forked from NifTK/NiftyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscalenet_config.ini
executable file
·91 lines (78 loc) · 1.87 KB
/
scalenet_config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
[T1]
path_to_search = ./example_volumes/multimodal_BRATS
filename_contains = T1
filename_not_contains = T1c
spatial_window_size = (32, 32, 32)
interp_order = 3
[Flair]
path_to_search = ./example_volumes/multimodal_BRATS
filename_contains = Flair
filename_not_contains =
spatial_window_size = (32, 32, 32)
interp_order = 3
[T1c]
path_to_search = ./example_volumes/multimodal_BRATS
filename_contains = T1c
filename_not_contains =
spatial_window_size = (32, 32, 32)
interp_order = 3
[T2]
path_to_search = ./example_volumes/multimodal_BRATS
filename_contains = T2
filename_not_contains =
spatial_window_size = (32, 32, 32)
interp_order = 3
[label]
path_to_search = ./example_volumes/multimodal_BRATS
filename_contains = Label
filename_not_contains = T1
spatial_window_size = (32, 32, 32)
interp_order = 0
[SYSTEM]
cuda_devices = ""
num_threads = 4
num_gpus = 1
model_dir = ./models/model_scalenet
[NETWORK]
name = scalenet
activation_function = relu
batch_size = 1
decay = 0.1
reg_type = L2
# volume level preprocessing
volume_padding_size = 21
# histogram normalisation
histogram_ref_file = ./example_volumes/multimodal_BRATS/standardisation_models.txt
norm_type = percentile
cutoff = (0.01, 0.99)
normalisation = True
whitening = True
normalise_foreground_only=True
foreground_type = otsu_plus
multimod_foreground_type = and
queue_length = 512
window_sampling = uniform
[TRAINING]
sample_per_volume = 5
#rotation_angle = (-10.0, 10.0)
#scaling_percentage = (-10.0, 10.0)
lr = 0.01
loss_type = Dice
starting_iter = 0
save_every_n = 5
max_iter = 6
max_checkpoints = 20
[INFERENCE]
border = (5, 5, 5)
#inference_iter = 10
save_seg_dir = ./output/scalenet
output_interp_order = 0
output_prob = False
spatial_window_size = (64, 64, 64)
############################ custom configuration sections
[SEGMENTATION]
image = T1,T2,T1c,Flair
label = label
output_prob = False
num_classes = 5
label_normalisation = True