forked from NifTK/NiftyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication_factory.py
executable file
·281 lines (244 loc) · 8.81 KB
/
application_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# -*- coding: utf-8 -*-
"""
Loading modules from a string representing the class name
or a short name that matches the dictionary item defined
in this module
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import importlib
import os
import tensorflow as tf
from niftynet.utilities.util_common import \
damerau_levenshtein_distance as edit_distance
# pylint: disable=too-few-public-methods
SUPPORTED_APP = {
'net_regress':
'niftynet.application.regression_application.RegressionApplication',
'net_segment':
'niftynet.application.segmentation_application.SegmentationApplication',
'net_autoencoder':
'niftynet.application.autoencoder_application.AutoencoderApplication',
'net_gan':
'niftynet.application.gan_application.GANApplication',
}
SUPPORTED_NETWORK = {
# GAN
'simulator_gan':
'niftynet.network.simulator_gan.SimulatorGAN',
'simple_gan':
'niftynet.network.simple_gan.SimpleGAN',
# Segmentation
"highres3dnet":
'niftynet.network.highres3dnet.HighRes3DNet',
"highres3dnet_small":
'niftynet.network.highres3dnet_small.HighRes3DNetSmall',
"highres3dnet_large":
'niftynet.network.highres3dnet_large.HighRes3DNetLarge',
"toynet":
'niftynet.network.toynet.ToyNet',
"unet":
'niftynet.network.unet.UNet3D',
"vnet":
'niftynet.network.vnet.VNet',
"dense_vnet":
'niftynet.network.dense_vnet.DenseVNet',
"deepmedic":
'niftynet.network.deepmedic.DeepMedic',
"scalenet":
'niftynet.network.scalenet.ScaleNet',
"holisticnet":
'niftynet.network.holistic_net.HolisticNet',
# autoencoder
"vae": 'niftynet.network.vae.VAE'
}
SUPPORTED_LOSS_GAN = {
'CrossEntropy': 'niftynet.layer.loss_gan.cross_entropy',
}
SUPPORTED_LOSS_SEGMENTATION = {
"CrossEntropy":
'niftynet.layer.loss_segmentation.cross_entropy',
"Dice":
'niftynet.layer.loss_segmentation.dice',
"Dice_NS":
'niftynet.layer.loss_segmentation.dice_nosquare',
"GDSC":
'niftynet.layer.loss_segmentation.generalised_dice_loss',
"WGDL":
'niftynet.layer.loss_segmentation.generalised_wasserstein_dice_loss',
"SensSpec":
'niftynet.layer.loss_segmentation.sensitivity_specificity_loss',
"L1Loss":
'niftynet.layer.loss_segmentation.l1_loss',
"L2Loss":
'niftynet.layer.loss_segmentation.l2_loss',
"Huber":
'niftynet.layer.loss_segmentation.huber_loss'
}
SUPPORTED_LOSS_REGRESSION = {
"L1Loss":
'niftynet.layer.loss_regression.l1_loss',
"L2Loss":
'niftynet.layer.loss_regression.l2_loss',
"RMSE":
'niftynet.layer.loss_regression.rmse_loss',
"MAE":
'niftynet.layer.loss_regression.mae_loss',
"Huber":
'niftynet.layer.loss_regression.huber_loss'
}
SUPPORTED_LOSS_AUTOENCODER = {
"VariationalLowerBound":
'niftynet.layer.loss_autoencoder.variational_lower_bound',
}
SUPPORTED_OPTIMIZERS = {
'adam': 'niftynet.engine.application_optimiser.Adam',
'gradientdescent': 'niftynet.engine.application_optimiser.GradientDescent',
'momentum': 'niftynet.engine.application_optimiser.Momentum',
'nesterov': 'niftynet.engine.application_optimiser.NesterovMomentum',
'adagrad': 'niftynet.engine.application_optimiser.Adagrad',
'rmsprop': 'niftynet.engine.application_optimiser.RMSProp',
}
SUPPORTED_INITIALIZATIONS = {
'constant': 'niftynet.engine.application_initializer.Constant',
'zeros': 'niftynet.engine.application_initializer.Zeros',
'ones': 'niftynet.engine.application_initializer.Ones',
'uniform_scaling':
'niftynet.engine.application_initializer.UniformUnitScaling',
'orthogonal': 'niftynet.engine.application_initializer.Orthogonal',
'variance_scaling':
'niftynet.engine.application_initializer.VarianceScaling',
'glorot_normal':
'niftynet.engine.application_initializer.GlorotNormal',
'glorot_uniform':
'niftynet.engine.application_initializer.GlorotUniform',
'he_normal': 'niftynet.engine.application_initializer.HeNormal',
'he_uniform': 'niftynet.engine.application_initializer.HeUniform'
}
def select_module(module_name, type_str, lookup_table):
"""
This function first tries to find the absolute module name
by matching the static dictionary items, if not found, it
tries to import the module by splitting the input module_name
as module name and class name to be imported.
:param module_name: string that matches the keys defined in lookup_table
or an absolute class name: module.name.ClassName
:param type_str: type of the module (used for better error display)
:param lookup_table: defines a set of shorthands for absolute class name
"""
module_name = '{}'.format(module_name)
if module_name in lookup_table:
module_name = lookup_table[module_name]
module_str, class_name = None, None
try:
module_str, class_name = module_name.rsplit('.', 1)
the_module = importlib.import_module(module_str)
the_class = getattr(the_module, class_name)
tf.logging.info('Import [%s] from %s.',
class_name, os.path.abspath(the_module.__file__))
return the_class
except (AttributeError, ValueError, ImportError) as not_imported:
# print sys.path
tf.logging.fatal(repr(not_imported))
# Two possibilities: a typo for a lookup table entry
# or a non-existing module
dists = dict((k, edit_distance(k, module_name))
for k in list(lookup_table))
closest = min(dists, key=dists.get)
if dists[closest] <= 3:
err = 'Could not import {2}: By "{0}", ' \
'did you mean "{1}"?\n "{0}" is ' \
'not a valid option. '.format(module_name, closest, type_str)
tf.logging.fatal(err)
raise ValueError(err)
else:
if '.' not in module_name:
err = 'Could not import {}: ' \
'Incorrect module name format {}. ' \
'Expected "module.object".'.format(type_str, module_name)
tf.logging.fatal(err)
raise ValueError(err)
err = '{}: Could not import object' \
'"{}" from "{}"'.format(type_str, class_name, module_str)
tf.logging.fatal(err)
raise ValueError(err)
class ModuleFactory(object):
"""
General interface for importing a class by its name.
"""
SUPPORTED = None
type_str = 'object'
@classmethod
def create(cls, name):
"""
import a class by name
"""
return select_module(name, cls.type_str, cls.SUPPORTED)
class ApplicationNetFactory(ModuleFactory):
"""
Import a network from niftynet.network or from user specified string
"""
SUPPORTED = SUPPORTED_NETWORK
type_str = 'network'
class ApplicationFactory(ModuleFactory):
"""
Import an application from niftynet.application or
from user specified string
"""
SUPPORTED = SUPPORTED_APP
type_str = 'application'
class LossGANFactory(ModuleFactory):
"""
Import a GAN loss function from niftynet.layer or
from user specified string
"""
SUPPORTED = SUPPORTED_LOSS_GAN
type_str = 'GAN loss'
class LossSegmentationFactory(ModuleFactory):
"""
Import a segmentation loss function from niftynet.layer or
from user specified string
"""
SUPPORTED = SUPPORTED_LOSS_SEGMENTATION
type_str = 'segmentation loss'
class LossRegressionFactory(ModuleFactory):
"""
Import a regression loss function from niftynet.layer or
from user specified string
"""
SUPPORTED = SUPPORTED_LOSS_REGRESSION
type_str = 'regression loss'
class LossAutoencoderFactory(ModuleFactory):
"""
Import an autoencoder loss function from niftynet.layer or
from user specified string
"""
SUPPORTED = SUPPORTED_LOSS_AUTOENCODER
type_str = 'autoencoder loss'
class OptimiserFactory(ModuleFactory):
"""
Import an optimiser from niftynet.engine.application_optimiser or
from user specified string
"""
SUPPORTED = SUPPORTED_OPTIMIZERS
type_str = 'optimizer'
class InitializerFactory(ModuleFactory):
"""
Import an initializer from niftynet.engine.application_initializer or
from user specified string
"""
SUPPORTED = SUPPORTED_INITIALIZATIONS
type_str = 'initializer'
@staticmethod
def get_initializer(name, args=None):
"""
wrapper for getting the init
:param name:
:param args: optional parameters for the initializer
:return:
"""
init_class = InitializerFactory.create(name)
if args is None:
args = {}
return init_class.get_instance(args)