-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline-avg.config
123 lines (85 loc) · 1.62 KB
/
baseline-avg.config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
[data]
train_data = ./data/train/train_harm_record-wo-test.jsonl
valid_data = ./data/test/test_dev-set-200.json
test_data = ./data/test/test_test-set-719.json
[test]
pos_score = 2
k_list = 1,3,5
metric_list = MAP, MRR, R@k, NDCG@k
test_baseline = True
baseline_ids = 1,2,3,4,5,6,7,8,9,10,11,12
test_ours = False
test_specific = None
[encoder]
backbone = roberta
shared = True
pooling = avg
[train]
checkpoint = None
epoch = 5
evidence_sample_num = 1
save_step = 1000
logging_step = 100
batch_size = 8
sub_batch_size = 32
optimizer = adamw
grad_accumulate = 1
learning_rate = 1e-5
weight_decay = 0
step_size = 1
lr_multiplier = 1
reader_num = 1
fp16 = False
[simcse_loss]
use = True
negatives_parallel = True
negatives_cross = False
negatives_parallel_single = False
sim_fct = cos
temperature = 0.1
[attention_loss]
use = False
separate_attention_peak = False
[contra_loss]
use = True
rm_simcse = False
query = evidence
value_sample_num = 1
negatives_attention = True
remove_hard_attention = False
negatives_value = False
neg_value_key = single
negatives_query = False
neg_query_key = single
remove_hard_query = False
sim_fct = cos
temperature = 0.1
[attention]
type = dot
scale = 1.0
temperature = 0.1
[positive_weight]
use = False
range = in_batch
normalize = soft
source = dot
type = norm
log_sum = True
[output] #output parameters
output_time = 1
test_time = 1
model_path = ./output/unified
[baseline]
pooling = avg
model1 = bert
model2 = bert-tiny
model3 = albert
model4 = roberta
model5 = ernie
model6 = mengzi
model7 = lawformer
model8 = legal-simcse
model9 = sbert
model10 = tfidf
model11 = bm25
model12 = boe