-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem_0144_preorderTraversal.cc
112 lines (106 loc) · 2.22 KB
/
Problem_0144_preorderTraversal.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <algorithm>
#include <stack>
#include <vector>
using namespace std;
struct TreeNode
{
int val;
TreeNode* left;
TreeNode* right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
class Solution
{
public:
void f(TreeNode* cur, vector<int>& ans)
{
if (cur == nullptr)
{
return;
}
ans.push_back(cur->val);
f(cur->left, ans);
f(cur->right, ans);
}
// 递归
vector<int> preorderTraversal1(TreeNode* root)
{
vector<int> ans;
f(root, ans);
return ans;
}
// 迭代
vector<int> preorderTraversal2(TreeNode* root)
{
if (root == nullptr)
{
return {};
}
vector<int> ans;
stack<TreeNode*> st;
st.push(root);
while (!st.empty())
{
TreeNode* cur = st.top();
st.pop();
// 根 左 右
ans.push_back(cur->val);
if (cur->right != nullptr)
{
st.push(cur->right);
}
if (cur->left != nullptr)
{
st.push(cur->left);
}
}
return ans;
}
// Morris遍历
vector<int> preorderTraversal3(TreeNode* root)
{
if (root == nullptr)
{
return {};
}
vector<int> ans;
TreeNode* cur = root;
TreeNode* mostRight = nullptr;
while (cur != nullptr)
{
// 先指向左孩子
mostRight = cur->left;
if (mostRight != nullptr) // 存在左孩子
{
while (mostRight->right != nullptr && mostRight->right != cur)
{
mostRight = mostRight->right;
}
if (mostRight->right == nullptr)
{
// 第一次遍历指向 cur
mostRight->right = cur;
ans.push_back(cur->val);
// 继续遍历左孩子
cur = cur->left;
continue;
}
else
{
// 第二次遍历恢复为叶子节点
mostRight->right = nullptr;
}
}
else
{
// 没有左孩子的节点只会遍历一次
ans.push_back(cur->val);
}
// 左孩子,根都遍历完了,处理右孩子
cur = cur->right;
}
return ans;
}
};