '__doc__', EfficientNet.__doc__)
setattr(EfficientNetB4, '__doc__', EfficientNet.__doc__)
setattr(EfficientNetB5, '__doc__', EfficientNet.__doc__)
setattr(EfficientNetB6, '__doc__', EfficientNet.__doc__)
setattr(EfficientNetB7, '__doc__', EfficientNet.__doc__)