-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain2.py
67 lines (57 loc) · 2.49 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from transformers import AutoTokenizer, AutoModel, TrainingArguments, AutoConfig
import torch
import torch.nn as nn
from peft import get_peft_model, LoraConfig, TaskType
from torchkeras import KerasModel
from model import StepRunner
from data_processon import split_data
from data_collator import get_data
from torch.optim.lr_scheduler import CosineAnnealingLR
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class CastOutputToFloat(nn.Sequential):
def forward(self, x): return super().forward(x).to(torch.float32)
config = AutoConfig.from_pretrained("/home/xxm/model/chatglm2-6b",
trust_remote_code=True)
model = AutoModel.from_pretrained("/home/xxm/model/chatglm2-6b",
trust_remote_code=True,
config=config)
model.supports_gradient_checkpointing = True # 节约cuda
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
# model.lm_head = CastOutputToFloat(model.lm_head)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=8,
lora_alpha=32, lora_dropout=0.05,
)
model = model.half()
model = get_peft_model(model, peft_config)
model.is_parallelizable = True
model.model_parallel = True
model.print_trainable_parameters()
KerasModel.StepRunner = StepRunner
KerasModel.save_ckpt = StepRunner.save_ckpt
KerasModel.load_ckpt = StepRunner.load_ckpt
lr_scheduler = CosineAnnealingLR(torch.optim.AdamW(model.parameters(), lr=5e-4), T_max=10)
keras_model = KerasModel(model, loss_fn=None,
optimizer=torch.optim.AdamW(model.parameters(), lr=5e-4), lr_scheduler=lr_scheduler)
keras_model.to(device)
filename = r'/home/xxm/fsdownload/chatglm2_lora/data/estate_qa.json'
ds_train, ds_val = split_data(filename)
dl_train, dl_val = get_data(ds_train, ds_val)
for train in dl_train:
train['input_ids'].to(device)
train['labels'].to(device)
for val in dl_val:
val['input_ids'].to(device)
val['labels'].to(device)
ckpt_path = '/home/xxm/fsdownload/chatglm2_lora/output/estate_qa2'
# val_loss 5轮之后不在下降,将停止训练,如果🚫这么早停止,修改patience
keras_model.fit(train_data=dl_train,
val_data=dl_val,
epochs=100, patience=100,
monitor='val_loss', mode='min',
ckpt_path=ckpt_path,
mixed_precision='fp16',
)