forked from shibing624/MedicalGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
276 lines (257 loc) · 9.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
import argparse
import json
import os
from threading import Thread
import torch
from peft import PeftModel
from tqdm import tqdm
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
GenerationConfig,
)
from supervised_finetuning import get_conv_template
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
@torch.inference_mode()
def stream_generate_answer(
model,
tokenizer,
prompt,
device,
do_print=True,
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.0,
context_len=2048,
stop_str="</s>",
):
"""Generate answer from prompt with GPT and stream the output"""
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
input_ids = tokenizer(prompt).input_ids
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
generation_kwargs = dict(
input_ids=torch.as_tensor([input_ids]).to(device),
max_new_tokens=max_new_tokens,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
stop = False
pos = new_text.find(stop_str)
if pos != -1:
new_text = new_text[:pos]
stop = True
generated_text += new_text
if do_print:
print(new_text, end="", flush=True)
if stop:
break
if do_print:
print()
return generated_text
@torch.inference_mode()
def batch_generate_answer(
sentences,
model,
tokenizer,
prompt_template,
device,
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.0,
stop_str="</s>",
):
"""Generate answer from prompt with GPT, batch mode"""
generated_texts = []
generation_kwargs = dict(
max_new_tokens=max_new_tokens,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
)
prompts = [prompt_template.get_prompt(messages=[[s, '']]) for s in sentences]
inputs_tokens = tokenizer(prompts, return_tensors="pt", padding=True)
input_ids = inputs_tokens['input_ids'].to(device)
outputs = model.generate(input_ids=input_ids, **generation_kwargs)
for gen_sequence in outputs:
prompt_len = len(input_ids[0])
gen_sequence = gen_sequence[prompt_len:]
gen_text = tokenizer.decode(gen_sequence, skip_special_tokens=True)
pos = gen_text.find(stop_str)
if pos != -1:
gen_text = gen_text[:pos]
gen_text = gen_text.strip()
generated_texts.append(gen_text)
return generated_texts
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default=None, type=str, required=True)
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--template_name', default="vicuna", type=str,
help="Prompt template name, eg: alpaca, vicuna, baichuan, chatglm2 etc.")
parser.add_argument("--repetition_penalty", type=float, default=1.0)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument('--data_file', default=None, type=str,
help="A file that contains instructions (one instruction per line)")
parser.add_argument('--interactive', action='store_true', help="run in the instruction mode (default multi-turn)")
parser.add_argument('--single_tune', action='store_true', help='Whether to use single-tune model')
parser.add_argument('--do_sample', action='store_true', help='Whether to use sampling in generation')
parser.add_argument('--output_file', default='./predictions_result.jsonl', type=str)
parser.add_argument("--eval_batch_size", type=int, default=4)
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
parser.add_argument('--load_in_8bit', action='store_true', help='Whether to load model in 8bit')
parser.add_argument('--load_in_4bit', action='store_true', help='Whether to load model in 4bit')
args = parser.parse_args()
print(args)
load_type = torch.float16
if torch.cuda.is_available() and not args.only_cpu:
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True, padding_side='left')
base_model = model_class.from_pretrained(
args.base_model,
load_in_8bit=args.load_in_8bit,
load_in_4bit=args.load_in_4bit,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
trust_remote_code=True,
)
try:
base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True)
except OSError:
print("Failed to load generation config, use default.")
if args.resize_emb:
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size != tokenzier_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model:
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
print("Loaded lora model")
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
print(tokenizer)
# test data
if args.data_file is None:
examples = ["介绍下北京", "乙肝和丙肝的区别?"]
else:
with open(args.data_file, 'r') as f:
examples = [l.strip() for l in f.readlines()]
print("first 10 examples:")
for example in examples[:10]:
print(example)
# Chat
prompt_template = get_conv_template(args.template_name)
stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str
if args.interactive:
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
history = []
while True:
try:
query = input(f"{prompt_template.roles[0]}: ")
except UnicodeDecodeError:
print("Detected decoding error at the inputs, please try again.")
continue
except Exception:
raise
if query == "":
print("Please input text, try again.")
continue
if query.strip() == "exit":
print("exit...")
break
if query.strip() == "clear":
history = []
print("history cleared.")
continue
print(f"{prompt_template.roles[1]}: ", end="", flush=True)
if args.single_tune:
history = []
history.append([query, ''])
prompt = prompt_template.get_prompt(messages=history)
response = stream_generate_answer(
model,
tokenizer,
prompt,
device,
do_print=True,
max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
repetition_penalty=args.repetition_penalty,
stop_str=stop_str,
)
if history:
history[-1][-1] = response.strip()
else:
print("Start inference.")
counts = 0
if os.path.exists(args.output_file):
os.remove(args.output_file)
eval_batch_size = args.eval_batch_size
for batch in tqdm(
[
examples[i: i + eval_batch_size]
for i in range(0, len(examples), eval_batch_size)
],
desc="Generating outputs",
):
responses = batch_generate_answer(
batch,
model,
tokenizer,
prompt_template,
device,
max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
repetition_penalty=args.repetition_penalty,
stop_str=stop_str,
)
results = []
for example, response in zip(batch, responses):
print(f"===")
print(f"Input: {example}")
print(f"Output: {response}\n")
results.append({"Input": example, "Output": response})
counts += 1
with open(args.output_file, 'a', encoding='utf-8') as f:
for entry in results:
json.dump(entry, f, ensure_ascii=False)
f.write('\n')
print(f'save to {args.output_file}, size: {counts}')
if __name__ == '__main__':
main()