forked from ozan-oktay/Attention-Gated-Networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validation.py
89 lines (67 loc) · 3.9 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from torch.utils.data import DataLoader
from dataio.loader import get_dataset, get_dataset_path
from dataio.transformation import get_dataset_transformation
from utils.util import json_file_to_pyobj
from models import get_model
import numpy as np
import os
from utils.metrics import dice_score, distance_metric, precision_and_recall
from utils.error_logger import StatLogger
def mkdirfun(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def validation(json_name):
# Load options
json_opts = json_file_to_pyobj(json_name)
train_opts = json_opts.training
# Setup the NN Model
model = get_model(json_opts.model)
save_directory = os.path.join(model.save_dir, train_opts.arch_type); mkdirfun(save_directory)
# Setup Dataset and Augmentation
dataset_class = get_dataset(train_opts.arch_type)
dataset_path = get_dataset_path(train_opts.arch_type, json_opts.data_path)
dataset_transform = get_dataset_transformation(train_opts.arch_type, opts=json_opts.augmentation)
# Setup Data Loader
dataset = dataset_class(dataset_path, split='validation', transform=dataset_transform['valid'])
data_loader = DataLoader(dataset=dataset, num_workers=8, batch_size=1, shuffle=False)
# Visualisation Parameters
#visualizer = Visualiser(json_opts.visualisation, save_dir=model.save_dir)
# Setup stats logger
stat_logger = StatLogger()
# test
for iteration, data in enumerate(data_loader, 1):
model.set_input(data[0], data[1])
model.test()
input_arr = np.squeeze(data[0].cpu().numpy()).astype(np.float32)
label_arr = np.squeeze(data[1].cpu().numpy()).astype(np.int16)
output_arr = np.squeeze(model.pred_seg.cpu().byte().numpy()).astype(np.int16)
# If there is a label image - compute statistics
dice_vals = dice_score(label_arr, output_arr, n_class=int(4))
md, hd = distance_metric(label_arr, output_arr, dx=2.00, k=2)
precision, recall = precision_and_recall(label_arr, output_arr, n_class=int(4))
stat_logger.update(split='test', input_dict={'img_name': '',
'dice_LV': dice_vals[1],
'dice_MY': dice_vals[2],
'dice_RV': dice_vals[3],
'prec_MYO':precision[2],
'reca_MYO':recall[2],
'md_MYO': md,
'hd_MYO': hd
})
# Write a nifti image
import SimpleITK as sitk
input_img = sitk.GetImageFromArray(np.transpose(input_arr, (2, 1, 0))); input_img.SetDirection([-1,0,0,0,-1,0,0,0,1])
label_img = sitk.GetImageFromArray(np.transpose(label_arr, (2, 1, 0))); label_img.SetDirection([-1,0,0,0,-1,0,0,0,1])
predi_img = sitk.GetImageFromArray(np.transpose(output_arr,(2, 1, 0))); predi_img.SetDirection([-1,0,0,0,-1,0,0,0,1])
sitk.WriteImage(input_img, os.path.join(save_directory,'{}_img.nii.gz'.format(iteration)))
sitk.WriteImage(label_img, os.path.join(save_directory,'{}_lbl.nii.gz'.format(iteration)))
sitk.WriteImage(predi_img, os.path.join(save_directory,'{}_pred.nii.gz'.format(iteration)))
stat_logger.statlogger2csv(split='test', out_csv_name=os.path.join(save_directory,'stats.csv'))
for key, (mean_val, std_val) in stat_logger.get_errors(split='test').items():
print('-',key,': \t{0:.3f}+-{1:.3f}'.format(mean_val, std_val),'-')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='CNN Seg Validation Function')
parser.add_argument('-c', '--config', help='testing config file', required=True)
args = parser.parse_args()
validation(args.config)