forked from richzhang/PerceptualSimilarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_network.py
48 lines (40 loc) · 1.89 KB
/
test_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# import sys; sys.path += ['models']
import torch
from util import util
from models import dist_model as dm
from IPython import embed
use_gpu = True # Whether to use GPU
spatial = False # Return a spatial map of perceptual distance.
# Optional args spatial_shape and spatial_order control output shape and resampling filter: see DistModel.initialize() for details.
## Initializing the model
model = dm.DistModel()
# Linearly calibrated models
#model.initialize(model='net-lin',net='squeeze',use_gpu=use_gpu,spatial=spatial)
model.initialize(model='net-lin',net='alex',use_gpu=use_gpu,spatial=spatial)
#model.initialize(model='net-lin',net='vgg',use_gpu=use_gpu,spatial=spatial)
# Off-the-shelf uncalibrated networks
#model.initialize(model='net',net='squeeze',use_gpu=use_gpu)
#model.initialize(model='net',net='alex',use_gpu=use_gpu)
#model.initialize(model='net',net='vgg',use_gpu=use_gpu)
# Low-level metrics
# model.initialize(model='l2',colorspace='Lab')
# model.initialize(model='ssim',colorspace='RGB')
print('Model [%s] initialized'%model.name())
## Example usage with dummy tensors
dummy_im0 = torch.Tensor(1,3,64,64) # image should be RGB, normalized to [-1,1]
dummy_im1 = torch.Tensor(1,3,64,64)
dist = model.forward(dummy_im0,dummy_im1)
## Example usage with images
ex_ref = util.im2tensor(util.load_image('./imgs/ex_ref.png'))
ex_p0 = util.im2tensor(util.load_image('./imgs/ex_p0.png'))
ex_p1 = util.im2tensor(util.load_image('./imgs/ex_p1.png'))
ex_d0 = model.forward(ex_ref,ex_p0)
ex_d1 = model.forward(ex_ref,ex_p1)
if not spatial:
print('Distances: (%.3f, %.3f)'%(ex_d0, ex_d1))
else:
print('Distances: (%.3f, %.3f)'%(ex_d0.mean(),ex_d1.mean())) # The mean distance is approximately the same as the non-spatial distance
# Visualize a spatially-varying distance map between ex_p0 and ex_ref
import pylab
pylab.imshow(ex_d0)
pylab.show()