-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvdelta.py
349 lines (278 loc) · 11.6 KB
/
vdelta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import math
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import torch.nn.functional as F
# 简化版 Muon 优化器实现
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
使用 Newton-Schulz 迭代计算矩阵的零次方/正交化。
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps)
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
class SimpleMuon(torch.optim.Optimizer):
"""
简化版 Muon 优化器 - 去除分布式相关代码
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True, ns_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, ns_steps=ns_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
nesterov = group['nesterov']
ns_steps = group['ns_steps']
for p in group['params']:
if p.grad is None:
continue
g = p.grad
state = self.state[p]
# 初始化动量缓冲区
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.lerp_(g, 1 - momentum)
# 使用 Nesterov 动量
if nesterov:
g = g.lerp(buf, momentum)
else:
g = buf
# 应用 Newton-Schulz 迭代
g = zeropower_via_newtonschulz5(g, steps=ns_steps)
# 更新参数
alpha = -lr * max(1, p.size(0) / p.size(1)) ** 0.5
p.data.add_(g.view_as(p), alpha=alpha)
class DeltaNetBlock(nn.Module):
def __init__(self, hidden_dim, expanded_dim, max_seq_length=2048):
super().__init__()
self.hidden_dim = hidden_dim
self.expanded_dim = expanded_dim
# 层归一化
self.norm1 = nn.LayerNorm(hidden_dim)
self.norm2 = nn.LayerNorm(expanded_dim)
# 投影层
self.proj_in = nn.Linear(hidden_dim, expanded_dim * 3)
self.proj_out = nn.Linear(expanded_dim, hidden_dim)
# Position-aware beta 相关层
self.rel_pos_embedding = nn.Parameter(torch.zeros(2 * max_seq_length - 1, hidden_dim))
self.beta_pos_proj = nn.Linear(hidden_dim * 2, expanded_dim)
# MLP块
self.mlp = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim * 4),
nn.GELU(),
nn.Linear(hidden_dim * 4, hidden_dim)
)
# 局部特征处理
self.conv_layer = nn.Conv1d(
expanded_dim, expanded_dim,
kernel_size=3, padding=1,
groups=expanded_dim, bias=False
)
# 注意力缩放
self.attention_scale = nn.Parameter(torch.ones(1))
self._init_weights()
def _init_weights(self):
# 初始化投影层
nn.init.normal_(self.proj_in.weight, std=0.02)
nn.init.normal_(self.proj_out.weight, std=0.02)
nn.init.constant_(self.proj_in.bias, 0)
nn.init.constant_(self.proj_out.bias, 0)
# 初始化相对位置编码
nn.init.normal_(self.rel_pos_embedding, std=0.02)
# 初始化MLP
for m in self.mlp.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def get_rel_pos_emb(self, length):
"""获取相对位置编码"""
center = length - 1
pos_ids = torch.arange(length, device=self.rel_pos_embedding.device)
rel_pos_ids = pos_ids.unsqueeze(0) - pos_ids.unsqueeze(1) + center
return self.rel_pos_embedding[rel_pos_ids]
def _apply_conv(self, x):
return self.conv_layer(x.transpose(1, 2)).transpose(1, 2)
def forward(self, x):
shortcut = x
x = self.norm1(x)
# 投影得到q,k,v
qkv = self.proj_in(x).chunk(3, dim=-1)
q, k, v = qkv
# 非线性激活
q = F.silu(q)
k = F.silu(k)
v = F.gelu(v)
# 范数和残差连接
q = F.normalize(q, dim=-1) + 0.1 * k
k = F.normalize(k, dim=-1) + 0.1 * q
# 卷积处理
q = self._apply_conv(q)
k = self._apply_conv(k)
v = self._apply_conv(v)
# 获取批次大小和序列长度
B, L, _ = x.shape
# 修改这部分代码来处理位置信息
rel_pos = self.get_rel_pos_emb(L) # [L, L, hidden_dim]
# 计算位置感知信息 - 修正维度处理
x_flat = x.view(-1, self.hidden_dim) # [B*L, hidden_dim]
pos_embed = self.rel_pos_embedding[:L] # [L, hidden_dim]
pos_info = torch.matmul(x_flat, pos_embed.T) # [B*L, L]
pos_info = pos_info.view(B, L, L) # [B, L, L]
pos_info = torch.mean(pos_info, dim=-1, keepdim=True) # [B, L, 1]
pos_info = pos_info.expand(-1, -1, self.hidden_dim) # [B, L, hidden_dim]
# 结合内容和位置信息计算beta
combined_features = torch.cat([x, pos_info], dim=-1)
beta = torch.sigmoid(self.beta_pos_proj(combined_features)) * 0.9 + 0.1
# 状态更新
state = torch.zeros(B, self.expanded_dim, self.expanded_dim, device=x.device)
k_t = k.transpose(-2, -1)
v_old = torch.matmul(state, k_t)
v_new = beta * v + (1 - beta) * v_old.transpose(-2, -1)
state = state + torch.matmul(v_new.transpose(-2, -1), k)
# 输出计算
out = torch.matmul(q, state.transpose(-2, -1))
out = out * self.attention_scale
out = self.norm2(out)
out = self.proj_out(out)
# 残差连接和MLP
x = shortcut + out
x = x + self.mlp(self.norm1(x))
return x
class VisionDeltaNet(nn.Module):
def __init__(self, img_size=32, patch_size=4, in_channels=3, num_classes=10,
hidden_dim=384, expanded_dim=768, depth=12):
super().__init__()
self.patch_embed = nn.Sequential(
nn.Conv2d(in_channels, hidden_dim//2, kernel_size=3, stride=2, padding=1),
nn.GELU(),
nn.Conv2d(hidden_dim//2, hidden_dim, kernel_size=3, stride=2, padding=1),
)
num_patches = (img_size // patch_size) ** 2
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, hidden_dim))
self.pos_drop = nn.Dropout(p=0.1)
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
self.blocks = nn.ModuleList([
DeltaNetBlock(hidden_dim, expanded_dim)
for _ in range(depth)
])
self.norm = nn.LayerNorm(hidden_dim)
self.head = nn.Linear(hidden_dim, num_classes)
self._init_weights()
def _init_weights(self):
nn.init.trunc_normal_(self.pos_embed, std=0.02)
nn.init.trunc_normal_(self.cls_token, std=0.02)
for m in self.patch_embed.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
x = self.patch_embed(x)
x = x.flatten(2).transpose(1, 2)
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat([cls_token, x], dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for block in self.blocks:
x = block(x)
x = self.norm(x)
x = self.head(x[:, 0])
return x
def train_epoch(model, train_loader, criterion, optimizers, device):
model.train()
total_loss, correct, total = 0, 0, 0
for data, target in train_loader:
data, target = data.to(device), target.to(device)
# 清零所有优化器的梯度
for opt in optimizers:
opt.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# 更新所有优化器
for opt in optimizers:
opt.step()
total_loss += loss.item()
pred = output.argmax(dim=1)
correct += pred.eq(target).sum().item()
total += target.size(0)
return total_loss / len(train_loader), 100. * correct / total
def validate(model, val_loader, criterion, device):
model.eval()
val_loss, correct, total = 0, 0, 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
output = model(data)
loss = criterion(output, target)
val_loss += loss.item()
pred = output.argmax(dim=1)
correct += pred.eq(target).sum().item()
total += target.size(0)
return val_loss / len(val_loader), 100. * correct / total
def main():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4)
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=4)
model = VisionDeltaNet(
img_size=32,
patch_size=4,
num_classes=10,
hidden_dim=384,
expanded_dim=768,
depth=12
).to(device)
# 分离不同类型的参数
matrix_params = []
other_params = []
for name, param in model.named_parameters():
if param.ndim == 2 and 'weight' in name and not any(x in name for x in ['embed', 'head']):
matrix_params.append(param)
else:
other_params.append(param)
# 创建优化器
optimizers = [
SimpleMuon(matrix_params, lr=0.02, momentum=0.95, nesterov=True),
optim.AdamW(other_params, lr=0.001, weight_decay=0.05)
]
criterion = nn.CrossEntropyLoss()
# 训练循环
epochs = 300
for epoch in range(epochs):
print(f'Epoch {epoch+1}/{epochs}')
train_loss, train_acc = train_epoch(model, trainloader, criterion, optimizers, device)
val_loss, val_acc = validate(model, testloader, criterion, device)
print(f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}%')
print(f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')
if __name__ == '__main__':
main()