forked from NifTK/NiftyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweighted_sample_regression.ini
executable file
·76 lines (68 loc) · 1.34 KB
/
weighted_sample_regression.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
[INPUTIMAGE]
spatial_window_size=(96, 96, 96)
filename_contains=
filename_not_contains=
path_to_search=./input
interp_order=3
[OUTPUTIMAGE]
spatial_window_size=(96, 96, 96)
filename_contains=003
filename_not_contains=()
path_to_search=./output
interp_order=3
[RESIDUALS]
spatial_window_size=(96, 96, 96)
filename_contains=
filename_not_contains=
path_to_search=./weights
interp_order=3
[SAMPWEIGHT]
spatial_window_size=(96, 96, 96)
filename_contains=
filename_not_contains=
path_to_search=./sampler_frequency
interp_order=3
[TRAINING]
loss_type=RMSE
sample_per_volume=32
tensorboard_every_n=20
max_iter=5000
save_every_n=200
max_checkpoints=10
optimiser=adam
lr=0.001
starting_iter=0
[NETWORK]
cutoff=(0.01, 0.99)
multimod_foreground_type=and
volume_padding_size=(8, 8, 8)
name=highres3dnet
decay=0.00001
activation_function=prelu
normalise_foreground_only=False
histogram_ref_file=./model/standardisation_models.txt
batch_size=2
norm_type=percentile
foreground_type=otsu_plus
window_sampling=weighted
whitening=False
reg_type=L1
normalisation=False
[INFERENCE]
border=(16, 16, 16)
output_interp_order=3
inference_iter=600
save_seg_dir=./output/
spatial_window_size=(136, 136, 136)
[SYSTEM]
cuda_devices=""
num_gpus=1
num_threads=2
queue_length=5
model_dir=./model/
[REGRESSION]
output=INPUTIMAGE
image=OUTPUTIMAGE
weight=RESIDUALS
sampler=SAMPWEIGHT
loss_border=8