forked from NifTK/NiftyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_config.ini
executable file
·57 lines (51 loc) · 1.3 KB
/
vae_config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
[IXI image]
path_to_search = ./example_volumes/autoencoder_test_data
filename_contains = T1
filename_not_contains =
spatial_window_size = (24, 24, 24)
[Encoded features]
path_to_search = ./output/vae_demo_features
spatial_window_size = (1, 1, 1)
[SYSTEM]
cuda_devices = ""
num_threads = 2
num_gpus = 1
queue_length = 20
model_dir = ./models/model_autoencoder_demo
[NETWORK]
name=vae
decay = 1e-7
reg_type = L2
batch_size = 50
normalisation = False
whitening = False
[TRAINING]
sample_per_volume = 1
#rotation_angle = (-10.0, 10.0)
#scaling_percentage = (-10.0, 10.0)
lr = 0.0001
loss_type = VariationalLowerBound
starting_iter = 0
save_every_n = 100
tensorboard_every_n=2
max_iter = 10000
max_checkpoints = 20
[INFERENCE]
#inference_iter = 8100
save_seg_dir = ./output/vae_demo_sample
#save_seg_dir = ./output/vae_demo_interpolation
#save_seg_dir = ./output/vae_demo_features
spatial_window_size = (24, 24, 24)
[AUTOENCODER]
image = IXI image
feature = Encoded features
# Options are (1) encode; (2); encode-decode;
# (3) sample; and (4) linear_interpolation
#inference_type = linear_interpolation
#inference_type = encode-decode
#inference_type = encode
inference_type = sample
# only used when inference type is sample
noise_stddev = 1
# only used when inference type is linear_interpolation
n_interpolations=10