-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
216 lines (178 loc) · 8.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import json
from torch.utils.data import DataLoader
from models import *
from utils.datasets import *
from utils.utils import *
def test(cfg,
data,
weights=None,
batch_size=16,
img_size=416,
iou_thres=0.5,
conf_thres=0.001,
nms_thres=0.5,
save_json=False,
model=None):
# Initialize/load model and set device
if model is None:
device = torch_utils.select_device()
verbose = True
# Initialize model
model = Darknet(cfg, img_size).to(device)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
_ = load_darknet_weights(model, weights)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
else:
device = next(model.parameters()).device # get model device
verbose = False
# Configure run
data = parse_data_cfg(data)
nc = int(data['classes']) # number of classes
test_path = data['valid'] # path to test images
names = load_classes(data['names']) # class names
# Dataloader
dataset = LoadImagesAndLabels(test_path, img_size, batch_size)
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=min(os.cpu_count(), batch_size),
pin_memory=True,
collate_fn=dataset.collate_fn)
seen = 0
model.eval()
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP', 'F1')
p, r, f1, mp, mr, map, mf1 = 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
targets = targets.to(device)
imgs = imgs.to(device)
_, _, height, width = imgs.shape # batch size, channels, height, width
# Plot images with bounding boxes
if batch_i == 0 and not os.path.exists('test_batch0.jpg'):
plot_images(imgs=imgs, targets=targets, paths=paths, fname='test_batch0.jpg')
# Run model
inf_out, train_out = model(imgs) # inference and training outputs
# Compute loss
if hasattr(model, 'hyp'): # if model has loss hyperparameters
loss += compute_loss(train_out, targets, model)[1][:3].cpu() # GIoU, obj, cls
# Run NMS
output = non_max_suppression(inf_out, conf_thres=conf_thres, nms_thres=nms_thres)
# Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1
if pred is None:
if nl:
stats.append(([], torch.Tensor(), torch.Tensor(), tcls))
continue
# Append to text file
# with open('test.txt', 'a') as file:
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(imgs[si].shape[1:], box, shapes[si]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for di, d in enumerate(pred):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(d[6])],
'bbox': [floatn(x, 3) for x in box[di]],
'score': floatn(d[4], 5)})
# Clip boxes to image bounds
clip_coords(pred, (height, width))
# Assign all predictions as incorrect
correct = [0] * len(pred)
if nl:
detected = []
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
tbox[:, [0, 2]] *= width
tbox[:, [1, 3]] *= height
# Search for correct predictions
for i, (*pbox, pconf, pcls_conf, pcls) in enumerate(pred):
# Break if all targets already located in image
if len(detected) == nl:
break
# Continue if predicted class not among image classes
if pcls.item() not in tcls:
continue
# Best iou, index between pred and targets
m = (pcls == tcls_tensor).nonzero().view(-1)
iou, bi = bbox_iou(pbox, tbox[m]).max(0)
# If iou > threshold and class is correct mark as correct
if iou > iou_thres and m[bi] not in detected: # and pcls == tcls[bi]:
correct[i] = 1
detected.append(m[bi])
# Append statistics (correct, conf, pcls, tcls)
stats.append((correct, pred[:, 4].cpu(), pred[:, 6].cpu(), tcls))
# Compute statistics
stats = [np.concatenate(x, 0) for x in list(zip(*stats))] # to numpy
if len(stats):
p, r, ap, f1, ap_class = ap_per_class(*stats)
mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%10.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1))
# Print results per class
if verbose and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))
# Save JSON
if save_json and map and len(jdict):
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataset.img_files]
with open('results.json', 'w') as file:
json.dump(jdict, file)
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO('../coco/annotations/instances_val2014.json') # initialize COCO ground truth api
cocoDt = cocoGt.loadRes('results.json') # initialize COCO pred api
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
map = cocoEval.stats[1] # update mAP to pycocotools mAP
# Return results
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map, mf1, *(loss / len(dataloader)).tolist()), maps
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp.weights', help='path to weights file')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
test(opt.cfg,
opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.iou_thres,
opt.conf_thres,
opt.nms_thres,
opt.save_json)