Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reproduce result & Evaluation on Matterport dataset #28

Open
tsunghan-wu opened this issue May 30, 2019 · 6 comments
Open

Reproduce result & Evaluation on Matterport dataset #28

tsunghan-wu opened this issue May 30, 2019 · 6 comments

Comments

@tsunghan-wu
Copy link

Hi,

I'm trying to reproduce the result on matterport dataset. However, I have encountered difficulties in it. The following lines are the script I ran. However, after I ran the script, I saw some blur depth images which is not the as clear as that in the paper and the evaluation is not the same. Could anyone tell me whether my script is incorrect ? Thanks !!!

cd('../torch/');

% Boundary detection
cmd = 'lua main_test_bound_matterport.lua -test_model ../pre_train_model/bound.t7 -test_file ./data_list/mp_test_list_horizontal.txt -root_path <my_root_path>';
system(cmd); % the result should be in ../torch/result/

% Surface normal estimation
cmd = 'lua main_test_matterport.lua -test_model ../pre_train_model/normal_matterport.t7 -test_file ./data_list/mp_test_list_horizontal.txt -root_path <my_root_path>';
system(cmd);

% cd('../matlab/');

% Get occlusion boundary (the 2nd channel) and convert to weight
GenerateOcclusionWeight('../torch/result/bound_matterport_test_bound/', '../torch/result/bound_matterport_weight/');

% Compose depth by global optimization
composeDepth('<my_root_path>', '../torch/result/normal_matterport_matterport_test', '../torch/result/bound_matterport_weight', 'mp_render', '../results/matterport', [1001, 0.001, 1]);
@yindaz
Copy link
Owner

yindaz commented Jul 1, 2019

The result quality may varies from case to case. Did you run through the demo successfully and get reasonable result?

@tsunghan-wu
Copy link
Author

Thanks for your kindly response.
In your DeepCompletionRelease/matlab/evalDepth.m, line 60 ~ 70 :

metric.rmse = sqrt(median(vertcat(example_error.sqr)));
dt = vertcat(example_error.dt);
metric.dt = [sum(dt<1.05)/length(dt) sum(dt<1.10)/length(dt) sum(dt<1.25)/length(dt) sum(dt<1.5625)/length(dt) sum(dt<1.9531)/length(dt)];

metric.rel_raw = median(vertcat(example_error.rel_raw));
metric.rmse_raw = sqrt(median(vertcat(example_error.sqr_raw)));
dt = vertcat(example_error.dt_raw);
metric.dt_raw = [sum(dt<1.05)/length(dt) sum(dt<1.10)/length(dt) sum(dt<1.25)/length(dt) sum(dt<1.5625)/length(dt) sum(dt<1.9531)/length(dt)];

metric.rel_ukn = median(vertcat(example_error.rel_ukn));
metric.rmse_ukn = sqrt(median(vertcat(example_error.sqr_ukn)));

I think your implementation is not correct. Your code calculate "root median square error" rather than "root mean square error".

@suklasatapathy
Copy link

How can I run this code for my depth images ? The matlab code is running only for saved results ? nUnable to generate new results%%%%%%%%%
% Visualize results
input = imread('../data/realsense/030_depth_open.png');
output = imread('../results/realsense/realsense_030_1.png');
colormap = jet(double(max([input(:);output(:)])));
figure;
subplot(1,2,1); imshow(label2rgb(input, colormap)); title('Input');
subplot(1,2,2); imshow(label2rgb(output,colormap)); title('Output');

@suklasatapathy
Copy link

In the result folder: results/realsense/: realsense_004_1.png, realsense_012_1.png, realsense_026_1.png realsense_030_1.png, realsense_046_1.png are available. So If I am running demo code of matlab then only these files can be produced. How to generate result for other depth maps. Kindly reply.

@suklasatapathy
Copy link

hdf5 files are not found. From where I have to download it ?

@Darker-zq
Copy link

@tsunghan-mama Do you have any datasets provided by the author? If so, please send me a copy.Thanks!
My Email is [email protected]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants