-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_v3_bertIDCNNCrf.py
422 lines (366 loc) · 13.4 KB
/
model_v3_bertIDCNNCrf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import time
import os
import tensorflow as tf
import keras
import bert4keras
#! -*- coding: utf-8 -*-
import numpy as np
from bert4keras.backend import keras, K
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open, ViterbiDecoder, to_array
from bert4keras.layers import ConditionalRandomField
from keras.layers import Dense, Conv1D
from keras.models import Model
from tqdm import tqdm
start = time.time()
maxlen = 250
epochs = 20
repeat = 3
batch_size = 16
bert_layers = 12
learing_rate = 1e-5 # bert_layers越小,学习率应该要越大
crf_lr_multiplier = 1000 # 必要时扩大CRF层的学习率
# bert配置
config_path = '/home/liulinhai/llhy/bert/chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/home/liulinhai/llhy/bert/chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '/home/liulinhai/llhy/bert/chinese-bert_chinese_wwm_L-12_H-768_A-12/vocab.txt'
def load_data(filename):
D = []
with open(filename, encoding='utf-8') as f:
f = f.read()
for l in f.split('\n\n'):
if not l:
continue
d, last_flag = [], ''
for c in l.split('\n'):
try:
char, this_flag = c.split(' ')
except:
print(c)
continue
if this_flag == 'O' and last_flag == 'O':
d[-1][0] += char
elif this_flag == 'O' and last_flag != 'O':
d.append([char, 'O'])
elif this_flag[:1] == 'B':
d.append([char, this_flag[2:]])
else:
d[-1][0] += char
last_flag = this_flag
D.append(d)
return D
# 标注数据
train_data = load_data('/home/liulinhai/llhy/baseline/data/train.txt')
valid_data = load_data('/home/liulinhai/llhy/baseline/data/val.txt')
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
# 类别映射
labels = ['SYMPTOM',
'DRUG_EFFICACY',
'PERSON_GROUP',
'SYNDROME',
'DRUG_TASTE',
'DISEASE',
'DRUG_DOSAGE',
'DRUG_INGREDIENT',
'FOOD_GROUP',
'DISEASE_GROUP',
'DRUG',
'FOOD',
'DRUG_GROUP']
id2label = dict(enumerate(labels))
label2id = {j: i for i, j in id2label.items()}
num_labels = len(labels) * 2 + 1
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, random=False):
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
for is_end, item in self.sample(random):
token_ids, labels = [tokenizer._token_start_id], [0]
for w, l in item:
w_token_ids = tokenizer.encode(w)[0][1:-1]
if len(token_ids) + len(w_token_ids) < maxlen:
token_ids += w_token_ids
if l == 'O':
labels += [0] * len(w_token_ids)
else:
B = label2id[l] * 2 + 1
I = label2id[l] * 2 + 2
labels += ([B] + [I] * (len(w_token_ids) - 1))
else:
break
token_ids += [tokenizer._token_end_id]
labels += [0]
segment_ids = [0] * len(token_ids)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_labels.append(labels)
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(batch_token_ids)
batch_segment_ids = sequence_padding(batch_segment_ids)
batch_labels = sequence_padding(batch_labels)
yield [batch_token_ids, batch_segment_ids], batch_labels
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
class NonMasking(keras.layers.Layer):
def __init__(self, **kwargs):
self.supports_masking = True
super(NonMasking, self).__init__(**kwargs)
def build(self, input_shape):
input_shape = input_shape
def compute_mask(self, input, input_mask=None):
# do not pass the mask to the next layers
return None
def call(self, x, mask=None):
return x
def get_output_shape_for(self, input_shape):
return input_shape
model = build_transformer_model(
config_path,
checkpoint_path,
)
def expand2(input):
return K.expand_dims(input, axis=2)
layer_logits = []
seq_out = []
for i in range(bert_layers):
output_layer = 'Transformer-%s-FeedForward-Norm' % i
layer = model.get_layer(output_layer).output
layer_logits.append(Dense(1,
kernel_initializer = keras.initializers.TruncatedNormal(stddev=0.02),
name='layer_logit%d' % i)(layer))
seq_out.append(keras.layers.Lambda(expand2, name='expand_{}'.format(i))(layer))
seq_out = keras.layers.Concatenate(axis=2)(seq_out)
layer_logits = keras.layers.Concatenate(axis=2)(layer_logits)
soft = keras.layers.Softmax()
layer_dist = soft(layer_logits)
def matM(inputs):
x, y = inputs
x = K.expand_dims(x, axis=2)
return tf.squeeze(tf.matmul(x, y), axis=2)
output = keras.layers.Lambda(matM, name='matmul')([layer_dist, seq_out])
output = Dense(512)(output)
output = NonMasking()(output)
finalOutFromLayer = []
for i in range(repeat):
output = Conv1D(filters=64,
kernel_size=3,
activation='relu',
padding='same',
dilation_rate=1)(output)
output = Conv1D(filters=128,
kernel_size=3,
activation='relu',
padding='same',
dilation_rate=1)(output)
output = Conv1D(filters=128,
kernel_size=3,
activation='relu',
padding='same',
dilation_rate=2)(output)
finalOutFromLayer.append(output)
output = keras.layers.Concatenate(axis=2)(finalOutFromLayer)
output = Dense(num_labels)(output) # 27分类
CRF = ConditionalRandomField(lr_multiplier=crf_lr_multiplier)
output = CRF(output)
model = Model(model.input, output)
model.summary()
model.compile(
loss=CRF.sparse_loss,
optimizer=Adam(learing_rate),
metrics=[CRF.sparse_accuracy]
)
class NamedEntityRecognizer(ViterbiDecoder):
"""命名实体识别器
"""
def recognize(self, text):
tokens = tokenizer.tokenize(text)
mapping = tokenizer.rematch(text, tokens)
token_ids = tokenizer.tokens_to_ids(tokens)
segment_ids = [0] * len(token_ids)
token_ids, segment_ids = to_array([token_ids], [segment_ids])
nodes = model.predict([token_ids, segment_ids])[0]
labels = self.decode(nodes)
entities, starting = [], False
for i, label in enumerate(labels):
if label > 0:
if label % 2 == 1:
starting = True
entities.append([[i], id2label[(label - 1) // 2]])
elif starting:
entities[-1][0].append(i)
else:
starting = False
else:
starting = False
return [(text[mapping[w[0]][0]:mapping[w[-1]][-1] + 1], l)
for w, l in entities]
NER = NamedEntityRecognizer(trans=K.eval(CRF.trans), starts=[0], ends=[0])
def evaluate(data):
"""评测函数
"""
X, Y, Z = 1e-10, 1e-10, 1e-10
for d in tqdm(data):
text = ''.join([i[0] for i in d])
R = set(NER.recognize(text)) # 预测
T = set([tuple(i) for i in d if i[1] != 'O']) #真实
X += len(R & T)
Y += len(R)
Z += len(T)
precision, recall = X / Y, X / Z
f1 = 2*precision*recall/(precision+recall)
return f1, precision, recall
class Evaluator(keras.callbacks.Callback):
def __init__(self,valid_data):
self.best_val_f1 = 0
self.valid_data = valid_data
def on_epoch_end(self, epoch, logs=None):
trans = K.eval(CRF.trans)
NER.trans = trans
# print(NER.trans)
f1, precision, recall = evaluate(self.valid_data)
# 保存最优
if f1 >= self.best_val_f1:
self.best_val_f1 = f1
model.save_weights('./best_model_epoch_10_bertIdcnnCrf.weights')
print(
'valid: f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %
(f1, precision, recall, self.best_val_f1)
)
evaluator = Evaluator(valid_data)
train_generator = data_generator(train_data, batch_size)
model.fit_generator(
train_generator.forfit(),
steps_per_epoch=len(train_generator),
epochs=epochs,
callbacks=[evaluator]
)
def _cut(sentence):
"""
将一段文本切分成多个句子
:param sentence:
:return:
"""
new_sentence = []
sen = []
for i in sentence:
if i in ['。', '!', '?', '?'] and len(sen) != 0:
sen.append(i)
new_sentence.append("".join(sen))
sen = []
continue
sen.append(i)
if len(new_sentence) <= 1: # 一句话超过max_seq_length且没有句号的,用","分割,再长的不考虑了。
new_sentence = []
sen = []
for i in sentence:
if i.split(' ')[0] in [',', ','] and len(sen) != 0:
sen.append(i)
new_sentence.append("".join(sen))
sen = []
continue
sen.append(i)
if len(sen) > 0: # 若最后一句话无结尾标点,则加入这句话
new_sentence.append("".join(sen))
return new_sentence
def cut_test_set(text_list,len_treshold):
cut_text_list = []
cut_index_list = []
for text in text_list:
temp_cut_text_list = []
text_agg = ''
if len(text) < len_treshold:
temp_cut_text_list.append(text)
else:
sentence_list = _cut(text) # 一条数据被切分成多句话
for sentence in sentence_list:
if len(text_agg) + len(sentence) < len_treshold:
text_agg += sentence
else:
temp_cut_text_list.append(text_agg)
text_agg = sentence
temp_cut_text_list.append(text_agg) # 加上最后一个句子
cut_index_list.append(len(temp_cut_text_list))
cut_text_list += temp_cut_text_list
return cut_text_list, cut_index_list
class NamedEntityRecognizer(ViterbiDecoder):
"""命名实体识别器
"""
def recognize(self, text):
tokens = tokenizer.tokenize(text)
mapping = tokenizer.rematch(text, tokens)
token_ids = tokenizer.tokens_to_ids(tokens)
segment_ids = [0] * len(token_ids)
nodes = model.predict([[token_ids], [segment_ids]])[0]
labels = self.decode(nodes)
entities, starting = [], False
for i, label in enumerate(labels):
if label > 0:
if label % 2 == 1:
starting = True
entities.append([[i], id2label[(label - 1) // 2]])
elif starting:
entities[-1][0].append(i)
else:
starting = False
else:
starting = False
return [(text[mapping[w[0]][0]:mapping[w[-1]][-1] + 1], l)
for w, l in entities]
NER = NamedEntityRecognizer(trans=K.eval(CRF.trans), starts=[0], ends=[0])
def test_predict(data, NER_):
test_ner =[]
for text in tqdm(data):
cut_text_list, cut_index_list = cut_test_set([text],maxlen)
posit = 0
item_ner = []
index =1
for str_ in cut_text_list:
aaaa = NER_.recognize(str_)
for tn in aaaa:
ans = {}
ans["label_type"] = tn[1]
ans['overlap'] = "T" + str(index)
ans["start_pos"] = text.find(tn[0],posit)
ans["end_pos"] = ans["start_pos"] + len(tn[0])
posit = ans["end_pos"]
ans["res"] = tn[0]
item_ner.append(ans)
index +=1
test_ner.append(item_ner)
return test_ner
import glob
import codecs
X, Y, Z = 1e-10, 1e-10, 1e-10
val_data_flist = glob.glob('/home/liulinhai/llhy/baseline/round1_train/val_data/*.txt')
data_dir = '/home/liulinhai/llhy/baseline/round1_train/val_data/'
for file in val_data_flist:
if file.find(".ann") == -1 and file.find(".txt") == -1:
continue
file_name = file.split('/')[-1].split('.')[0]
r_ann_path = os.path.join(data_dir, "%s.ann" % file_name)
r_txt_path = os.path.join(data_dir, "%s.txt" % file_name)
R = []
with codecs.open(r_txt_path, "r", encoding="utf-8") as f:
line = f.readlines()
aa = test_predict(line, NER)
for line in aa[0]:
lines = line['label_type']+ " "+str(line['start_pos'])+' ' +str(line['end_pos'])+ "\t" +line['res']
R.append(lines)
T = []
with codecs.open(r_ann_path, "r", encoding="utf-8") as f:
for line in f:
lines = line.strip('\n').split('\t')[1] + '\t' + line.strip('\n').split('\t')[2]
T.append(lines)
R = set(R)
T = set(T)
X += len(R & T)
Y += len(R)
Z += len(T)
precision, recall = X / Y, X / Z
f1 = 2*precision*recall/(precision+recall)
print(f1,precision,recall)
print("the whole training took {} seconds".format(time.time() - start))