forked from NifTK/NiftyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepmedic_config.ini
executable file
·72 lines (64 loc) · 1.55 KB
/
deepmedic_config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
[T1]
path_to_search = ./example_volumes/monomodal_parcellation
filename_contains = T1
filename_not_contains =
spatial_window_size = (57, 57, 57)
pixdim = (1.0, 1.0, 1.0)
axcodes=(A, R, S)
interp_order = 3
[parcellation]
path_to_search = ./example_volumes/monomodal_parcellation
filename_contains = Label
filename_not_contains =
spatial_window_size = (9, 9, 9)
pixdim = (1.0, 1.0, 1.0)
axcodes=(A, R, S)
interp_order = 0
############################## system configuration sections
[SYSTEM]
cuda_devices = ""
num_threads = 2
num_gpus = 1
model_dir = ./models/model_deepmedic
[NETWORK]
name = deepmedic
activation_function = prelu
batch_size = 128
decay = 0
reg_type = L2
# volume level preprocessing
volume_padding_size = 12
# histogram normalisation
histogram_ref_file = ./example_volumes/monomodal_parcellation/standardisation_models.txt
norm_type = percentile
cutoff = (0.01, 0.99)
normalisation = True
whitening = True
normalise_foreground_only=True
foreground_type = otsu_plus
multimod_foreground_type = and
queue_length = 128
window_sampling = uniform
[TRAINING]
sample_per_volume = 32
rotation_angle = (-10.0, 10.0)
scaling_percentage = (-10.0, 10.0)
lr = 0.01
loss_type = Dice
starting_iter = 0
save_every_n = 5
max_iter = 10
max_checkpoints = 20
[INFERENCE]
border = (36, 36, 36)
#inference_iter = 10
save_seg_dir = ./output/deepmedic
output_interp_order = 0
spatial_window_size = (195, 195, 195)
############################ custom configuration sections
[SEGMENTATION]
image = T1
label = parcellation
output_prob = False
num_classes = 160
label_normalisation = True