-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathoptions.py
100 lines (84 loc) · 5.42 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import time
import argparse
import torch
def get_options(args=None):
parser = argparse.ArgumentParser(
# description="the algorithm name"
)
### overall settings
parser.add_argument('--problem', default='tsp', choices = ['tsp'],
help="The problem to solve, default 'tsp'")
parser.add_argument('--graph_size', type=int, default=20,
help="The size of the problem graph")
parser.add_argument('--eval_only', action='store_true',
help='used only if to evaluate a model')
parser.add_argument('--init_val_met', choices = ['seq'], default = 'seq',
help='method to generate initial solutions while validation')
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--no_tb', action='store_true', help='Disable Tensorboard')
parser.add_argument('--no_assert', action='store_true', help='Disable Assertion')
parser.add_argument('--seed', type=int, default=1234, help='Random seed to use')
# resume and load models
parser.add_argument('--load_path', default = None,
help='Path to load model parameters and optimizer state from')
parser.add_argument('--resume', default = None,
help='Resume from previous checkpoint file')
parser.add_argument('--epoch_start', type=int, default=0,
help='Start at epoch # (relevant for learning rate decay)')
### training AND validation
parser.add_argument('--n_step', type=int, default=4)
parser.add_argument('--T_train', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=5120,
help='Number of instances per batch during training')
parser.add_argument('--n_epochs', type=int, default=100,
help='The number of epochs to train')
parser.add_argument('--epoch_size', type=int, default=51200,
help='Number of instances per epoch during training')
parser.add_argument('--val_size', type=int, default=1000,
help='Number of instances used for reporting validation performance')
parser.add_argument('--eval_batch_size', type=int, default=1000,
help="Batch size to use during (baseline) evaluation")
parser.add_argument('--val_dataset', type=str, default = './datasets/tsp_20_10000.pkl',
help='Dataset file to use for validation')
parser.add_argument('--lr_model', type=float, default=1e-4, help="Set the learning rate for the actor network")
parser.add_argument('--lr_critic', type=float, default=1e-4, help="Set the learning rate for the critic network")
parser.add_argument('--lr_decay', type=float, default=0.99, help='Learning rate decay per epoch')
parser.add_argument('--max_grad_norm', type=float, default=0.5,
help='Maximum L2 norm for gradient clipping, default 1.0 (0 to disable clipping)')
### network
parser.add_argument('--model', default='attention', help="Model, 'attention' (default) or 'pointer'")
parser.add_argument('--embedding_dim', type=int, default=128, help='Dimension of input embedding')
parser.add_argument('--hidden_dim', type=int, default=128, help='Dimension of hidden layers in Enc/Dec')
parser.add_argument('--n_encode_layers', type=int, default=3,
help='Number of layers in the encoder/critic network')
parser.add_argument('--n_heads_encoder', type=int, default=1)
parser.add_argument('--n_heads_decoder', type=int, default=1)
parser.add_argument('--tanh_clipping', type=float, default=0.001,
help='Clip the parameters to within +- this value using tanh. '
'Set to 0 to not perform any clipping.')
parser.add_argument('--normalization', default='batch', help="Normalization type, 'batch' (default) or 'instance'")
parser.add_argument('--gamma', type=float, default=0.8, help='decrease future reward')
parser.add_argument('--T_max', type=int, default=1000, help='number of steps to swap')
### logs to tensorboard and screen
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
parser.add_argument('--no_tensorboard', action='store_true', help='Disable logging TensorBoard files')
parser.add_argument('--log_dir', default='logs', help='Directory to write TensorBoard information to')
parser.add_argument('--log_step', type=int, default=25, # 50
help='Log info every log_step steps')
### outputs
parser.add_argument('--output_dir', default='outputs', help='Directory to write output models to')
parser.add_argument('--run_name', default='run_name', help='Name to identify the run')
parser.add_argument('--checkpoint_epochs', type=int, default=1,
help='Save checkpoint every n epochs (default 1), 0 to save no checkpoints')
opts = parser.parse_args(args)
opts.use_cuda = torch.cuda.is_available() and not opts.no_cuda
opts.run_name = "{}_{}".format(opts.run_name, time.strftime("%Y%m%dT%H%M%S"))
opts.save_dir = os.path.join(
opts.output_dir,
"{}_{}".format(opts.problem, opts.graph_size),
opts.run_name
)
return opts
if __name__ == "__main__":
opts = get_options()