-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpolicy_trainer.py
92 lines (74 loc) · 2.94 KB
/
policy_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import CNNLSTMPolicy
import torch.nn as nn
import torch.optim as opt
from torch.autograd import Variable
import torch
import numpy as np
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--on-gpu", type=bool, default=True)
parser.add_argument("--num-epochs", type=int, default=2,
help="number of epochs to train network")
parser.add_argument("--data", type=str, default="",
help="directory containing data directory")
parser.add_argument("--lr", type=float, default=1e-5,
help="LR")
args = parser.parse_args()
# Currently only 1 GPU works
num_gpu = 1
model = CNNLSTMPolicy.CNNLSTMPolicy(on_gpu=args.on_gpu)
multi_gpu_trainer = CNNLSTMPolicy.MultiGPUTrain(model, num_gpu)
loss_function = nn.NLLLoss()
optimizer = opt.Adam(model.parameters(), lr=args.lr)
num_epochs = args.num_epochs
print("Loading all data...")
data_x = np.load(args.data + "data_x.npz")['arr_0']
data_y = np.load(args.data + "data_y.npz")['arr_0']
data_z = np.load(args.data + "data_z.npz")['arr_0']
counter = 0
inputs = range(num_gpu)
label1 = range(num_gpu)
label2 = range(num_gpu)
l_dim = range(num_gpu)
def backward_output(outputs, ll1, ll2):
lloss_1, lloss_2 = [], []
for output, l_1, l_2 in zip(outputs, ll1, ll2):
o_1, o_2 = output
loss_1, loss_2 = loss_function(o_1, l_1), loss_function(o_2, l_2)
loss_1.backward(retain_graph=True)
loss_2.backward(retain_graph=True)
lloss_1.append(loss_1.data[0])
lloss_2.append(loss_2.data[0])
return sum(lloss_1) / len(lloss_1), sum(lloss_2) / len(lloss_2)
loss = []
print("Training network...")
for _ in range(num_epochs):
for j in xrange(len(data_x)):
for k in xrange(len(data_x[j])):
# Shapes of replay is given by batch_size * num_channels * h * w
input_player = data_x[j][k]
if len(input_player.shape) < 4:
continue
counter += 1
index = counter % num_gpu
l_dim[index] = input_player.shape[2], input_player.shape[3]
inputs[index] = Variable(
torch.Tensor(
input_player.astype(
np.float64)))
label1[index] = Variable(torch.LongTensor(data_y[j][k]))
label2[index] = Variable(torch.LongTensor(data_z[j][k]))
if args.on_gpu:
inputs[index].cuda(index)
label1[index].cuda(index)
label2[index].cuda(index)
if counter % num_gpu == 0:
multi_gpu_trainer.init_hidden(l_dim)
outputs = multi_gpu_trainer.forward(inputs)
loss_1, loss_2 = backward_output(outputs, label1, label2)
nn.utils.clip_grad_norm(model.parameters(), 1)
optimizer.step()
optimizer.zero_grad()
loss.append(loss_1 + loss_2)
np.save('loss', loss)
torch.save(model.cpu().state_dict(), 'policy.mdl')